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ABSTRACT

Tracer testing has beesed to obtain hydraulic properties in a reservoir systedimay help characterizbe fracture networks inside
the reservoirNumerous studies at various scales have shown that the distribution ofrense propertied.€., length, displacement)
follows a power lawscaling with some cutoffs Fractal dimension is useful to evaluate geometric characteristics of fracture
networks. We studiedmass transport in a fracture network where fracture lengths are given by a powsitHamaximum and
minimum length Effects of fractal dimension of fracture lengths on mass transyemsinvestigated byparticle tracking simulations
and laboratonflow experimerdg in a fractured flow modelThe rumerical simulation results indicate thaetfracal nature ofthe
fracture lengthresults innontFickian behavioon tracer responseln thelaboratory flow experimesta 3D printerwas used to create
artificial fracture network models i different fractal dimension3he experimental tracer responséshe 3D printed fracture model
show similar feature® theresults by numerical simulatiod challenge ofthe printing processvasthe limited resolution of the 3D
printer and the solubility of the suppioig wax

1.INTRODUCTION

Understandingf fracture networks and fluid flow within fractured rocks are esseptiablemsfor geothermal engineeriny arious
deterministic and probabilistic techniques have been develapestder todescribe heterogeneous characteristédluid flow
(Neuman 2005. Most of these techniques require incorporating many input paranfetgrsfracture properties iliscrete fracture
network modelsandinvolve timeconsuming statistical treatmem addition,fractureswithin a reservoiare not directly amessible, in
other wordsthe facture properties can only be measured at their intersections with borehalésrapsThis forces geoscientists and
reservoir engineers to construeservoirmodelswith high uncertainty ando depend ortheir subjectivity.In orde to obtain direct
information from the fluid flow, facer testindias been used, whichay help characterizbe fracture networks withithe reservoirln
this study, ar goalwasto characterize intrinsic complexity of fracture networks by using tresgronse datfom numerical and
laboratory models

Early worlks to study fracture systems aspread though a wide range of scales from core through outcrop to aerial photographs and
satellite image scale§her scaling attributes haveeceived increasip attention motivated by promise of statistical prediction.
Understanding of the scaling characteristickaéture networksvill guide both the interpretation of regional data and its extrapolation
to other different scale®Numerous studies at variogsales have shown that the distribution of maagture propertiesi.., length,
displacementyollows a poweilaw scaling Fractal geometry is in many cases well suited to desaijects that exhibit scaling
behavios. Fractal dimension cahe measuredn logarithmic plots andis useful to evaluatehe geometric characteristics of fracture
networks(e.g., Bour and Davy, 1997; Bonnet et al., 2001; Stigsson et al., 2001; Gustafson and Fransgdrno®e08r, he problem

of fractal geometrys the lack of any homogenization scafenature, pwer lawsscalingmusthave upper and loweutoffs. Physical

lengh scalsin the system providely discontinuous structures (i.éithological layering fault zone size, etccan give rise tdimits to

the scale range over which the fractal geometry is ¥@lding et al., 1999

Nonethelessmathematical concept of fractal (or powaw scaling) is very attractive because it can be extended to devetaiexb
nonlocal models based dractional @lculusand fractionatorder differential equains. The nonlocal models habeen a subject of
interest not only among mathematicians but also among physicists and engineers. Indeed, we can find numerous applicatisns in
media, electrochemistry, efieomagnetism, signal processing, dynamics of earthquakes, bioscieechksine, economics, probability
and statistics, astrophysics, chemical engineering, phybioengineering, fluid mechanjcthermodynamics, neural networks, etc.
(e.g.,Mainardi 1997;Diethelm andrreed 1999;Hilfer, 2000;Magin, 2006; Tarasoy 2010; Shenget al., 2011Sabatieret al.,Abbas

et al.,, 2012) In hydrology, anomalous tracer transport in heterogeneous medibebasobserved, which can b®deled by the
nonlocal mass transport equatiofs.g., the MultiRate Mass Transfer (MRMT) model (Haggerty and Gorelick, 1995), the Continuous
Time Random Walk (CTRW) framework (Berkowitz et al., 2006), and the Fractisavéative Model (Baeumer and Meerschaert,
2010; Benson1998; Huang et al., 2006; Zhang et al., 2008ghumer et al. (2003) proposedractal mobile/immobile model for
solute transporfThe model includefactal (power law) distribution of rate coefficients that is scale invariant indimddeads to a ter
including temporal fractionaflerivative in the transport equatioAssuming that fractured medium consists of porous media that
follow fractal scaling(e.qg., pore sizesvarying in a wide range of scale)he fragionalorder differential equ@éns candescribethe
anomaloudransportin afractured mediun{fFomin et al., 2011)Several applications natural and experimental systelre/eshown

