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ABSTRACT 

Drilling geothermal wells has a very high capital cost. The location and operation of wells affects their production, so it is important to 

maximize value from wells by optimizing these decisions. The economic outcomes from particular well placement and operating 

policies can be estimated using reservoir simulations. A method has been developed to efficiently predict production outcomes from 

different combinations of possible wells and production starting times, using a relatively small number of reservoir simulations. This 

can then be used with optimization methods to select the best well locations and production starting times. A Mixed Integer 

Programming (MIP) model is presented to show this. Binary decision variables were used to select the combination of wells that would 

maximize total Net Present Value (NPV). Combined this approach provides an efficient method for finding optimal drilling plans, given 

a calibrated reservoir model.  

1. INTRODUCTION 

1.1 Motivation 

The use of renewable forms of energy is growing globally. However, geothermal is lagging behind other forms, with a 2015 average 

growth rate of 2.4%, compared to an average across all renewable sources of 12% (Renewables 2016 Global status report 2016). One of 

the main reasons for this is that geothermal requires a much higher capital investment than the rest, a significant portion of which can be 

attributed to the cost of drilling wells. In Iceland, for example, the costs associated drilling and constructing wells comprise 34% of total 

capital expenditure (Gehringer and Loksha 2012). Also, Blankenship et al. estimated that drilling related expenses can exceed 50% of 

total plant costs (Blankenship, et al. 2005). Along with high upfront costs, geothermal ventures also involve high degrees of risk. Well 

drilling can be a hit-and-miss activity; a global study on the success of geothermal wells conducted by the International Finance 

Corporation (IFC) estimates a success rate of about 50% for the first well in a field (Success of Geothermal Wells: A Global Study 

2013). The success rate improves as more wells are drilled in a field, but even over the first 30 wells the study’s estimate for cumulative 

success rate is only about 70%.  

Well-related costs can be a make-or-break factor in a geothermal project, and improving success rates for wells will bring large gains in 

reducing capital sunk into unproductive wells. The IFC report also found that while the success rates of exploration phase wells have 

been increasing notably over the years, those of development wells and operational wells have not. This suggests that methods for 

collecting information have been progressing, but methods for using that information to make decisions have not. As such, there is 

strong motivation to optimize the process of making well placement and scheduling decisions, with limited information available.  

1.2 Outline 

This paper presents a method, called the Production Scaling method, that has been developed to efficiently construct production 

predictions for any combination of wells and production starting times, from a small number of reservoir simulations. These predictions 

are in terms of the NPV contributions of each well, and NPV penalties representing the interference between them. This is important 

because it allows a whole solution space to be defined beforehand in a computationally cheap manner. Then, when running an 

optimization procedure, the entire solution space of different plans can easily be traversed without running a new simulation for each 

one. This method is shown to be accurate with respect to the reservoir model, for an example reservoir model based on the Kerinci 

geothermal system in Indonesia.  

An accompanying (MIP) model is also presented for using these NPV predictions to optimize well placement and scheduling decisions. 

First, a background is given in Section 2 on how well placement and scheduling decisions are made in practice and on Integer 

Programming, along with a discussion of some previous work. Then, the Production Scaling method is presented in Section 3, including 

the optimization approach and MIP framework, and the actual calculation of the NPV and penalty predictions. Finally, the application of 

the method on the Kerinci system and the ensuing results are discussed in Section 4.  

2. BACKGROUND 

2.1 Current Practice 

The use of numerical simulation as a tool for resource estimation and to inform drilling and production decisions has become 

increasingly common. Reservoir models are created and calibrated based on observations and field data such as topological 

measurements, magneto-telluric surveys and exploration well data, in a process known as natural state modeling. Forward simulations 

of natural state models are run until they converge a steady state representing the pre-production reservoir. A calibrated natural state 

model is then used as the initial state for simulation of production.  
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Using future scenario simulations to make decision recommendations is very time consuming and computationally intensive as it 

involves running many simulations for different scenarios, and recommendations are made by inspecting these simulation predictions, 

without rigorous optimization. This is especially true for large, high fidelity models that can take many weeks just to run a single 

simulation. This paper presents a framework for systematically using the future scenario simulation process to arrive at optimal well 

drilling and scheduling recommendations, given a calibrated natural state model and using as few future simulation runs as possible.  

