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ABSTRACT 

The Eastern Snake River Plain (ESRP) in southern Idaho is a region with significant potential as a geothermal energy resource. Deep 

boreholes in the region suggest generally high geothermal heat flux, of approximately 100 mW m-2, with a slight eastward increase 

across the plain (Blackwell 1989). Evidence of that vertical heat flux, however, is largely masked by the rapid flow of cold groundwater 

that originates in the Yellowstone Plateau and transports heat horizontally through the highly permeable basalts making up the aquifer. 

This masking means that spatial distribution of temperature and heat flux below the aquifer is only poorly known and that, in turn, 

reduces confidence in identification of areas most suitable for geothermal development. 

To improve understanding of temperature distribution below the aquifer and advance the general understanding of heat flux in the 

ESRP, we conducted groundwater heat transport simulations and compared results to mapped groundwater temperatures. Our heat 

transport model utilizes the groundwater flow model developed by the Eastern Snake Plain Hydrologic Modeling Committee, a 

MODFLOW-based model that has been well tested and calibrated for resource management. Heat flow was simulated using the 

MT3DMS software package that is compatible with MODFLOW.  The model accounts for basal heat flow, conductive loss of heat from 

top of the aquifer through the vadose zone, and advective addition of heat through rivers, precipitation, irrigation, and injection wells.  

Simulations with constant basal heat flow capture many of the salient features of the measured temperature distribution. Results 

demonstrate the relative importance of advective transport in the aquifer. Viscous dissipation has been shown to be significant in the 

aquifer and that thermal input is being added to the model. The model is being calibrated against measured temperature profiles and heat 

flow measurements that have been taken below the aquifer. These vertical temperature profiles can also provide information about 

groundwater flux and mechanical dispersion within the aquifer. 

1. INTRODUCTION 

The Eastern Snake River Plain (ESRP) in southern Idaho is a region with significant potential as a geothermal energy resource. Deep 

boreholes in the region suggest a systematic eastward increase in heat flow from about 75-90 mW m-2 to 90-110 mW m-2 across the 

plain (Blackwell 1989). However, evidence of that heat flux is largely masked by the rapid flow of cold groundwater originating in the 

Yellowstone Plateau though the highly permeable basalts making up the aquifer. This masking means that spatial distribution of 

temperature and heat flux below the aquifer is only poorly known making identification of drilling sites with high thermal gradients 

difficult and potentially increasing the risk for geothermal exploration. 

To improve understanding of temperature distribution below the aquifer and advance the general understanding of heat flux in the 

ESRP, we conducted a groundwater heat transport simulation.  This study is aimed at estimation of sub-aquifer heat flux by adjustments 

to match groundwater temperature. We have employed the East Snake Plain Aquifer Model (ESPAM) to simulate groundwater flow 

processes that mask surficial evidence of the deep heat flux.   Our approach assumes that groundwater flow directions and rates are 

relatively well understood in ESPAM, as uncertainties in calculated groundwater temperatures reflect uncertainties in groundwater 

movement as well as in heat flux boundary conditions. We believe that this is a realistic assumption because the eastern Snake River 

Plain aquifer is a sole source water supply for much of southeastern Idaho, groundwater flow has been well studied, for decades, by 

multiple agencies, including the USGS, Idaho Water Resources Research Institute (IWRRI), the Idaho Department of Water Resources 

(IDWR) and UI. ESPAM (Cosgrove, Contor, and Johnson 2006) was developed and is maintained by the Idaho Department of Water 

Resources, which has undergone extensive calibration, validation, and uncertainty analysis and continues to be improved for use as a 

decision making tool for water rights in the ESRP. This document describes the approach that we have taken to simulate heat flow in the 

Eastern Snake River Plain of Idaho and summarized preliminary results of our simulations. 

2. EASTERN SNAKE RIVER PLAIN AQUIFER MODEL 

The ESPAM is based on the MODFLOW groundwater flow modeling package and its use and application is widely available. To 

calculate heat transport effects in ESPAM, we used the MT3DMS transport package, which is readily coupled to MODFLOW through a 

graphical user interface such as Groundwater Modeling Software (GMS) or Visual Modflow. Through this coupling of MT3DMS to 

MODFLOW the detailed recharge distribution, groundwater-river interaction, point source/sink distribution associated with wells and 

springs, and calibrated transmissivity distribution of the ESPAM will be the basis for the heat transport model. 
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We obtained the MODFLOW files from IWRRI site (https://www.idwr.idaho.gov/waterinformation/projects/espam/). We modified the 

files so they were in units of meters and days.  We were able to get the model to run in both the GMS and the Visual MODFLOW Flex 

interfaces. The resulting modeled hydraulic head distribution is illustrated in Figure 1. 