that the nonlocal models can be candidates to quaanifynalous transport in heterogeneous systergs Benson et al., 2001, 2000a,
2000b; Haggerty et al2002; Schumer et al., 2003).
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If the nonlocal models anthe fractal concepts (power law scaling) campensatehe lackbetween thenathematical theories artide
geophysical processascluding upper ad/or lower thresholdghe modelsvould provide reasonabland realistic characterization of
heterogeneous fracture distributidiruncated stable y flights were proposed by Mantegna and Staflé@4) to censor arbitrarily
large jumps, and capture thatural cutoff in real physical systems. Exponentially tempered stable processes were proposed by Cartea
and delCastilloNegrete(2007 and Rosifski (2007 as a smoother altertie, without a sharp cutoffMeerschaert et al. (2008)
proposed le temperecanomalous diffusiormodel containing both the classiaalass transport modeind the temporafractional
derivative modelas end member&xperimenal and numerical investigationdicates that the temporétctional derivative model
capturs masstransportin an idealfractal mediumwhile the tempered anomalous diffusion machet capture an upper truncated tracer
behaviorin a systemcontaininga discontinuous structurgSuzuki et al., 2016)Using such truncatedhodels might help provide
descrption of truncatedmasstransport beyondhe fractal theoryand are expectedo contribute to broad application real physical
systems

We studiedmass transporin a fracture networkvhere fracture lengths are givéay a power lawwith cutoffs Effects d fractal
dimension of fracture lengths on mass transport are discussed. been generally recognized that field observations at outcrops or in
core samplesneasurdracturesincompletely(Einstein and Baecher, 1983; Segall and Pollard, 13®ort flactures are itompletely
observedbecause ofthe limit ofimageresolution while long fracturegxceedthe obgrved areaThe resolution and censoring effects
result in altering the appearance of the distribution. In ordiewtstigatethresholdof inherentfracture distributionsit is necessary to
distinguish truncation effects that are causedrt®asurement resolutioitherefore, his studyusedfracture distributions where the
upper andhe lower limits of fracturecan becontrolled Numericé simulation and laboratory experimenéereconductedSamples of
fracture networksverecreatedusinga 3D printeffor thelaboratoryflow experimeng.

2. THEORY
2.1Scaling of fracture systems

Numerous studies of fracture system scaling in the literatiggest that scaling laws exist in nature. Fractal geometry is in many cases
well suited to the description of objects that exhibit scaling behalier mathematical theory of fractals is deised by Mandelbrot
(1982, and more information about fractals is given by F€ii888, Falconer1990, and Vicsek1992. The fractal dimension does

not completely define the geometry of the fracture system, and a complete characterizatiomaldeldarious geometrical atbutes

such as density, length, orientation, roughness of the fracture surfdte,aperture, shear displacent,etc.

From the study of natural fractures datag@sstaing et al.,19960dling et al., 1999;Le Garzicet al., 201}, fracture ength
distributions are characterized usingdlog diagrans wherethe cumulativefrequencydistributionN(r) (number of fractures with length
greater or egal to sizer) is plotversusradiusr and follows a power law as

N(r) =Cr °®, @

whereC is a constant characteristic to describe fracture deri3itys the powedaw exponent(Bour and Davy, 1997; Odling, 1997)
which presentfractal dimension of fracture lengtifhe powedaw exponent characterizeslativeabundance of fraares withdifferent
sizes.Small fractures dominate the connieity when D is larger, whilethe connectivity is influenced byé largefractureswith
smallerDr (Le Garzic et al., 2011When the upper and lower size limits are giv@e, number of fracture can be written as

N=C [rmin_ PR T I max DFT 2

wherern, andrps are the minimum and maximum radius of fractures, respecti@agsider some fraction of this total number
counting fromr o, upward and the corresponding siz®f the largest object in that fractioBqg. (2) can be rewritten as

N=U DUC[rmin ®i rmax °F = C[rmin Rirg °A. ©)
FromEgs.(2) and @), we obtain

N = [(l - E'D I'min RS Ljrmax- DR_l-ll DR; 4)

which gives an expression for the radinfsa random fractal drawn form a truncated fractal distribution of fractal dimeBgiomereU
is a uniform deviate on [0, 1].