2.2 Previous Work 

Previously, there have been many attempts to use mathematical techniques to inform geothermal well placement decisions. They have 

generally focused on using metaheuristics to find good solutions and fall broadly into two categories: gradient-based methods, and 

stochastic search algorithms. Stochastic here refers to the mechanism for searching the solution space. A common stochastic method 

used is Particle Swam Optimization (PSO). Ansari et al. used PSO to select locations for 4 production and 4 re-injection geothermal 

wells out of a set of 11 existing but abandoned wells in the US Gulf Coast (Ansari, Hughes and White 2014). Genetic Algorithms (GA) 

have also been widely used; Montes et al. developed and tested a GA on two example reservoirs (Montes and Bartolome 2001). Another 

stochastic method that has been used in this area is Simulated Annealing (SA). Beckner and Song used SA with a Travelling 

Salesperson formulation to optimize well placement and scheduling on an example petroleum field (Beckner and Song 1995).  

Gradient based methods have also been used for the well placement problem. Sarma and Chen use an adjoint based gradient method on 

a continuous approximation of some example oil reservoirs (Sarma and Chen 2008). There have also been combinations of these 

methods; Bangerth et al. used a Simultaneous Perturbation Stochastic Approximation, which is a stochastic version of a steepest descent 

algorithm, and compared it to a Finite Difference gradient method and a SA method (Bangerth, et al. 2006). Though these approaches 

all have their advantages and disadvantages, none of them guarantee optimality (with respect to the numerical model). They all aim to 

find good solutions with as few simulation runs as possible. Helgason et al. ranked all blocks in an example reservoir by NPV to find an 

optimal location (Helgason, Valfells and Júlíusson 2017). This is essentially a grid search enumerating over the entire solution space 

and choosing the best one, but it is guaranteed to be optimal if only one well is being selected.  

Research in the petroleum industry is more advanced, however, and strict form optimization methods have been used for decision 

making with hydrocarbon resources. Grossman and Goel use a stochastic MIP to optimize the planning of an offshore gas field project, 

accounting for decision-dependent uncertainty in their formulation (Grossman and Goel 2003). Rios et al. use a Partially Observable 

Markov Decision Process (POMDP) formulation to optimize well selection conditional on information that might accrue after each drill 

(Torrado, Rios and Tesauro 2017). In both these cases however, the optimization required running a new simulation or “function 

evaluation” at each node or potential plan being considered. No approach has been developed so far that guarantees optimality over a 

possible solution space while keeping the number of simulation runs low. 

2.3 Overview of Integer Programming 

A Mixed Integer Programming (MIP) model is used for the optimization, with binary decision variables modeling the selection of which 

wells to drill in each time period.  Solution methodologies that deliver exact solutions for MIP models have made huge advances over 

the last twenty years, and now it is routine to solve such models with thousands of binary variables.  The most popular solution 

approaches for MIP models use repeated application of well-known algorithms for Linear Programming (LP) models.  In LPs, the 

objective function and constraints are linear, but variables can take fractional values.  MIP solvers sequentially add extra constraints to 

LPs that preclude fractional optimal solutions, and enumerate different ways of fixing decision variables to binary values in a search 

procedure that eventually yields a provably optimal solution (Schrijver 1998). The state-of-the-art solver Gurobi was used for solving 

the MIP model (Gurobi optimizer reference manual 2017).  

The coefficients of these variables in the objective function encode the information used to compare them (the NPVs and penalties). The 

optimization chooses "blindly", in the sense that it does not know the structural information of the reservoir, and is based solely on the 

effect of that structure in producing the NPVs and penalties. The simplest scenario of selecting only one well doesn’t need a MIP, since 

the NPVs can just be compared and the highest selected, as was done by Helgason et al. The more complex scenario of selecting 

multiple wells and different times in this fashion warrants Integer Programming, but also requires information about the interactions 

between wells.  

3. METHOD 

3.1 MIP Model 

This MIP model is presented mainly to introduce the framework with which the Production Scaling method was developed, and to 

demonstrate it’s utility. Given a set of candidate feedzones that wells can be drilled to (blocks in a discretized reservoir model), and a 

pre-determined number of time periods and intervals, the optimal selection of wells to drill and start production at each time is desired. 

