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ABSTRACT 

Previous moderate- and high-temperature geothermal resource assessments of the western United States utilized weight-of-evidence and 

logistic regression methods to estimate resource favorability, but these analyses relied upon some expert decisions. While expert decisions 

can add confidence to aspects of the modeling process by ensuring only reasonable models are employed, expert decisions also introduce 
human bias into assessments. This bias presents a source of error that may affect the performance of the models and resulting resource 

estimates. Our study aims to reduce expert input through robust data-driven analyses and better-suited data science techniques, with the 

goals of saving time, reducing bias, and improving predictive ability. We present six favorability maps for geothermal resources in the 

western United States created using two strategies applied to three modern machine learning algorithms (logistic regression, support-

vector machines, and XGBoost). To provide a direct comparison to previous assessments, we use the same input data as the 2008 U.S. 
Geological Survey (USGS) conventional moderate- to high-temperature geothermal resource assessment. The six new favorability maps 

required far less expert decision-making, but broadly agree with the previous assessment. Despite the fact that the 2008 assessment results 

employed linear methods, the non-linear machine learning algorithms (i.e., support-vector machines and XGBoost) produced greater 

agreement with the previous assessment than the linear machine learning algorithm (i.e., logistic regression). It is not surprising that 

geothermal systems depend on non-linear combinations of features, and we postulate that the expert decisions during the 2008 assessment 
accounted for system non-linearities. Substantial challenges to applying machine learning algorithms to predict geothermal resource 

favorability include severe class imbalance (i.e., there are very few known geothermal systems compared to the large area considered), 

and while there are known geothermal systems (i.e., positive labels), all other sites have an unknown status (i.e., they are unlabeled), 

instead of receiving a negative label (i.e., the known/proven absence of a geothermal resource). We address both challenges through a 

custom undersampling strategy that can be used with any algorithm and then evaluated using F1 scores. 

1. INTRODUCTION 

The U.S. Geological Survey (USGS) has produced periodic national geothermal resource assessments (White and Williams, 1975; 

Muffler, 1979; Reed, 1983; Williams and DeAngelo, 2008; Williams et al., 2008; Williams et al., 2009). The most recent moderate- to 

high-temperature conventional geothermal energy assessment was completed by Williams and DeAngelo (2008), Williams et al. (2008), 
and Williams et al. (2009). This assessment produced 28 models to identify locations of high geothermal favorability  in the western United 

States (examples shown in Fig. 1) using two modeling methods (i.e., weight-of-evidence and logistic regression) that varied combinations  

of 9 geological input feature sets (see Williams and DeAngelo (2008) for complete reference information). These 9 feature sets are divided 

into 5 input feature types, and each model uses no more than one feature set from each type: 

 Quaternary faulting 

 Distance to Quaternary faults from the USGS Quaternary fault and fold database (Machette et al., 2003) 

 Magmatic activity from Donnelly-Nolan (1988), MacLeod et al. (1995), Walker et al. (2006), and Hildreth (2007)  

 Distance to all magma bodies  

 Distance to felsic magma bodies 

 Distance to mafic magma bodies 

 Heat flow 

 Heat flow interpolated from unpublished data compiled for Williams et al. (2007) 

 Heat flow interpolated from Blackwell and Richards (2004) 

 Seismic Activity 

 Earthquake density within 4 km from the ANSS Comprehensive Earthquake Catalog 

 Log of the sum of seismic moments of earthquakes within 10 km from the ANSS Comprehensive Earthquake Catalog 

 Stress 

 Maximum horizontal stress interpolated from Reinecker et al. (2005) 

Although these assessment models used data-driven fitting methods to assign measured correlations between input features and geothermal 
sites, data selection and pre-processing occurred at several stages of the analyses based upon expert-judgment. For example, some feature 

sets had to be binned (i.e., bucketed or categorized). Other feature sets used buffer distance to create a binary classification (e.g., within 4 
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km of a feature or beyond 4 km from a feature). Thus, parameters like bin sizes, number of bins, and threshold values had to be selected. 

While these expert decisions potentially add value, they also introduce a potential source of bias.  

 

Figure 1: Geothermal favorability maps of the western United States averaged from 12 models as presented in Williams et al. 

(2009) using the: a) weight-of-evidence; and b) logistic regression methods from Williams and DeAngelo (2008). The 

individual models used for averaging are differentiated by their unique input feature combinations. Favorability is the 

normal score transform of averaged probability.  

Herein, we detail a means to minimize expert bias while producing models that reliably predict geothermal favorability in the western 

United States using fundamental machine learning algorithms (i.e., logistic regression, support-vector machines, and eXtreme Gradient 

Boosting) with two strategies and the data from the 2008 USGS geothermal resource assessment. 
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1.1 What Are Machine Learning Algorithms? 