2.2 Mass transportin fractal media

Elementary particles under an effectdifferent force fields of different nature perform complex motion. The trajectories of these
particles reproduce geometrical objects of complex fractal stru@uiel( e s 1983g Eiffusion in the media of fractal geometry was
investigated extensivelyi | ast t hree decades (O6Shaughness$chunereétalR2003c acci a,

Thereare some approaches for describdiffusion in fractal media.The first approach uses a diffusion coefficient as a function of

spatial coordinateand describes probability of particles appearing at some pointdaiirmat given moment of time We candefine a
diffusion coefficient as

D(X) =Dox ®)
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whereDy is a constanandx is scale of the objecit leads to the followingliffusion equation:

ac 9 _¢0C
% ox (DU‘” 37)_

(6)
Whenthe particle movemerito | | ows t he c,ltha standard adviatibni of theétion can &emwritten aé = (D)2, while

Eq. (6) leads tali = (Dt)¥ 2 Becausel grows at aratslowert han 66 nor mal & &heFdi> 6, khis behaviar is sefereed t9 i 0 n
assubdifffusive.

The second approach assumes that a mass flux is proportional to a fractional derivative with respect to spatial armbtedipatas.
The mass balance equatiyields:

ac @ 1, 8°C
ot oz (D 00 5P ) %

whereb ando are the order of fractional derivatives, which can be set tdnteger values. Eq7) results infi= (Dt)> /.1 *®

Let us consider a fractured porous mediumaAticroscopidevel, we assume that@orous medium is constituted tkelike fractures
(pores and in each of them a solute is mainly transported through the stem and a certain portion of thigéfgssténtb the branching
fractures We assume thathe surroundingpore medium is of fractatructure The porosity is given bgFomin et al., 2011):

B(r) = por® ™ ®

whereliyis aconstnt,r is thedistancefrom a single pored; is the fractal dimensioaf porosity andn is the dimension of spacésing
the diffusive mass flux in a single poleads totemporalCaputo fractional derivativesvhich accounts for the mass loss into the
surrounding porousiedium of fractal geometrifhe timefractional advedbn dispersion moddtime fADE) with a temporal factional
derivativecan be written as (Schumer et al., 2003; Fomin et al., 2011):

oc ,,C _ 1 9°C_ac

or + or7r  PedX? 0X ©)

e
whereb is theretardatiorncoefficientrelatedto diffusion processes the surroundingocks andbﬁ is the Caputo fractional derivative
with respect to time of order(0 <0O 1) def i ned Wheno Slatmekirne fADEo8e8 Bg. (9) can be considered as the
classical advection di spersion equation (ADE), which foll ows

Meerschaertteal. (2008) proposedé tempered anomalous diffusiorodel containing both the classieahss transport model and the
temporalfractional derivative models end member3he tempered stable modehy be practically more attraee than the standard
stable model in quantifyinghe latetime dynamics of mastransport. The tempered anomalous diffusion model for transieat non
Fickian diffusion can be written as (Meerschaert et al., 2008):

aC L, . 18C aC
5y T TS (N0 N0 = 5o onm — ox 10

wherea> 0 is the truncation parameter in time.

Figure 5 showshe effects of model parameters: (a) the order of fractional derivativehe time fADE model Eq. @)) and (b)
truncation parametexin the tempered anomalous diffusion moted). (10)). The solutions by the time fADE modeitho =05
appear decay at late time as power (atraight line on logog plot)(Fig. 1 (a)) The solution of the classical ADE also plotted, which
exhibits a symmetric and exponential declineefempered anomalous diffusion modEl. (10))reduce to the sindard time fADE
model(Eg. (9)) if &k 0, as seen ifrig. 1(b). Conversely, wheik 1, there is no poweaw tail for arrival times larger than 1a/ The
truncation parametexcaptures the transition from powam to exponential decline for the breakthrough cuavdéatetime. Zhang et al.
(2014) discusses aboutliak betweenthe specific model parameters in Eq. (Bdd medium heterogeneity in alluvial settingghe
relationship between the fractal dimension of gayoin Eq. (8), the mdel parameters in Eq. (10), atiee fractal dimension of fracture
lengthin Eq. (4) is the concern of this study.