Consider 𝐾 potential candidates and 𝑇 time periods. A given well starting at a given time in isolation yields an NPV of 𝐶𝑖𝑖, where 𝑖 is an 

index encoding both the well location and starting time period - for simplicity this will henceforth just be referred to as “well 𝑖”. If we 

drill two wells 𝑖 and 𝑗 then we will receive an NPV of 𝐶𝑖𝑖 plus 𝐶𝑗𝑗. Well 𝑗 will also decrease the NPV from well 𝑖 by a (negative) 

penalty 𝐶𝑖𝑗, and well 𝑖 will decrease that of well 𝑗 by a penalty 𝐶𝑗𝑖. The decisions to make are which well to drill at the start of each time 

period. The MIP model is as follows overleaf. 
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Maximize:  

∑ ∑ 𝐶𝑖𝑗

𝐾𝑇

𝑗=1

𝐾𝑇

𝑖=1
𝑥𝑖𝑗 

Subject to: 

𝑥𝑖𝑗 ≥ 𝑥𝑖𝑖 + 𝑥𝑗𝑗 − 1, 𝑖, 𝑗 = 1, … , 𝐾𝑇; 𝑖 ≠ 𝑗 (𝐶1) 

∑ 𝑥𝑖+𝑚𝐾,𝑖+𝑚𝐾 ≤ 1, 𝑖 = 1, … , 𝐾 (𝐶2)
𝑇−1

𝑚=0
 

∑ 𝑥𝑖+𝑚𝐾,𝑖+𝑚𝐾 ≤ 1, 𝑚 = 0, … , 𝑇 − 1 (𝐶3)
𝐾

𝑖=1
 

 

Where 𝑥 and 𝐶 are defined as: 

𝑥𝑖𝑖 = {
1, 𝑖𝑓 𝑤𝑒𝑙𝑙 𝑖 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑥𝑖𝑗,𝑖≠𝑗 = {
1, 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑤𝑒𝑙𝑙𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐ℎ𝑜𝑠𝑒𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐶𝑖𝑗 = {
𝑁𝑃𝑉 𝑜𝑓 𝑤𝑒𝑙𝑙 𝑖, 𝑖𝑓 𝑖 = 𝑗

𝑁𝑃𝑉 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑜𝑓 𝑤𝑒𝑙𝑙 𝑗 𝑜𝑛 𝑤𝑒𝑙𝑙 𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐾 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑓𝑒𝑒𝑧𝑜𝑛𝑒𝑠 

𝑇 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 

Constraint 𝐶1 enforces the selection of the penalties of chosen wells on each other. If wells 𝑖 and 𝑗 are chosen 𝑥𝑖𝑖 and 𝑥𝑗𝑗  will both be 1, 

so this constraint becomes: 𝑥𝑖𝑗 ≥ 1 +  1 −  1, which essentially makes 𝑥𝑖𝑗 =  1 as it is a binary variable. Constraint 𝐶2 says that a 

particular well can be chosen at most once, and can only start production at one particular time period. Constraint 𝐶3 limits the number 

of wells selected to one per time period. The objective coefficients can be visualized as a matrix, depicted below for two time periods. 

The blocks correspond to the different time periods, within which each entry corresponds to a particular well NPV or penalty. The main 

diagonal contains the NPVs for each well starting at each starting time (𝐶𝑖𝑖), shown in green, and the off diagonals are the penalty terms 

(𝐶𝑖𝑗,𝑖≠𝑗), in blue. The diagonals of the off-diagonal blocks don't have any meaning and are zeroed out, in red. 

 

Figure 1: Objective coefficient matrix with two time periods 

Any combination of well locations and production start times can be represented in this way, and their NPVs and penalties summed to 

get an estimate of the plan’s monetary return. The MIP model itself is relatively simple. More sophisticated versions in a similar form 

have been made that include drilling costs, different kinds of constraints on well selection, and stochastic formulations considering 

uncertainty in reservoir calibration (Adiga, Philpott and O'Sullivan 2018). These all work with the same basic matrix structure of NPVs 

and penalties however, showing that very advanced and powerful analyses can be done when well production forecasts are calculated 

and represented in this form.  
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3.2 Production Scaling Method 

Producing wells affect each other, as every well will change temperature and pressure distributions, and flow pathways in the reservoir. 

In general, simulating every possible combination of wells and start times is impractical, if not impossible. Therefore, a procedure was 

created that could make predictions for all possible combinations from a relatively small number of total simulation runs. NPV 

contributions from potential wells, and penalties for their effects on each other are calculated from simulation results for a subset of the 

possible production scenarios or plans being considered. Each simulation has wells placed at candidate locations (feedzones), and time 

history projections of well mass flows and enthalpies are recorded and multiplied to get heat flow predictions.  

The fluid harvested from the wells should actually depend on the type of power plant installed. Dry steam plants require steam to 

directly turn the generator turbines, flash steam plants depressurize hot liquid to convert it to steam before driving the turbines, and 

binary cycle plants can use liquid at lower temperatures to heat a secondary working fluid with a lower boiling point, and use its steam 

to drive the turbines. There are also other considerations, such as heat loss during extraction, throttling wells to limit extraction, and 

possible re-injection of spent fluid back into the reservoir. These are all ignored to simplify the problem, and heat flow is used as the 

production quantity rather than steam flow or temperature regulated mass flow, assuming a direct conversion from heat to electrical 

energy via a fixed generation efficiency. A simple NPV calculation is used, multiplying the heat flows by fixed generator efficiency and 

electricity price to get cash flows, which are then discounted to time zero. 