Machine learning algorithms, like logistic regression, support-vector machines, and eXtreme Gradient Boosting, provide a data-driven 

means to produce models. Machine learning algorithms aim to learn the statistics of a dataset (i.e., the training data) in order to create 

optimal decision functions (i.e., models) using minimal human input. Implicit to the name, data-driven decisions are choices  

algorithmically made based upon the data during the fitting of a model that optimizes a performance metric (e.g., accuracy, precision, 

recall, and F1 score as defined in Equations 1 – 4). 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(2) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(3) 

 
𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +
1
2

(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

(4) 

Performance metric optimization is primarily achieved through the selection of an algorithm’s internal variables that balances the tradeoff 

between underfitting (i.e., when a model fails to predict well with the training data; that is, when the model is too simple) and overfitting 

(i.e., when a model predicts well with the training data, but fails to predict well with data not used for training; that is, when the model is 

too complex). The adjustable internal variables are called hyperparameters, and the selection of hyperparameter values that optimize the 

chosen performance metric is called hyperparameter optimization. Fundamentally, data-driven decisions mean the nature of the data 
determines hyperparameter values. Therefore, hyperparameters are optimized when the hyperparameters produce a model that is most 

representative of the phenomenon as is possible by the chosen algorithm. Depending on the quality of the data, this determination (i.e.,  

what qualifies as most representative) may require human discretion; however, given sufficient quality, the data make this decision. 

Hyperparameter optimization helps algorithms handle the unique qualities of datasets. One such quality is the relative frequency of the 

occurrence of classification labels. Machine learning algorithms operate most effectively when the occurrences of classification labels in 
the data are nearly equal in frequency (see generally Fernández et al., 2018). Substantial deviation from a similar occurrence of labels is 

termed class imbalance and impairs the ability of data-driven algorithms to learn from the data (see generally Branco et al., 2015). Class 

imbalance can range from slight (e.g., 1:10) to severe (e.g., 1:> 100; see generally Krawczyk, 2016). There are several means to address 

modest class imbalance. Three of the most common are oversampling, undersampling, and penalization (see generally Fernández et al.,  

2018). Oversampling duplicates existing data of the minority class (i.e., the class with the less frequent occurrence) and increases the risk 
of overfitting the data because the new data are derived from the smaller, pre-existing dataset. Undersampling (i.e., downsampling) 

removes data of the majority class (i.e., the class with the more frequent occurrence). Undersampling presents the risk of removing 

valuable data. Penalization (e.g., class weighting) weights label types to place greater emphasis on predicting minority class labels over 

majority class labels during training. Other options to address class imbalance include using different performance metrics (e.g., accuracy  

versus F1 score) and algorithms (e.g., logistic regression versus eXtreme Gradient Boosting; see generally Branco et al. (2015)). 

1.2 Challenges of the Data from the 2008 Geothermal Resource Assessment 

The data in the 2008 USGS geothermal resource assessment had severe class imbalance. The 2008 USGS geothermal resource assessment 

gridded the western United States into 725,442 2-km-by-2-km cells, of which 278 contained known conventional hydrothermal systems 

(Fig. 1). If a cell contained a known geothermal system, the cell was given a positive label. One geothermal system could not span two 

cells. The remaining 725,164 cells are unlabeled, though it is deemed likely that most cells are negative, and for the 2008 assessment, all 
the unlabeled cells were assumed to be negative. One immediate difficulty evident from this severe class imbalance (i.e., a < 1:2600 

positive:negative ratio) is that a simple model that predicts every cell as negative has an accuracy of > 99.96%, even though that model 

predicts no geothermal systems. In other words, this highly accurate model provides no insight into where sparse geothermal systems 

exist. Furthermore, under the assumption that all unlabeled cells are negative, undiscovered geothermal systems are incorrectly labeled as 

negatives, and a challenge of geothermal resource analysis is to properly allow and account for these incorrectly labeled cells. 

2. METHODS 

With consideration for the advances in machine learning over the last decade, we seek to develop and implement a philosophy of unbiased 

(or minimally biased) data analysis in order to model the favorability of conditions for geothermal resources. We use the data of Williams  

and DeAngelo (2008) to facilitate the comparison between the past assessment and the machine learning approaches developed herein. 

The F1 score (Equation 4) is selected as the metric of performance. Below, the algorithms are summarized, and the two strategies of 

addressing the severe class imbalance are described.  

We describe model predictions in terms of favorability. We define favorability as a measure of the presence of geologic conditions believed 

to be associated with the presence of a geothermal system. In order to permit the comparison of geothermal favorability between each 

algorithm, the native output from each algorithm is normal score transformed (see generally Pyrcz and Deutsch, 2018), thereby accounting 

for differences in measurement units (e.g., probability or distance measures).  
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2.1 The Data 

To provide a direct comparison of data-driven machine learning algorithm performance with that of the 2008 methods, we use five of the 

feature sets from Williams and DeAngelo (2008). Specifically, we select one raw feature set from each feature type: heat flow; distance 

to a magma body; distance to a fault; density of epicenters for seismic events ≥ M3 within a 4-km radius; and maximum horizontal stress. 

These feature sets are used to create new geothermal favorability maps using the methods of Williams and DeAngelo (2008) and the data-

driven, machine learning approaches we introduce herein. As is common practice in data-driven methods, we standardize and normalize 

the data prior to application of each machine learning algorithm (see generally Burkov, 2019). 