1, 0.
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Figure 1. Effects of model parameters: (a) the order of fractional derivatived in the time fADE model (Eqg. (9) and (b)
truncation parameter ain the tempered anomalous diffusion model (Eq. (1Qwith 9= 0.3.

3. PARTICLE TRACKING IN FRACTURE NETWORK S
3.1 Method

We conduatd tracer analyses using a particle tracking method to simulate fluid flowrac@renetwork (Watanabe and Takahashi,
1995; Jing et al., 2000T-he concept oparticle tracking code generating tracer respoisékistrated in Fig. 2Discshaped fractures
are generated stochastically and randomly within a fracture generation areanifiez ntifracturess given byEq. (4).

The fundamental relatiwship between fracture apertuaed lengthhas been debate@®n the basis of theoretical fracture mechanics,
some have argued apertdcelength scaling should be linearermilye and Scholz @95) found that the geommgtin a naturally
formed extenion can exhibits a linear scaling between length and displacefestrelationship implies that all fractures in a given
population have the same driving stress regardless of fracture.lengtintrast some field observations indicate sublinear apettire
length scaling that is apparently inconsistent with the linear elastic fracture mechanicsAhlbhongh he apertureto-length scaling
needs tde discussed, in this study, tfracture apdure is given tgroportional to its radiubased onihear elastic fracture mechanics
Theratio of the fracture thickness to the radius is set t@ fb® numerical simulation.

The embedded fractures are converted to"#upiivalent permeabilitydistribution (Fig. 2). The permeabilities omterfacesof grid
cellsin each axis directiork,, K,, K, are given by the following equations:

2 2
n; n;L; n5 n;L; nj n;L;
K, I N PG N I
leA Zj:ley’ Zj:m A,

whereA,, A, A, are the agas of grid celinterfaces orthogonal to the y, andz axis, respectiely. All fractures crossing at each
interface of grid celare numbered in The aperture and the length of thacture intersecting thaterface of grid cellare written agj
andL; . The guivalent permeabilitieare used to calculate the flow ratieeach interfacef grid cellsin each axis direction by using the
foll owing Darcyds | aw:

K, AP K, AP K. AP
— A0 BN T 0 S el
Qq m A:r:’Qy Yo Ay’Qz o Az’ (12)

11

whereqP/gp Xs pressure gradient, aeds the viscosity of water. In this study, incompressible, sipbise flows were considered. The
density of rek and water, the viscadgiof water, and the porositye@assumed constar@@onstant pressure conditione aiven at the
upstream and the downstreamundaries. No flow conditiong@ used at the side boundari€seadystate flow solutionsra solved
numerically by relaxation methods using an iterative multigrid algorithm.

A particletracking codevasused to calculate simulate tracer migration. In tdf@J00Otracer particles arinjected as a pulse from the
upstream boundary. A traceanpicle migraés from a grid cell to its adjacent grid calhtil the particle reaches the downstream
boundary. Tk travel direction of tracers determined by probability that depend on the magnibfittee flow rate given by Eq. (J2A
plot of the number of traceed the downstream boundary over time is used as a tracer responsd barsenulation parameters used
for FRACSIM-3D are listed in Table 1.
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Figure 2: Schematic of particle tracking method.

Table 1: Numerical properties used inthe particle tracking method.

Parameter

Value

Domain [n]

1003 100° 100

Number of grid cells [grids]

1003 1002 100

Fracture radius [m] 0.5-25
The ratb of fracture aperture to radius 1.0% 10*
Fractal dimension of fracture radilg 2.0-3.0
Fracture density [ 07,15
Pressure difference between upstream ang 0.1
downstream boundaries [MPa]
Viscosity of water [Pa(s] at 25C 8.93 10*
Number of tracer particles [Particles] 10000

3.2Numerical simulation results

Suzuki et al.

We generatd 100fracture network modslwhere the fracture radiusset to a constant € 1.0 [m]) (Model U). Fractures aspatially

randomly placedAn exampleof fracture cluster oModd U and the histogram of the permeability disttibn are shown iffrigs. 3(a)
and 3b). Fracturedensity is 1.5 m. The averagealues calculated by usiri§0 fracture network modedse plotted inhiehistogram of

5
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permeabilityin Fig. 3b). The model U shows thanay small fracturedistributed evenlyAs seenin Fig 3(b), most values of
permeability (more tha95%) ae within the range betweet0 ** and10 **m?.