The candidate feedzones for placing wells in the simulation runs are selected based on simple physical cutoffs for temperature, depth 

and permeability. For a small enough reservoir model, all blocks can be considered, but sensible physical considerations allow many 

candidates to be culled, reducing the solutions space. These considerations also show that simple, programmable criteria can be used to 

define the set of candidates with minimal manual inspection. The wells in these simulations must use a deliverability model, with a 

fixed Productivity Index (PI). 

The effect of extracting fluid from each feedzone on the potential resource available to every other candidate is considered individually, 

in a pair-wise manner. This is done by running simulations with wells producing from all the candidate feedzones, but only one with a 

normal PI (the main well) and the rest (observer wells) with reduced PIs, so they produce insignificant mass flows. The number of 

simulation runs in total is just the number of candidates considered, one with each of the candidates having the main well and the rest 

having the observer wells. Despite their very small mass flows, the decays in the observer wells’ productions are indicative of the main 

well’s effect on them and are scaled back up, converted to (negative) cash flows, and discounted to give the penalties. These penalties 

represent how much the main well’s production takes away from the observer wells’ potential production. Since all the observer wells 

have very small PIs and extract negligible amounts of resource, their effects on each other can be ignored and the main well’s effects 

can be isolated.  

Specifically, the observer wells’ PIs are divided by a scale factor for the simulations. The mass flow curves for the observer wells are 

then multiplied by the same scale factor, and shifting by their baseline value (zeroed) to get mass flow decay curves. A decay curve 

from an example observer well is shown in Figure 2 below. The left axis shows the actual mass flow curve; its values are small and 

positive. The right axis shows the same curve after scaling and shifting, and its values are negative and larger in magnitude. Physically 

this represents the loss in potential mass flow production from the observer well due to extraction from the main well. These mass flow 

decay curves are then multiplied by the observer wells’ enthalpies to get apparent heat flow decay curves, which are the loss of potential 

heat flow from observer wells due to the main well’s production, and are converted to cash flows and discounted to get the penalties of 

the main wells on the observers.  

 

Figure 2: Example observer well mass flow and mass decay 
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The theory behind this is based on how reservoir simulations calculate production from wells in a deliverability model. Mass flow of a 

fluid phase 𝛽 from a grid block is defined as follows (Coats 1977): 

𝑞𝛽 =
𝑘𝑟𝛽

𝜇𝛽
𝜌𝛽 ∗ 𝑃𝐼 ∗ (𝑃𝛽 − 𝑃𝑤𝑏) 

Here, 𝜇𝛽 and 𝜌𝛽 are the dynamic viscosity and density of the fluid respectively, 𝑘𝑟𝛽 is the relative phase permeability of the fluid in that 

grid block, 𝑃𝑤𝑏 is the flowing bottomhole pressure and 𝑃𝛽 is the fluid pressure in the grid block. To carry out an approximate analysis, 

the bottomhole pressure and relative phase permeability are assumed to be fairly constant parameters. Assuming compressibility effects 

are insignificant, this essentially says mass flow rate is proportional to the PI multiplied by the pressure difference at the grid block. The 

grid block pressure will also be affected by the mass extraction, however that is negligible for the observer wells because they produce 

so little. One way to think of this is that local pressure drawdown at a grid block due to a well producing there is the well’s “effect on 

itself”, which is accounted for by the simulation for the main well. For the observer wells however, the pressure decline at the grid block 

is solely due to effect of the main well, and as such, the PI can be treated as a linear scale factor between grid block pressure and mass 

flow production. Therefore, the observer wells’ mass flows can be scaled up to give estimates of what the main well’s effect on their 

mass productions would be, if they were also producing at the normal PI instead of the downscaled PI. Essentially, this assumes a time-

constant linear relationship between an observer well’s mass production and its PI, bypassing the other dynamics that would come into 

play if it was actually producing at the normal PI. 

3.3 Time Shifting Production Curves 

Thus far only well placement has been considered, assuming all wells are drilled and start producing at the same time. Modeling the 

effect of different production starting times is more complicated, but can still be done using the same set of simulation run outputs. This 

is accomplished by shifting the well production and decay curves in time and truncating them based on estimating the reduction in 

potential resource available to wells starting at different times, due to extraction from others. In general this is a very elaborate process. 