2.2 Performance Metric Selection 

Per the methods review by Bekker and Davis (2020), the F1 score is the most appropriate for binary positive-unlabeled classifications like 

those found in the geothermal data used herein. Hence, we select the F1 score (Equation 4) as the performance metric for all simulations. 

The F1 score gets a maximum value of 1 when all positive locations are identified as positive and all unlabeled locations are identified as 

negative. In this way, a lower F1 score reflects a model with poorer performance. We note that with positive-unlabeled data, we cannot 

be certain of false positives, which are a consideration with the F1 score; however, other performance metrics (e.g., accuracy, precision, 

recall) have been found to be even less adequate for positive-unlabeled data (Bekker and Davis, 2020). By nature of the F1 score taking 
into account true positives, false negatives, and false positives, the F1 score provides the best assessment of a model’s performance with 

positive-unlabeled data. 

2.3 The Algorithms Considered 

We compare the three data-driven algorithms used for analysis – logistic regression, support-vector machines (i.e., SVMs), and eXtreme 

Gradient Boosting (commonly referred to as XGBoost) – to the expert decision-dependent application of weight-of-evidence and logistic 
regression methods in the 2008 USGS geothermal resource assessment. We choose these three data-driven algorithms for several reasons. 

We select logistic regression because Williams and DeAngelo (2008) also used this algorithm, albeit with expert decisions, allowing for 

the comparison with all other conditions being the same between the machine learning and expert decision-dependent models. We also 

include two non-linear methods: SVMs and XGBoost. SVMs and XGBoost are general-purpose classifiers (see generally Fernández-

Delgado et al., 2014), but when compared to each other, they rely on fundamentally different approaches to produce decisions, providing 
a contrast between common non-linear methods. Hence, selecting these three data-driven algorithms expands our perspective in the 

behavior of machine learning with the geothermal data. More details and reference information are provided for each algorithm in the 

subsequent three subsections.  

2.3.1 Logistic Regression 

With its initial introduction in Berkson (1944) and subsequent developments in the years that followed (e.g., Berkson, 1951), logistic 
regression remains one of the older and simpler algorithms in machine learning. At its core, logistic regression fits the input feature set(s) 

linearly to the logit of Probability, which is then transformed to Probability with the logit function as summarized in Equation 5 (Fig. 2): 

 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 

𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑛)

1 + 𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑛)
 (5) 

in which the coefficients, 𝛽
0
, 𝛽

1
, 𝛽

2
, …, 𝛽

𝑛
, are empirically fit, and 𝑥1, 𝑥2, …, 𝑥𝑛  are the input features (see Berkson (1944) for complete 

details). We normal score transform Probability to produce a plot of favorability. 

A decision threshold (often probability = 0.5) defines classification labels (e.g., 1 or 0, Yes or No, Geothermally Favorable or Not 

Geothermally Favorable) above and below that decision threshold. The computational requirements of logistic regression scale linearly 

with additional training data. 

Using a custom k-folds cross-validation (see section 2.4 for more details), we use the common 0.5 decision threshold with logistic 
regression and optimize two hyperparameters, the inverse regularization strength and the class weight. The inverse regularization strength 

hyperparameter inversely correlates with the propensity of the algorithm to overfit without regularization. The lower the optimal inverse 

regularization strength hyperparameter, the greater the degree of regularization necessary to prevent overfitting. The class weight  

hyperparameter is a means to correct for class imbalance. The greater the optimal class weight, the greater the emphasis the model imparts 

on correctly identifying positive sites over non-positive sites. Misclassification of the majority class occurs more frequently as the minority 
class receives greater class weighting (an example for which is provided in Fig. 2). We leave the other parameters of logistic regression 

at the default values found in the Python’s Scikit-Learn module, as they pertain to the specifics of the optimization routine and have only 

a modest impact on performance (Pedregosa et al., 2011; Kuhn and Johnson, 2013).  
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Figure 2: Conceptual framework for logistic regression (schematic shows only two features for illustrative purposes, but the 

concept easily extends to n features through Equation 5). The dashed blue line represents a 0.5 probability threshold (a 

common choice in the machine learning community). The solid, blue circles are examples of a positive label. The hollow, 

black circles are examples of a negative label, so the hollow circle above the threshold would be a false positive . Solid 

arrows indicate the classification label dictated by the chosen threshold. Probability values range between 0 and 1, and a 

normal score transform of these values are used in this manuscript for plots of favorability. 

2.3.2 Support-Vector Machines (SVMs) 

SVMs provide a more modern  machine learning algorithm and an increase in complexity with respect to logistic regression (Cortes and 

Vapnik, 1995). SVMs classify labels by finding a hyperplane in an n-dimensional space with n defined by the number of input features 

(in our case, 5 input features define a 5-dimensional space). The hyperplane serves as a decision boundary (i.e., maximum margin 
classifier) that maximizes the n-dimensional distance between data with different labels (Fig. 3 shows a linear 2-dimensional example).  

While finding a hyperplane is a linear process, non-linearities are accommodated through the so-called kernel trick (Shalev-Shwartz and 

Ben-David, 2014), which uses a non-linear transform to map the data to a new space where a linear decision boundary is found. SVMs 

work well for smaller datasets (i.e., thousands of samples or less), because the computational requirements grow quadratically with each 

additional sample in the training data (Chapelle, 2007); hence, SVMs are less efficient for large datasets. 