50 mRadius r=1.0
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-
o
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Figure 3: (a) lllustration of fracture network of Model U with r = 1.0 [m] and (b) the listogram of permeability distribution.
Fracture density is1.5 m™.

Subsequently100 fracture network models with variable fracture radius (Eq. B)e generated, which is called ModBk. The
fracture radiusvasvaried within the range of 0.5 A25 m. The minimuniracture radius (= 0.5 mgiequivalent to thhalf sizeof the
grid cells. A fracture is detected to calculate permeability gbyeiq. (13 when the fracture crosses the interfaces between grid cells.
If a fracture is placed within a grid celbmpletely, the fracture is neglected. Thus, the mimmiracture radius is set to the half of grid
cells. The maximum fracture radifs 25 m) is the quaet of the calculation areah@&re isno fracture directly connecting the upstream
and the downstream boundaries. The fradiatensionDg given in Eq. (4) isset toa rangebetween 2.0 an®.0 becaus two
dimensional disshaped fractures edistributed in the thredimensional region. The fracture density for differBatis adjusted to be
constant by using the paramerThe fracture dnsity (umber of fractures per meteg) dbtained by counting the number of fractures
intersecting a line and by averaging the number of fractures at nine lines. The fracture density with respecimbaheer meter
showssimilar trends with the areaf fracture surface per cube. After evaluating the fracture density, the total number of frsgtures
Eq. (4) is determined.

Effects of the fractal dimensidbg on Model Dg are shown in Fig. 4Fracture densés for differentDg are samél1.5 nmi'). Asseen in
Figs. 4a)(c), the network with smalleDg contains manyarge fractures. In contrast, fiacture network with greatddg has high
proportion of small fracturesthis is consistent with other studiese(lGarzic et al., 2011). Figurgd} illustrates the histogam of
permeability distribution for ModeDg. The permeability distribution for Modé@g has a wide range betweéf ** and10 *m? The
result obviously differs from the permeability for Mode(Elg. 3(b)) In Model D, higher permeability(k = 1d *9Ym?]) is dominant for
Dg = 2.0, while lower permeabilityk 10 ¥[m?)) is dominant folDg = 2.5 andDg = 3.0.The number of largéacturesdecreases with
increase irDg, which leads talecreasghe overall permeabilit\whenDg = 3.0, the peak of permeability distribution is betwaéh

and 10 ** m%. The peak value is higher than that for smaller This indicates thaDg of 3.0 hasless variance of permeability
distributionthan smalleDg
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Figure 4: (a) lllustration of fracture network of Model Dg : (a) 2.0, (b) 2.5, and (b) 3.0 and (dthe histograms of permeability
distribution . Fracture density is 1.5 nf.

A box-counting method has been used to estimate fractal dimension -@bbo#ing Dy, in field data (Main, 1990)We evaluatd

Dyox for different Dg by using athreedimensionalbox-counting algorithm.The calculation dorain is divided into cubes, and the

number of cubes including a part of the object is counted. As the length of the divided cube varies by a factor of2 0 , N1, N2,
logarithm plot of the length and the number of cubes dgivewvalue oDy, Using ModelDg, we observd that theD,, has a positive

correlation to theDg. The linear approximation for the fracture density of 0.% iis given asDyo = 0.106D, + 2.579wherethe

coefficient of determinatioR2 = 0.97943The value oD, can be used to evaluate spatial distributions of fractures. \Bhgis 3.0,

all boxes are occupied because of usingic boxes. Then, the distribution of diskaped fractures is spatialgvenin the three

dimensional area. In contrast, whBg,, is 20, the diskshaped fractures are distributed on a-tirmensional planeThe positive

correlation betweed,,, andD, suggests tha greate Dy leads to a network where fractures apatiallyevenly distributed, while a

lower Drresults in unevenlgistribution of fractures.