 

Figure 1. Hydraulic head distributions in the Eastern Snake River Plain computed by the ESRAM 

 

3. MODELING APPROACH 

3.1 Heat Transport 

To simplify the used of the ESPAM aquifer model as the basis for our heat transport model, we developed it within the MODFLOW 

family of groundwater models, using MT3DMS to simulate the heat transport. While MT3DMS is designed for simulating solute 

transport, the similarities in the differential equations for heat flow and solute transport allow us to use MT3DMS if we define 

parameters and boundary conditions in an appropriate manner. The first step is to substitute the thermal diffusivity for the molecular 

diffusion coefficient. The sorption of heat by the aquifer matrix is included by using the linear sorption model using a sorption 

coefficient (Kd) of 

 s

d

w w

c
K

c
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where cw is the specific heat of water (J kg-1 °C-1), cs is the specific heat of the solid matrix (J kg-1 °C-1), and w is the fluid density (kg 

m-3). The following sections describe how boundary conditions and source/sink terms are handled using MT3DMS. 

3.1.1 Advective Heat Flow 

Advective heat flow across a boundary can occur under various scenarios but a key one from our perspective is the case of groundwater 

recharge. Under these conditions, the heat flux, qh, in J m-2 s-1 that is advectively transported into an aquifer is 

 
h r e c h w w g

q q c T   (2) 

where qrech is the recharge rate (L/T) and Tg is the temperature of the ground surface and which could be considered close to the average 

air temperature. Alternatively, this heat could be added to the model via a fictitious injection well using 

 /
h r w w

q Q c T A   (3) 

where Qr is the rate of injection (m3 s-1) and A is the area over which the recharge occurs (e.g., the area of a cell in a finite difference 

grid). In the ESPAM model, recharge was lumped with irrigation and injection and simulated using wells. However, as discussed in a 

subsequent section, we use the recharge option to simulate a portion of temperature-dependent heat-flow boundaries. 

3.1.2 Specified Heat Flux 

For a specified heat flux in J m-2 s-1 that is conductively transported into an aquifer, there is no direct way of including the boundary 

because solute transport models require that mass be carried into the system dissolved in a fluid. Nonetheless, this type of boundary 

condition can be simulated by advecting an equivalent amount of heat by a trivial amount of fluid flow. This idea can be illustrated by 

considering the energy balance which requires that the conductive heat flux, qh, be equated to an advective heat flux: 
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where x is the thermal conductivity in the x direction. Using an arbitrarily small value of water flux at the boundary (qb), the 

appropriate temperature can then be calculated from 
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Temperature-Dependent Diffusive Heat Flow Across a Boundary 

For heat loss across a boundary where the temperature on the other side is known (i.e., heat diffusion across the vadose zone), the heat 

flux can be written as 
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(Wood et al., 2007) where bvz is the thickness of the vadose zone, vz,z is the vertical thermal conductivity of the vadose zone, and Tg is 

the temperature of the ground surface. Equation (6) can be considered two different terms, qh,1 and qh,2, where 
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Eq. (7) can be converted from mass per unit time across the area of the cell to mass per unit time over the volume of the cell by dividing 

both sides of equation (7) by the height of the cell (zcell) to give  
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Substituting H = wcwT into Eq. (9) and rearranging terms, yields 
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which has a form of a first-order irreversible reaction equation 
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but with the rate coefficient, kT, of 
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This analogy allows us to use the first-order reaction equations included in MT3DMS to represent this heat-loss term.  

The second part of Eq. (6) (i.e., Eq. (8)) can be treated either as a recharge term: 
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where qfr is a fictitious recharge rate and Trf is the temperature of this recharge. Trf can be calculated from Eq. (33) using the assumed qfr 

by 
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3.1.3 Viscous Dissipation 

A process that is often neglected in modeling heat flow is viscous dissipation. Viscous dissipation is the conversion of mechanical 

energy of a fluid to heat (Manga and Kirchner, 2004). The mechanical energy of the fluid is the fluid potential (). In most groundwater 

systems  (joules kg-1) can be defined as 

 g h    (15) 

where g is the acceleration of gravity (9.80665 m s-2) and h is the hydraulic head (m) (e.g., Freeze and Cherry, 1979).  

Consider at one-dimensional aquifer system with a hydraulic head drop of h, a temperature inflow of Ti and a temperature outflow of 

To. An energy balance of this system requires the energy flowing out of the system (joules s-1) is equal to the energy entering the 

systems plus the energy gained by the conversion of mechanical energy to heat: 
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where cw is the temperature-dependent specific heat of water (J kg-1 °C-1), w is the temperature-dependent fluid density (kg m-3),  is 

the porosity (dimensionless), vx is the groundwater velocity (m s-1), g is the acceleration of gravity (m s-2) and h is the change in 

hydraulic head across the system (ME denotes mechanical energy). The negative sign for the ME conversion term indicates that a 

decrease in hydraulic head (negative h) results in an increase in temperature. Rearranging Eq. (16), we obtain 
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Substituting a value of 4186 J kg-1 °C-1 for cw, we determine that the temperature should increase by 0.00234°C for every meter drop in 

hydraulic head or 2.34°C for every 1000 m. This value is the same as that provided by Manga and Kirchner (2004). To put this value 

into perspective, for the Eastern Snake River Plain, hydraulic head decreases by as much as 870 m from the northeast to the southwest 

suggesting that the temperature of the infiltrating water should increase by 2.0°C over the length of the plain as a result of viscous 

dissipation. This result is similar to that obtained by Burns et al. (2016) using an analytical solution for viscous dissipation that they had 

derived. 