Given their framework, SVMs do not provide a probability like logistic regression, but instead directly provide a label and the distance 

from that label to the decision boundary . We normal score transform the distance between the label and decision boundary to produce 

favorability plots with SVMs. 

We utilize an SVM with the radial basis function (RBF) kernel. Like with logistic regression, with SVMs, we optimize the inverse 

regularization strength and class weight with a custom k-folds cross-validation (see section 2.4). We also add the kernel parameter gamma 
as a third hyperparameter to optimize. Although not implemented identically between the two algorithms, the influence of inverse 

regularization strength and class weight on the behavior of SVMs is similar to that of logistic regression (section 2.3.1). The kernel 

parameter gamma controls how the kernel trick is applied; hence, gamma controls the non-linear complexity of the decision boundary 

hyperplane. The higher the gamma, the more complex the decision boundary , and, therefore, a greater likelihood of overfitting. We leave 

the other parameters of SVMs at the default values found in the Python’s Scikit-Learn module, as they either do not apply to the specific 
form of SVM used (e.g., apply only to other kernel choices) or have minimal impact on performance (Pedregosa et al., 2011; Kuhn and 

Johnson, 2013). 
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Figure 3: Conceptual framework of an SVM showing a simple two-feature (x1 and x2) example, which mathematically generalizes 
to higher dimensions using hyperplanes. The solid, blue circles are examples of one label. The hollow, black circles are 

examples of another label. The decision boundary (i.e., the maximum margin classifier), which maximizes the distances to 

the nearest examples of each predicted label, is a solid black line. Note that this example SVM misclassifies one hollow, 

black sample as that of the solid blue sample. Distance between the dashed black lines is the maximum margin. 

2.3.3 XGBoost 

XGBoost, first introduced in Chen and Guestrin (2016) uses a process called boosting, that creates a series of decision trees, which are 

aggregated to produce a single model (Fig. 4). XGBoost produces a series of simple decision trees (i.e., estimators). Each subsequent 

estimator is evaluated and improved from the previous estimator. The amount of information communicated from a previous estimator to 

a new estimator is called the learning rate. The number of estimators used in the final classifier is determined when additional estimators 

begin to overfit the training data. Similarly, the depth of the estimators (i.e., the number of branch levels in the trees) is also optimized so 
as to not overfit the training data. The final node (i.e., the node at the end of a terminal branch) in every estimator has an associated 

probability value. A sample’s classification label is determined from the sum of the probability values across all of the estimators (see 

summation of probability values from each estimator in Fig. 4). We normal score transform the sum of the probabilities to produce 

favorability maps. The computational requirements of XGBoost grow at greater than a linear rate (i.e., greater than that of logistic 

regression) but less than a quadratic rate (i.e., less than that of SVMs) with each additional sample in the training data. 

With the custom k-folds cross-validation (see section 2.4), we optimize four hyperparameters for XGBoost: class weight, learning rate, 

number of estimators, and maximum depth of estimators. Class weight in XGBoost differs in exact implementation compared with logistic 

regression and SVMs, but this hyperparameter serves much the same purpose: a greater class weight places greater emphasis on accurately 

predicting positive labels (i.e., known geothermal systems) than non-positive labels (i.e., unknown resource potential). The other 

parameters are used to maximize prediction performance while also avoiding overfitting (Chen and Guestrin, 2016). We leave the other 
parameters of XGBoost at the default values found in Python’s XGBoost module as they pertain to the specifics of the optimization routine 

and have only a modest impact on performance (Chen and Guestrin, 2016). 
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Figure 4: Conceptual framework for XGBoost. This figure depicts three of n estimators (i.e., trees) in an XGBoost classifier. For 

each cell in a map, a probability value is computed for each estimator, given by its own path (e.g. solid black arrows) from 

the root node (purple circle) through the branch nodes (green triangle or blue square), each with a condition dependent 

upon a feature value, differing between branches and estimators. Ultimately, a cell arrives at an end node (red circle). Each 
end node has an assigned probability (e.g., x, y,…, z) found during fitting. The final classification at each map location is 

predicted by the summation of the probability values across all of the estimators (e.g. dashed black arrows). The final 

Probability values are normal score transformed to produce favorability maps for comparison between approaches.  

2.4 Preventing Bias Due To Class-Imbalance 

In an effort to address the severe class imbalance, we experiment with two strategies using the data-driven algorithms: 1) the single 
strategy, in which algorithms are fit with all the available training data, and; 2) the ensemble strategy, in which the majority class (i.e., 

that of the unlabeled cells) is subdivided into four datasets for training and the sub-models fit from those data subsets are averaged into 

one model.  