To start with, consider the case where there are only two wells: let 𝑎 and 𝑏 be specific wells starting at time periods 𝑡𝑎 and 𝑡𝑏 

respectively, with 𝑡𝑏 >  𝑡𝑎. Figures 3 through 6 are used to illustrate the processes described in the following explanation for two 

example wells, with 𝑡𝑎 = 5 years and 𝑡𝑏 = 15 years, showing production curves in green and decay curves in blue. First, consider effect 

of well 𝑎 on well 𝑏. The production curve from well 𝑎 as the main well is shifted in time to start at 𝑡𝑎 (shown in Figure 3 below), 

converted to a cash flow and discounted to time zero, giving the NPV of well 𝑎 if it starts producing at time 𝑡𝑎. 

 

Figure 3: Time-shifted production curve for well 𝒂 with 𝒕𝒂 = 𝟓 years 

Well 𝑎 operates from 𝑡𝑎 until 𝑡𝑏 before well 𝑏 starts, so the production decay curve from well 𝑏 as the observer well with well 𝑎 as the 

main well is shifted to start at 𝑡𝑎 and integrated from 𝑡𝑎 to 𝑡𝑏 (shown in Figure 4 overleaf). This integrated area is the estimated total 

loss of resource available to well 𝑏 due to well 𝑎’s operation in that time, called its potential reduction.  Well 𝑏’s decay curve from 𝑡𝑏 

onwards (after the integrated area) is converted to a cash flow and discounted to time zero to get the penalty of well 𝑎 starting at time 𝑡𝑎 

on well 𝑏 starting at time 𝑡𝑏. The first part of the curve before 𝑡𝑏 is not included in calculating this penalty, as it is accounted for in well 

𝑏’s potential reduction. 
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Figure 4: Time-shifted decay curve for well 𝒃 with 𝒕𝒂 = 𝟓 years and 𝒕𝒃 = 𝟏𝟓 years 

Then, the production curve for well 𝑏 as the main well is integrated from time zero till the integral matches well 𝑏’s potential reduction 

due to well 𝑎’s operation (shown in Figure 5 below). The point along the production curve where this is the case is set as its new initial 

point. It is truncated to start from there, and now represents an estimate for what the production from well 𝑏 would be if it starts 

operating, given that well 𝑎 has already been operating for 𝑡𝑏 − 𝑡𝑎 years. This truncated curve is then shifted forward in time to start at 

𝑡𝑏, converted to a cash flow and discounted to time zero to get the NPV of well 𝑏 starting at time 𝑡𝑏.  

 

Figure 5: Time-shifted production curve for well 𝒃 with 𝒕𝒂 = 𝟓 years and 𝒕𝒃 = 𝟏𝟓 years 

Finally, the decay curve for well 𝑎 as the observer well with well 𝑏 as the main well is also truncated to start from the same new initial 

point as the production curve for well 𝑏, (Figure 6 overleaf). It now represents an estimate for what the decay in well 𝑎’s production due 

to well 𝑏 operating would be, given that well 𝑎 has already been operating for 𝑡𝑏 − 𝑡𝑎 years. This truncated curve is also shifted forward 

in time to start at 𝑡𝑏, converted to a cash flow and discounted to time zero to get the penalty of well 𝑏 starting at time 𝑡𝑏 on well 𝑎 

starting at time 𝑡𝑎.  
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Figure 6: Time-shifted decay curve for well 𝒂 with 𝒕𝒂 = 𝟓 years and 𝒕𝒃 = 𝟏𝟓 years 

However, this only works if those are the only two wells considered. This is because a well’s potential reduction is dependent on the 

other well, but it would get included in its NPV (on the main diagonal of the objective coefficient matrix), whereas it should be included 

in the penalty term (in the off-diagonals). The NPVs of each well should only be a function of that well, and the penalties should be 

functions of pairs of wells. So instead, the NPVs are calculated for each well shifted to start at each time period individually, without 

any other well effects considered, as was done for just well 𝑎 in the above example. These are used to populate the main diagonal of the 

objective coefficient matrix (the 𝐶𝑖𝑖s). Then, the above-described method is used in full to calculate NPVs and penalties in a two well 

setting, pairwise for every combination of wells and start times, 𝑖 = 𝑎 + (𝑚 − 1) 𝐾 and 𝑗 = 𝑏 + (𝑛 − 1) 𝐾, where 𝑎 and 𝑏 are well 

locations indices, and 𝑚 and 𝑛 are time period indices corresponding to the well start times 𝑡𝑎 and 𝑡𝑏. The NPV of each well 𝑖 and the 

penalty on it due to the other well 𝑗 are added to give its total NPVs in the two-well setting, denoted by 𝐶𝑖𝑗
′ . The individual NPVs for 

both wells are then subtracted from their two-well setting NPVs to give the final penalty terms: 𝐶𝑖𝑗 = 𝐶𝑖𝑗
′ − 𝐶𝑖𝑖 and 𝐶𝑗𝑖 = 𝐶𝑗𝑖

′ − 𝐶𝑗𝑗 , 

which populate the off-diagonals of the NPV matrix.  