The results for Model U and Mod&lk are ploted in Fig. 5 The solution of thelassicalADE modelfollowing Fi ck6s | aw i s
presened in Fig. 4 Fracture densities afie5 mi*in both modelsModel U yieldsa sharp peak, wbh can be reproduced by tblassical

ADE model On the other handhe tracer response for ModBl; exhibits a long tail. Becausethe classical ADE model is in
disagreemenwith the curvethe tracer response called norFickian (Hatano and Hatan®998; L&y and Berkowitz, 2003; Benson et

al., 2000).Unlike Model U, Model D, distributes factures with several lengths and esa apertures due tbe fractl of the fracture

length The variance of permeability for ModdDy is greater than that fédodel U,which can be compared in Figs. 2 and®8cause of

this wide range of permeability for Mod&lr, some tracers move through preference paths (larger fractures) and some tracers migrates
into less permeable zones (smaller fractures). The tailittgeitracer response shownRig. 4is caused byuchretardation ofraces.

Thereforejt is said thathefractal nature of the fracture lengihone of factors thaton-Fickian behaviois caused.
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Figure 5: Simulated tracer curvesfor Model U and Model Dg and fitted curve of the ADE. Fracture density is 1.5 nt.

Tracer responses with differeby, are plottedn Fig. 6 The fracture densitigsr all models ard..5 m*. The tracer response férg =

2.0 exhibits a sharper peak at gaiine, while the peaks delay and become wideenDg increasesAs discussed above, model with
smallerDg has greater amount of large fractures, which creates preference pathsh&lkhsrper peak witlbg = 2.0 is caused by

tracer migration througthe preference paths. In contrast, medeth greateDg decrease in theumberof larger fractures. Instead of

large fractures, the greataumberof smaller fractures is distited. Thus, the peak delayed with increase inDg. These results
suggesthat tracer response has some information of fractal dimeo§ifsacture lengttand can be used to estimate the valuBpf
Becausdractal dimension has been determined by using outcrop data in previous research, this estimation can provide melv sights a
be useful to understand fracture structure inside reservoirs.

Concentration[-]

0 5 10 15 20
Time[-]

Figure 6: Simulated tracer curvesfor Model Dg with different Dg. Fracture density is 1.5 rt.

4. FLOW EXPERIMENT
4.1 Creating fracture networks for 3D printer

Fracture network modelserecr eat ed using a 3D CAD mod el wasgererated irethe sdme® manneE CADO .
as introduced in the previous sessi@rcluster of the fractureis shown in Fig. {a). The maximum radiugvasset to a quarter of the
sample length in ordeo preventthe fracture from penetratirtrough the samplerhe minimum radius idetermined by the resolution
of the 3D printerAfter the cluster of the fracture network is created, a solid cylirdsubtracted by the cluster, leaving the cylinder
with the hollaw fracture network (Fig. (b)). The outside shell pvents water fronexiting the sidegFig. 7(c)). The inner and outer
diametersof the model are 2.54 cm and 3@, respectively. Théeight of the model is 4ne. Thefracture properties toreatefracture
network model byOpenSCAD includes the position, radius, aperture, dip, and azimuth of each frabeirg@mulatio condition is
listed in Table 2
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(@) b) ( ()
Figure 7: (a) A cluster of fracture network, (b) a solid cylinder after being subtracted, and (c) a model with cladding (ready to
be printed).
Table 2: Parameters used to create nuels.
Model 1 Model 2
Fractal dimension¥g) 2 3
Constant of fracture densi(Z) 500 1150
Aperture ratio (thickness/radius) 0.125 0.125
Minimum fracture radius 1.6 mm 1.6 mm
Maximum fracture radius 8 mm 8 mm

In order to carry oua feasilility experimentthe median permeabilityasdetermined t®.3 x 10! m? for both modelsA computer
programwas used to findthe average permeability. The program discretizes the simulation area into cubic blocks and calculates the
interface permeability oeach block by using the cubic law. The median permeability is compared to find an appropriate value of
parametecC in Eq. (3 as shown in Fig..8

£=500,0= 2, 4= 0,125, minR = 1.6, maxA = §
3500 T T T T T T T C=1150,0=3,A=0.125,minA = 1.6, maxf = 8
: T T ; T .

goon

frequency
frequency

-13 <125 -12 -115 -12.5 -12 -5

logipermeability] Median: -11.6806 loglpermeability] Median: -11.6532

@ (b)

Figure 8: Permeability distribution of models for (a) Dg = 2.0 and of (b)Dg = 3.0.

The file format STL contains the data of the triangles that form the 3D models, aveithersent to 3D printer. To create the models,
OpenSCADwas used t@ompile and render the codes into STL file. For a ttiedre werdwo models printed in this pject, a model
with Dg of 2.0 and one with Dg of 3.0.