Both strategies require an estimate of how many geothermal systems exist in the study area (i.e., identified systems + undiscovered 

systems) so that the expected natural positive-negative ratio guides class imbalance weighting and the number of samples selected during 
undersampling. To estimate the number of undiscovered systems, we estimate the mean power generation of the identified systems in 

Equation 6. Then, assuming the same average will hold true for undiscovered systems, the number of undiscovered systems can be 

computed from the estimated undiscovered resources by Equation 7. Williams et al. (2008) estimated the mean power potential from 

identified geothermal resources as 9,057 MWe, but also provided a range of estimates from 95% probability with 3,675 MWe to 5% 

probability with 16,457 MWe. Similarly, Williams et al. (2008) estimated the mean power potential from undiscovered geothermal 
resources as 30,033 MWe and provided a range from 7,797 MWe at 95% probability to 73,286 MWe at 5% probability. The total number 

of geothermal systems is then found by summing the number of identified systems and the number of undiscovered systems (Equation 8). 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑆𝑦𝑠𝑡𝑒𝑚 =  

𝑃𝑜𝑤𝑒𝑟  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑆𝑦𝑠𝑡𝑒𝑚𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑆𝑦𝑠𝑡𝑒𝑚𝑠
 (6) 

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 = 

𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑆𝑦𝑠𝑡𝑒𝑚
 (7) 

 𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑒𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 = 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 + 𝑈𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 (8) 

Considering the power production estimates at 95% and 5% probability in Williams et al. (2008), we estimate a range of 760 – 1314 
conventional hydrothermal systems exist in the western United States. Herein, we use the mean estimate of 1040 systems across the 

725,442 2-km-by-2-km cells, thereby estimating a natural class imbalance of 1:700.  

Each machine learning algorithm employs a train-test split, in which 80% of the data are used for training and 20% are used for testing, 

to evaluate the performance of the training model (Fig. 5). This split is random (i.e., the training and testing data are randomly sampled 



Mordensky, Lipor, DeAngelo, Burns, Lindsey  

 8 

from the data), and to prevent an unfortunate, unlucky split that results in a poor model, this procedure is repeated 100 times. The optimal 
hyperparameters are then averaged to train a model from a single train-test split and predict geothermal favorability using all of the 

available data. 

Within each iteration of the 100 train-test splits, the training data are further split into smaller partitions (i.e., folds) for custom stratified 

k-fold cross validation. In k-fold cross validation, one of the folds is set aside and the remaining folds are used to train a model, and the 

performance of that model is then evaluated with the initial fold that was set aside (see generally Burkov, 2019). This process is repeated 
k times until every fold has evaluated the model fit by the other folds. Then the performance of all the folds is averaged. The stratified in 

stratified k-fold cross validation means that the positive labels are evenly distributed amongst the folds. In this study, we use 5 folds as is 

common in machine learning practice to avoid overfitting or underfitting a model (see generally Burkov, 2019). 

In both class imbalance strategies we used, the testing data and the data in the fold used during validation are randomly downsampled 

from the class imbalance of the data set (< 1:2600) to the estimated natural class imbalance (1:700). The two strategies differ in how the 
data in the remaining folds (i.e., the folds not set aside for validation) are used for training a model. With the single strategy, all of the 

data in the remaining folds are used for fitting a single model. With the ensemble strategy, the data from the majority class (i.e., the 

unlabeled cells) from the remaining folds are randomly distributed into smaller subsets such that each subset has approximately the 

expected natural class imbalance with each subset receiving all the known positives from the training folds; therefore, the number of 

subsets created is found by Equation 9. 

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 =  

𝐶𝑙𝑎𝑠𝑠 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐶𝑙𝑎𝑠𝑠 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒
 (9) 

Hence, with the data in this study, the ensemble strategy creates 4 subsets of data per fold. A model is then fit to each of these subsets and 

the performance of these models is evaluated and validated in aggregate.  

 

Figure 5: Workflow for all data-driven algorithms, including class-imbalance correction. The “Custom k-Fold Cross Validation” 

uses one of two strategies during stratified k-fold cross validation. The single strategy fits a single model with the remaining 

four fifths of the folds. The ensemble strategy splits the unlabeled data within the remaining four fifths of the folds to create 

4 subsets of the data so that each subset approximately has the estimated 1:700 positive:negative estimated natural class 

imbalance for a 2-km-by-2km grid of the western United States. A sub-model is then fit to each of these subsets of data and 

the sub-models are evaluated in aggregate. 

3. RESULTS & DISCUSSION 

3.1 Comparing Favorability Maps 

The geothermal favorability maps constructed using the methods from the 2008 geothermal resource assessment (Fig. 6) and the machine 

learning algorithms (i.e., logistic regression [Fig. 7], SVMs [Fig. 8], and XGBoost [Fig. 9]) generally show a broad agreement with each 
other, particularly for areas of high geothermal favorability . Hence, we demonstrate that the machine learning algorithms can reproduce 
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and, perhaps, even improve geothermal favorability prediction without the human bias implicit to expert  decision-dependent methods. 

However, despite this broad agreement, there are distinctions between the results of the different approaches. 

The data-driven logistic regression favorability maps have a smooth geospatial distribution of favorability (Fig. 7) relative to the 

favorability maps from the more expert decision-dependent approaches (i.e., weight-of-evidence and expert decision-dependent logistic 

regression; Fig. 6) and the non-linear data-driven approaches (i.e., SVMs [Fig. 8] and XGBoost [Fig. 9]). The smooth distribution is the 

result of the linear fit of smoothly varying continuous input feature sets (see Equation 5). 