4. RESULTS 

4.1 Reservoir Model & Parameters 

The simulation model used to test the method is a relatively small one, and is based on the Kerinci geothermal system in Sumatra, 

Indonesia. It includes a recharge area that is 16km by 14km wide, and extends between 3.5km to 4km below the surface; the system is 

under the slopes of a volcano so the surface topology varies quite a bit in elevation. The reservoir is intersected by four faults that 

essentially bound it. Two main faults (high permeability) run in a near northeast-southwest direction, and two lesser (lower 

permeability) ones run northwest-southeast. The reservoir is covered by a low permeability clay cap. The numerical model was 

discretized into 8195 blocks and 528 nodes, in 483 columns and 19 rock layers, plus an atmospheric layer. Its natural state was 

calibrated with 82 defined rock types and 2 deep up-flows, to match synthetic down-hole temperature data generated for exploration 

wells. Future simulation runs were set up to consider a 25 year production lifespan, and took approximately one minute on to run to 

completion using AUTOUGH2 (Yeh, Croucher and O'Sullivan 2012) on a standard Windows desktop machine. A total of 𝑇 =  5 time 

periods were considered across the project lifespan, in intervals of 5 years, for 𝐾 =  41 blocks selected as candidate feedzones. 

AUTOUGH2 produces listing files to store the results of these simulations, from which production time histories were extracted and 

processed using PyTOUGH (Croucher 2015) modules in Python. A slice through the model showing the fault structure is given in 

Figure 7 overleaf. 
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Figure 7: Horizontal slice through the numerical model, showing the fault structure 

The PI was set at 5x10-13 for main wells, and 5x10-19 for the observer wells in each simulation. The scale factor used in the NPV penalty 

calculations was defined as the quotient of the two PIs, 1x106. With these settings, the 41 simulations were run and the NPV matrix was 

constructed from their outputs as described previously. The Productivity Indices are actually parameters that should be calibrated to 

available data or defined based on some physical considerations, so they cannot be arbitrarily set in a real predictive reservoir model. 

However, since this reservoir model was calibrated to synthetic data and the aim is to demonstrate the application of the Production 

Scaling method, they were fixed. The PIs were experimented with before settling at these values. The PIs of the observer well have to be 

sufficiently low so they don’t significatly affect each other, otherwise the decay curves obtained won’t be representative of the main 

well’s effect on them.  

The other consideration is that the PIs of the main wells might not be the limiting factor influencing production, for example if the 

reservoir is very tight (low permeability), the local pressure drop caused by production is greater because fluid can’t easily flow in from 

other parts of the reservoir. In this case, increasing PI won’t increase mass production anymore after a certain point, as it is limited by 

the pressure decline. Then, scaling up observer wells’ production curves can grossly over-predict the magnitude of the decay curves, as 

the linear scaling assumption breaks down. In general, mass production is not linearly related to PI, but this linear assumption works 

sufficiently well with these parameters for this model.  

4.2 Single Start Time Accuracy 

Initially, the accuracy of the method was checked for the case of multiple wells all starting production at time zero. That is, the sum of 

the predicted NPVs and penalties for each plan was compared to the NPV calculated from the total well output of directly simulating 

that combination of wells together in AUTOUGH2. If the method isn’t accurate over the whole solution space (all combinations), then it 

is possible that the true optimal selection for the simulation model can get overlooked. Checking this required simulating every 

combination of wells, calculating the resulting NPVs and comparing with the method’s predictions. This was done selecting every 

combination of four feedzones out of a reduced set of 20 candidates, which was a subset of the original 41 candidates. This amounted to 

4845 simulation runs in total. The total NPVs for all combinations were calculated both using the Production Scaling method and from 

directly simulating the four wells together, then ranked and compared. The top 20 combinations from direct simulation are given below 

in Table 1. 

Table 1: Total NPVs and rankings from prediction and direct simulation for the top 20 well combinations. 