We usel a 3D printer (VisiJet ® EX200 Plastic Material foD8Modeling, 3D Systems) #éte Stanford 3Dimensional Printing Facility

(3D). The properties ahe materialsusedare listed in Table 3.He resolution of the printer is 16 micron. Unique aspects of the printing
technology allev featherweight thin structure The unique printing technology results in truly solid, nonporous parts. The 3D printer
prints a model consisig of plastic (UV Curake Acrylic Plastic) and supporting waXhe supporting wais required forthe 3D printer

to print hanging parts. Figureshiows a 3D printed sample. Afterinting, the modelsvereimmersed imanultrasonic oil bath in which

9
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the oilwasheaedto meltthewax. To make sure that the wasasremoved as much as possible, the modalse submerged in hot
water at 70C and shaken for approximately an hour so that the wax melteitbatetl upthrough the holes (Fig. 10Then, the models
wereput in a systenthat a pump pumps ethanol through the fracture network overnight so that ethasleksithe remaining wax

(Fig. 12).

Figure 9: A 3D-printed model.

Figure 10: A model being heagd.

10



Suzuki et al.

Figure 11: The apparatusin which ethanol is injected into themodel and circulated by a pump.

Table 3: Properties of printing material.

Properties Value
Composition UV Curable Acrylic Plastic
Density at 80C (liquid) [g/cn?] 1.02
Tensile strength [MPa] 42.2
Tensile Modulus [MPa] 1283
Printer resolutiongm] 16

After the wax hd been removed, the printed modelsre flooded with waterwith sodiumchloride as a tracer. Figure sBows the
configurationof the flowtest. First, the water is injected into the models by hydraulic head difference for about half an hour to saturate
the fractures with water. The injected waterdistributed at the inledf the fracture network model at the inlgsing a fispider
connection that has radial draiohannels The elevation ofhe water source is 1 meter, so the pressure at the inlet is abbBal0
Resistivity and mass of the water that flows watemeasured over time at the outlet during the test by using@0DELCR meter by

IET and a Sartorius digital scale. The spider conneetimsused at the outlet as well. Once the resistivagstabilized, 2 milliliters of

salt watemwereinjected

The LCR meter in this experiment uses alternating current to measurestitivity. Therefore, in order tbtainthe real resistivity of

the salt waterthe measurement needed lie made with different frequenciesso that the impedance due to capacitance can be
eliminated. Once the true resistivity is obtained, it can rbeersed to conductivity. The conductivity datere converted to
concentratiorby assuming that concentration has a linear relationship with conductivity.
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Figure 12 The configuration of the experimentl apparatus, distilled and salt water on theshelf are not shown.

4.2 Experimental results

Tracer responses usitige 3D printed samples are shown in Figure. TBe tracer foDg = 2.0 reached the outlet faster, ahd peak is

sharper than the response = 3.0. These results are consistent witle results discussed for the numerical simulation in previous
section.The peaks appear at 26 sec and 55 sePdaf 2.0 and 3.0, respectivelJhe estimated velocity for this sample is 8%710*

m/s and the estimated travel time between the inldt at he out | et is 45.9 sec lhaswae on t h
permeability of samples &3 x 10 m? the hydraulic head difference of 1.0 m, andwilaer viscosityof 8.90 x 1¢* Pa-sat 25 C.

The peaks are almosdrse order as thestimated travel time

Figure 13: Tracer response results using 3D printed samples.

6. DISCUSSION

Some of the findings from numerical simulatiaresummarized in Table &’he fracture densities for differeDi wereunified in the
numerical simulationwhile the median permeabilities weauaified in the experimenEven sothe experimental results are consistent

with numerical simulation results. However, the frequencyhefpermeability distributionshown in Figs.4(b) and 8, exhibiteda
difference in the case &g = 2.0 The histogram of permeabilitipr the experimentdistributes almost symmetatly, while that for
numerical simulationis asymmetric Additionally, the experimental resultdid not show heavy tails as the numerical snulation
results.These resultsnay depend on the value of fracture density or permeability, the size of fractures, the size of system, and other
conditions.We createdhe fracture network with-dentimeterheight and tinch diameter. Theadius of distfuted fractures wain a

range betweed.6 mmand8 mm, which isa shallower range¢han in thenumericalsimulation (0.5 ni 25 m). Further research Wil

conduct experimertwith awider range of fracture length and investigate carefully the effect duiraclensity on permeability
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