In contrast with data-driven logistic regression, the apparent similarity in granularity between the 2008 results, which used linear models, 

and the non-linear models in this study (i.e., SVMs and XGBoost) indicates that one effect of selecting expert-informed bins and thresholds 

is the inherent addition of non-linear features to the favorability maps. This unanticipated occurrence is the result of the processing of 

feature sets required for the 2008 methods. The binning and buffering effectively transformed the linear methods to become non-linear.  

Hence, we find that expert decision making can have as much influence on the favorability models of geothermal resource assessments 
as the methods selected to create those models. The degree of contrast and granularity between the methods from the 2008 geothermal 

resource assessment and the machine learning approaches suggests that non-linear algorithms are more appropriate than linear algorithms  

to reproduce the models in the 2008 geothermal resource assessment. Additionally, these non-linear machine learning approaches present 

the potential to introduce methods to produce more accurate and precise models for predicting geothermal resources (e.g., through 

ensembling several unique algorithms). 

When considering favorability in cross-plot format (Fig. 10), the different approaches generally share similar predictions for cells with 

high geothermal favorability , as evidenced by a tightening of the data cloud at high values. Conversely, each approach predicts different 

regions with lowest geothermal favorability (see Figs. 6, 7, 8, 9). Single logistic regression and ensemble logistic regression have the 

greatest similarity in predictive behavior, indicating an insensitivity to the strategies of handling class imbalance; whereas, XGBoost has 

the poorest agreement between single and ensemble strategies for class imbalance. The predictions from the ensemble XGBoost 
approaches nearly always resulted in the greatest root mean squared error (RMSE) when considered with the predictions of any other 

approach (with ensemble SVM versus 2008 logistic regression as the outlying exception). With every comparison of approaches, the high 

RMSE values (e.g., > 0.90) are commonly heavily influenced by differing low geothermal favorability predictions. If the goal is to find 

which methods agree strongly on favorable sites, the RMSE of entire models may not be the best measure. In fact, qualitatively, single 

and ensemble SVMs appear to differ from the other approaches the most substantially when predicting high geothermal favorability  (that 
is, more diffuse scatter plots at higher geothermal favorability when paired with the other approaches) but still have a moderate RMSE 

value (e.g., < 0.90), so perhaps the normal score RMSE of data where both predictors produce a normal score of geothermal favorability 

> 0 is a better measure of agreement of geothermal favorability  between predictors for the purposes of resource estimation. Additionally, 

disagreement between the single SVM approach and the ensemble SVM ap proach is apparent in Fig. 8 as increased granularity in the 

ensemble simulations compared with the relatively smooth single simulation approach. Hence, the non-linear algorithms produce the 
greatest variance between approaches when predicting moderate to high geothermal favorability . Ensembling these and additional new, 

non-linear approaches that introduce novel conceptual frameworks may provide a means to produce a more accurate and precise machine 

learning algorithm in future geothermal resource assessments and aid in providing a different perspective on what constitutes geothermally 

favorable conditions. 
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Figure 6: Geothermal favorability maps of the western United States using the methods of Williams and DeAngelo (2008): a) 

weight-of-evidence and b) logistic regression. Favorability is the normal score transform of probability. 
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Figure 7. Favorability maps for a) single logistic regression and b) ensemble logistic regression. Favorability is the normal score 

transform of probability. 
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Figure 8. Favorability maps for a) single SVM and b) ensemble SVM. Favorability is the normal score transform of the n-
dimensional distance of a label to the decision boundary in the space defined by the kernel-trick. Distance is positive on 

the positive side of the boundary and negative on the negative side of the boundary. 
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Figure 9. Favorability maps for a) single XGBoost and b) ensemble XGBoost. Favorability is the normal score transform of 

probability. 



Mordensky, Lipor, DeAngelo, Burns, Lindsey  

 14 

 

Figure 10. Cross plots of predicted favorability at every location for the different approaches for geothermal resource assessment 

(i.e., favorability predictions from Figs. 6, 7, 8, 9). The number in each plot is the root mean square error (sum of square 

differences at all cells), so low values indicate better cell-by-cell agreement in the favorability maps. The main diagonal 

shows the histogram of data on each map, which should be a normal distribution of mean = 0 and variance = 1. Because 

the histograms are a quantile-to-quantile transform, the spikes are a high count of the same value as a result of binning 
and buffering, which also produces regular gaps in favorability values in the cross plots. Abbreviations: WoE ’08 – Weight-

of-Evidence from the 2008 geothermal resource assessment, LR ’08 – Logistic Regression from the 2008 geothermal 

resource assessment, LR – S ingle Logistic Regression, enLR – Ensemble Logistic Regression, SVM – S ingle Support-Vector 

Machine, enSVM – Ensemble Support-Vector Machine, XGB – S ingle XGBoost, enXGB – Ensemble XGBoost. 