Direct Simulation Production Scaling Method NPV % 

Diff 
Rank Value Rank  Value 

1 1.34E+08 1 1.30E+08 3.0 

2 1.33E+08 5 1.29E+08 3.4 

3 1.33E+08 4 1.29E+08 3.2 

4 1.33E+08 3 1.29E+08 2.9 

5 1.33E+08 2 1.30E+08 2.5 

6 1.33E+08 6 1.29E+08 3.0 

7 1.30E+08 10 1.26E+08 3.1 

8 1.30E+08 11 1.26E+08 3.1 
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9 1.30E+08 8 1.26E+08 3.0 

10 1.30E+08 9 1.26E+08 3.0 

11 1.30E+08 13 1.26E+08 3.2 

12 1.30E+08 17 1.26E+08 3.3 

13 1.30E+08 7 1.26E+08 2.7 

14 1.30E+08 18 1.26E+08 3.3 

15 1.30E+08 16 1.26E+08 3.2 

16 1.30E+08 14 1.26E+08 3.1 

17 1.30E+08 19 1.26E+08 3.3 

18 1.30E+08 20 1.25E+08 3.3 

19 1.30E+08 15 1.26E+08 3.1 

20 1.30E+08 12 1.26E+08 2.8 

     
It can be seen from this table that the optimal well combination for the Production Scaling method is also optimal with respect to direct 

simulation. The NPV errors are also consistently small, with all of them being less than 4% across all 4845 combinations. Despite being 

very accurate, it doesn’t give the exact same rankings for the solutions as the direct simulation. For example, the second best solution as 

per the method is actually the fifth best for direct simulation, and vice versa. Plotting the total NPVs from direct simulation against those 

predicted by the method for all combinations, as in Figure 8 below, shows an almost linear trend. The correlation between the method 

NPVs and direct simulation NPVs is above 99%.  

Also, there are bunches of local scattering. This is a clustering effect, with solutions grouping together in bands that can be clearly 

ordered. Within these groups however, similar solutions get “swapped”, in the sense that one is slightly better the direct simulation, but 

the Production Scaling method predicts the order the other way around. They are also shown in Table 1 as well, separated by thick red 

boundaries between them. The top five solutions are common to both the method and direct simulation, despite not being in quite the 

same order. The next eight solutions and the seven after them (in simulation rank) form two more bands respectively, with almost all the 

solutions in them being common to both direct simulation and the Production Scaling method.  

 

Figure 8: Comparison of Surrogate Model to Direct Simulation 

4.3 Multiple Start Time Accuracy 

The method’s accuracy was then tested for the case of multiple wells starting production at different times along the project lifecycle, 

for a reduced set of drilling plans. Each simulation had four wells producing, just as before, but with only one starting at time zero and 

another starting at each subsequent time interval (every five years). This now required simulating every permutation of four wells, not 

combination as the order in which the wells start production matters, giving a much greater number of simulation runs. As such, the set 

of candidates was further reduced to 10, selected randomly out of the original set of 41. Now each plan was a permutation of four wells 

out of a set of 10, amounting to 5040 different plans. All of these were simulated directly with the four wells starting at their respective 

times, and the total NPV was calculated from the production results and compared to the NPVs predicted by the Production Scaling 

method with time shifting, as before.  
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Figure 9: Comparison of Surrogate Model to Direct Simulation 

The two sets of NPVs are shown plotted against each other in Figure 9 above. It can be seen that the predicted NPV is very close to that 

obtained from direct simulation. The trend is still almost linear and the correlation between the method’s NPVs and the direct simulation 

NPVs is still over 99%. The time shifting of production curves works well and the method is very accurate when the wells start at 

different times. The value of such a method is that its predictions from just 41 simulation runs are comparable in accuracy to the 

alternative which requires 5040 simulation runs – a massive computation saving, as well as the possibility of using with an optimization 

framework like the MIP model presented in Section 3.1 for decision making. The optimal plan chosen by the MIP corresponds to the 

highest valued data point in Figure 9. 

4.4 More Wells 

While the Production Scaling method has been shown to be quite accurate for the four-well case, it is important to see how this holds as 

the number of wells chosen is increased. Instead of checking all possible plans for different numbers of wells, only the optimal plans 

were checked. A simpler version of the MIP model given earlier was used, without considering different time periods and assuming all 

wells start producing at time zero, shown below. Here constraint 𝐶2 limits the number of wells selected to 𝑘. 