3.2 Performance: F1 Scores 

The strategy-algorithm pairs (i.e., every combination of the two strategies and three algorithms) considerably overlap in their performance 

with respect to F1 scores (Fig. 11; Table 1). Although the median F1 scores of the 6 algorithm-strategy pairs are similarly low (< 0.04), 

two important distinctions can be made. First, the simplest algorithm (i.e., logistic regression) appears to have the highest median F1 score 

compared to that of other algorithms when either strategy is considered. Similarly, logistic regression also has  the largest inter-quartile 

range (Fig. 11). Second, only the ensemble SVM has a first-quartile (i.e., 25th-percentile) F1 score of 0; hence, the ensemble SVM is more 
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likely to misclassify known positives than any of the other strategy-algorithm pairs. Thus, the ensemble SVM is more conservative than 

the other strategy-algorithm pairs when predicting positive labels. 

 

Figure 11: Box and whisker plots of F1 scores for each strategy-algorithm pair (see also Table 1). The single strategy approaches 

are in red, and the ensemble strategies are in blue. Boxes extend from the first quartile (Q1) to the third quartile (Q3) with 

a notch and line at the median. The whiskers extend 1.5 times the inter-quartile range (i.e., 1.5 × [Q3 – Q1] while F1 score 

> 0). Flier points are individual points with values beyond the whiskers. Abbreviations: LR – S ingle Logistic Regression, 

enLR – Ensemble Logistic Regression, SVM – S ingle Support-Vector Machine, enSVM – Ensemble Support-Vector 

Machine, XGB – S ingle XGBoost, enXGB – Ensemble XGBoost. 

Table 1: Algorithm Performance. Fitting Time provides a relative estimate of the processing time to fit an algorithm using all 
725,442 cells from the 2008 USGS geothermal resource assessment to produce a single model on a Windows 10 computer 

with a 2.4-GHz, 8-core CPU and 64 GB of RAM. Median F1 score values are in bolded font. 95th-percentile values are 

provided in italicized, bolded font. Mean optimal hyperparameter values are in normal font. One standard deviation for 

optimal hyperparameter values is provided in italicized font. Abbreviations: F1 – F1 Score, Inverse Reg. St. – Inverse 

Regularization Strength, LR – Logistic Regression, 95th – 95th percentile value, SD – Standard Deviation.  

Strategy & Algorithm Fitting Time F1 Class Weight Inverse Reg. Str.   
Single Logistic Regression 

< 1 min 
0.039 226 90.10   

Single LR 95th / SD 0.098 14 8.18   
Ensemble Logistic Regression 

 < 2 min 
0.028 49 0.40   

Ensemble LR 95th / SD 0.085 4 0.08   

 
    

  
Strategy & Algorithm Fitting Time F1 Class Weight Inverse Reg. Str. Gamma  

Single SVM 
10 hours 

0.022 772 11.60 0.001  

Single SVM 95th / SD 0.038 65 6.48 0.002  

Ensemble SVM 
2.5 hours 

0.013 102 1.00 0.036  

Ensemble SVM 95th / SD 0.041 8 0.04 0.042  

 
 

    
 

Strategy & Algorithm Fitting Time F1 Class Weight Learning Rate n of Estimators Max Depth 

Single XGBoost 
40 min 

0.025 237 0.37 13 3 

Single XGBoost 95th / SD 0.049 54 0.22 10 1 

Ensemble XGBoost 
30 min 

0.026 56 0.05 72 4 

Ensemble XGBoost 95th / SD 0.058 6 0.01 8 1 
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3.3 Interpreting Hyperparameter Values 

The differences of hyperparameter values between the single and ensemble strategies reflect the structural differences of the strategies. 

Foremost, class weighting is generally an order of magnitude less in the ensemble-algorithm pairs than in the single-algorithm pairs (Table 

1). This observation is expected given the lower class imbalance in the ensemble strategy than in the single strategy. However, we also 

note that single logistic regression and single XGBoost have a class weight significantly less than 700, which would reflect the estimated 

1:700 positive:negative natural class imbalance as estimated using the results from Williams et al. (2008). The difference between optimal 
class weights and the estimated natural class imbalance suggests that the estimated number of naturally occurring geothermal systems 

may be inaccurate. While we use the mean power production as modeled by Williams et al. (2009) to estimate the number of naturally 

occurring geothermal systems in the western United States, the class weighting for single logistic regression and single XGBoost suggest 

that the true number of naturally occurring geothermal systems may be greater than our estimate of 1040. However, even with the estimated 

power potential in the western United States at 5% probability from Williams et al. (2009), we would anticipate a positive:negative class 
imbalance of 1:550 (see Equations 6 – 8), which is still greater than twice that as suggested by the weighting of single logistic regression 

and single XGBoost. Hence, the class weighting of single logistic regression and single XGBoost suggests that the number of naturally 

occurring geothermal systems in the western United States exceeds the 5% probability estimate derived from Williams et al. (2009). 

The ensemble logistic regression and ensemble SVMs required lower inverse regularization strength (i.e., more regularization) than their 

single strategy variants (Table 1). These ensemble approaches require greater regularization than their single-algorithm variants because 
each ensemble-strategy model is fit from a fraction of the cells used to fit a single-strategy model. Fewer cells during fitting make an 

algorithm more prone to overfitting without some form of regularization (see generally Burkov, 2019). Similarly, accommodation for the 

increased risk of overfitting with the ensemble strategy is also apparent with XGBoost’s hyperparameters. Not having an inverse 

regularization strength hyperparameter, XGBoost instead relies on tuning the learning rate, number of estimators, and max depth 

hyperparameters to prevent overfitting. Although ensemble XGBoost has a deeper optimal max depth and a greater number of estimators 
than single XGBoost, the potential influence of overfitting by these hyperparameter values is offset by ensemble XGBoost’s lower learning 

rate than single XGBoost’s learning rate. 

3.4 Computational Requirements 

For practical consideration, we provide the approximate processing time for each strategy-algorithm pair in Table 1. The ensemble method 

did not appear to be faster than the single method when using logistic regression, which was already relatively fast (< 1 minute). The 
negligible change in processing time is primarily related to the processing requirements of logistic regression scaling linearly as training 

data grow larger. Ensemble logistic regression requires more processing time than single logistic regression because of the resources 

needed to aggregate the ensemble results. Fitting with the ensemble SVMs and XGBoost is faster than the single variants because the 

resources required by SVMs and XGBoost increase at greater than a linear rate with each additional sample in the training data. Hence, 

training from several small datasets is faster than training from a single, large dataset when using SVMs and XGBoost.  

4. FUTURE OPPORTUNITIES  

The strategies and algorithms discussed above provide a means to understand past-assessments and provide confidence that robust 

assessments can be developed that rely more fully upon the data with fewer choices by experts. Yet, several challenges remain. The USGS 

geothermal resource assessment team is currently working towards answering all of the following questions  for the next generation of 

geothermal resource assessments: 

 How can the F1 scores be improved? The mean F1 scores from the strategy -algorithm pairs in this study are < 0.04, suggesting a 

True Positive:[False Positive + False Negative] ratio of < 1:50 (see Equation 4). How can the strategies and algorithms be modified 

to increase the prediction rate of true positives? Alternatively, Lee and Liu (2003) suggest a new performance metric that does not 

rely on false positives in its calculation and might serve as a proxy for the F1 score. Would this new performance metric be appropriate 

for predicting geothermal favorability? Could true negatives be incorporated into assessing model performance? 

 Can we identify features that are better predictors of geothermal favorability ? Engineering new features that better represent 

geological conditions as they relate to geothermal favorability would aid in the development of improved geothermal resource 

assessments. Feature engineering includes producing improved interpolations from point data and engineering features that represent 

properties not yet included in the 2008 feature sets (i.e., permeability). 

 What other methods could address the positive-unlabeled aspect of the data other than using an F1 score as the performance metric? 

Bekker and Davis (2020) suggest several methods for training with positive-unlabeled data, like using semi-supervised algorithms 

to identify reliable negatives.  

 What other methods can be used to address the class imbalance? Although the ensemble strategy we present in this study serves as a 

means to reduce class imbalance from 1:2600 to 1:700, class imbalance is still classified as extreme even at 1:100 (see generally  

Krawczyk, 2016). Reducing the class imbalance will improve the prediction capabilities of any algorithm used.  

 How can we develop workflows that are not reliant upon gridding a region of study? While there is value in understanding the 

geothermal favorability of km-sized cells, it would be more useful to understand geothermal favorability directly under foot (or any 
other arbitrary geographic location). To do so, we would need to break grids to < 100-m in dimension, which would require presently 

unattainable processing power for regions the size of the western United States, or abandon workflows with grids entirely. 
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 Is it best to call all known geothermal systems positive, or are there distinct systems that should all have separate labels (e.g., 
magmatic systems, deep-circulation systems)? Hitherto, we have been discussing geothermal exploration in pursuit of all 

conventional hydrothermal systems. Should we expect shallow, magmatically driven geothermal systems to share the same qualities  

as deep-circulation, fault-driven systems? If not, the geothermal data would benefit from more than one type of positive label. 

Similarly, how will the algorithms need to be applied differently to identify conditions favorable to engineered geothermal systems 

(i.e., EGSs) or blind geothermal systems? How do we approach the data-driven exploration of direct-use geothermal energy? 

5. CONCLUSIONS  

In this study, we compare geothermal favorability models for the western United States created with the data and methods from the 2008 

USGS geothermal resource assessment, which relied on expert decisions, to geothermal favorability models created from the same data 

but with machine learning strategies and algorithms. In so doing, the expert decision-dependent and machine learning approaches show 

general agreement, demonstrating that the machine learning algorithms present a means to produce the geothermal favorability maps from 
the 2008 geothermal resource assessment while minimizing the biases of expert decisions. We also demonstrate how the expert decisions  

from the 2008 geothermal resource assessment (e.g., binning and buffering) of the input feature sets effectively rendered the otherwise 

linear methods used therein (i.e., logistic regression and weight-of-evidence) to become non-linear. We also find that the non-linear 

approaches produced the greatest variability in predictions for high geothermal favorability. The models produced by the machine learning 

approaches performed similarly with ubiquitously low F1 scores, emphasizing the need for additional research to address the challenges  
inherent to geothermal data (e.g., positive-unlabeled data, extreme class imbalance) and improve the predictive capabilities of machine 

learning with geothermal resource assessments. 
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