Maximize: 

∑ ∑ 𝐶𝑖𝑗

𝐾

𝑗=1

𝐾

𝑖=1
𝑥𝑖𝑗 

Subject to: 

𝑥𝑖𝑗 ≥ 𝑥𝑖𝑖 + 𝑥𝑗𝑗 − 1, (𝐶1) 

∑ 𝑥𝑖𝑖 ≤ 𝑘, (𝐶2)
𝐾

𝑖=1
 

This optimization was run multiple times using the Production Scaling method’s calculated NPVs, with the limit on the maximum 

number of selected wells in constraint 𝐶2 gradually increased from four up to 15. The optimization only ever chose 11 wells at 

maximum, even when the well limit was 12 or more. For these cases, it didn’t select as many wells as it could have, because at that 

point the penalties from additional wells began to outweigh their own NPV contributions, so the optimization would choose not to add 

them. This demonstrates that such an approach can be used to determine not only where to drill wells, but also how many to drill. It is 

also worth mentioning here that Gurobi took longer to solve the MIP when the well limit was increased. The optimization would run in 

under a second for the four-well case, but took several minutes for the 10-well case. This is because there are far more possible 

combinations of 10 wells than there are of four wells, so the solution space covered during the solve was much larger. 

The optimal wells selected in the four well limit scenario remained in the optimal selection as the well limit was increased, with other 

wells being added to the selection. The Production Scaling method’s predictions were checked for all the limit scenarios by comparing 

against direct simulation of the selected wells together. The percentage error of NPV between the method’s prediction and direct 

simulation was plotted against the number of wells, both for the four wells that remained optimal in all scenarios, and for the total NPV 

over all the wells, shown overleaf in Figure 10. 
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Figure 10: NPV errors for optimal wells vs. number of optimal wells 

While the model is very accurate for small numbers of well, the discrepancy from the direct simulation values grows quite large as the 

number of wells increases. It reaches about 10% for eight wells, and about 20% for 10 wells. The errors also relate to well location. 

Wells tapping feedzones jy14 and kt14 have lower errors than the other two because they are deeper in the reservoir; the wells added as 

the well limit was increased went to shallower regions and therefore were further away and had less effect on these two wells than on 

the other two. The relationship between the accuracy of the predictions and the number of wells selected will depend on the reservoir. It 

is possible that for a larger reservoir the method will remain accurate for larger numbers of wells selected. 

5. DISCUSSION 

5.1 Conclusion 

This paper presented an approach to facilitate the optimal selection of multiple production wells at different starting times, using as few 

simulation runs as possible. The Production Scaling method was developed to efficiently make production predictions for different 

combinations of well location and start times without simulating each one individually. This defines an entire solution space cheaply, 

allowing for the use of powerful optimization techniques to make well placement and scheduling decisions. An example MIP model is 

presented along with the method to show this, which assumes fixed time periods and optimizes where to drill wells to and in what order. 

The method is based on scaling simulation well production forecasts and shifting production curves in time. It simulates wells at each 

location in a candidate set and calculates NPVs for each well, and NPV penalties for the effect of each well on every other possible well.  

It was tested on a reservoir model of the Kerinci field in Indonesia and is shown to be very accurate when compared to the direct 

simulation of wells together for small numbers of well, both when all wells start producing at the same time, and when they start 

production at different times. It was compared against direct simulation for all possible solutions selecting four wells in a reduced 

solution space, and its predicted solution NPVs were very strongly correlated with those from direct simulation. As such a solution 

found to be optimal using its predictions will at least be near optimal, with respect to this simulation model. However, as the number of 

wells chosen increased from four to 11, the NPV error of the model went up from less than 4% to over 20%. This is probably related to 

reservoir size, applied to a larger reservoir the method would likely be accurate for larger numbers of wells chosen. 

5.2 Future Work 

The application of this approach to the Kerinci reservoir model has been a proof-of-concept demonstration. Currently, it is being 

implemented on a large and well-developed model of the Ohaaki reservoir system in the North Island of New Zealand. There is an 

existing power station at Ohaaki that has been operating for decades, and as such, there is an abundance of real data and experience with 

this model. It is also a complex and realistic model, with multiple productive zones as well as boiling in certain areas, making it a great 

test case. Along with further testing the accuracy of the Production Scaling method’s predictions, the relationship between the number 

of wells chosen and accuracy of the method will be further investigated. The issue of PI and scaling is also being worked on, to develop 

a more robust method to incorporate a non-linear relationship between a well’s PI and the pressure decline caused by its production. 

This will make the method more realistic, accurate and better applicable to real reservoir systems. Once done, this will be a very 

powerful tool for increasing the scope of production forecasting, and to bridge the gap with optimizing decision-making. 
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