In our heat flow simulations, viscous dissipation can be included by equating it with heat injection via an injection well by 
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  (18) 

where Qw is an arbitrarily small rate of injection, ih is the head difference in the ith direction, and Ai is the area of the cell normal to the 

ith direction. Eq. (24) can be rearranged to  
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Thus, from the arbitrary value of Qw, Eq. (25) can be used to calculate the temperature of the injected fluid, needed to represent viscous 

dissipation in the aquifer.  If a cell already has an injection well, then an energy balance requires that 
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where Tinj is the temperature of the injected fluid for the existing well and T is the model temperature that is to be used. Solving for T, 

we obtain to  
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  (21) 

3.2 Model Construction 

To include vertical heat transport effects in our modes, we started by developing a 10-layer model based on the existing ESPAM model. 

In particular, the transmissivity is conserved between the multilayer model and the single-layer ESRA model and the wells rates are 

conserved by placing all of them in the top layer. The components for constructing this multilayer model are described in the following 

paragraphs. 

The aquifer bottom was digitized from the maps provided by Whitehead. Elevations ranged from ~412 m to over 1700 m (Figure 2). As 

pointed out by Wylie (2004), there are some difficulties with the bottom elevations in the southwest being above ground surface, so 
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minor adjustments were made to keep the bottom elevation below ground surface. The top of the aquifer was taken to be the elevation of 

the hydraulic-head surface of the 2-D ESPAM model (Figure 1). The resulting isopach map is provided in Figure 3. 

To calculate the heat loss through the top of the aquifer, we used the mean annual air temperature as a boundary condition for the 

ground surface. The mean annual air temperatures were obtained using Prism-based climate data (Daly et al., 1994).  Heat flux through 

the vadose zone was assumed to be vertical, and dependent on its thickness, thermal conductivity and temperature difference between 

the water table and the ground surface. A vadose zone thickness map (Figure 4) was constructed by the difference between the 

topographic elevation and the elevation of the top of the aquifer. The heat loss from the top of the aquifer is simulated using both a first-

order decay reaction and a recharge term. The first-order reaction coefficient is defined by Eq. (12) and its distribution is illustrated in 

Figure 5. For the zeroth-order term, we used an arbitrarily small uniform recharge rate and calculated the temperature of that recharge 

based on Eq.(8). It is important to understand that this is not are “real” recharge term. That term was included in the well package and 

we can use it because the recharge package was not used in the ESPAM model. This “theoretical” recharge and its associated 

temperature are only meant to provide an energy balance that allows heat loss by diffusion through the vadose zone.  

For the heat flow through the bottom of the aquifer, we used a total flow into the aquifer equal to 10-5 times the total flow through the 

aquifer system (so as to minimize the impact to the fluid mass balance) and divided the rate by the number of active cells in the bottom 

layer and injected this fluid in the bottom layer. The associated temperature of this injected water was then calculated using Eq. (5) in 

order to achieve a heat flow of 100 mW m-2. 

 

Figure 2. Aquifer bottom elevations used in the heat transport model. Taken from Whitehead (1986). Units are in meters. 

 

For the heat flow through the bottom of the aquifer, we used a total flow into the aquifer equal to 10-5 times the total flow through the 

aquifer system (so as to minimize the impact to the fluid mass balance) and divided the rate by the number of active cells in the bottom 

layer and injected this fluid in the bottom layer. The associated temperature of this injected water was then calculated using Eq. (5) in 

order to achieve a heat flow of 100 mW m-2. 

The grid that was used in the heat transport model is similar to that used in the ESPAM in that it consists of cells that are 1 mile on each 

side with 104 rows and 209 columns but instead of only one layer, we used 10 layers. The top layer is 33% of the aquifer thickness at 

every location and all subsequent (lower) layers are equally divided over the remaining thickness. The transmissivity of each of the 

layers was obtained by multiplying the transmissivity from the ESPAM by the fraction of the aquifer thickness for that particular layer. 

This method is equivalent to assuming the hydraulic conductivity is constant over the thickness of the model, although it does vary from 

cell to cell in the x- and y-directions. This approach preserves the calibrated transmissivity distribution obtained with the ESPAM 

model. The vertical leakance terms were then calculated using the methods described by Harbaugh et al. (2005). The Ibound array was 

assumed to be the same in every layer. For the wells, we assumed that all of the water was injected into the top layer. This assumption 

seemed reasonable given that much of the well injection is really irrigation return and that the top layer occupies the upper 33% of the 

aquifer. 
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Figure 3. Aquifer thickness. Units are in meters. 

 

Figure 4. Vadose zone thickness map of the Eastern Snake River Plain. Units are in meters. 
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Figure 5. Distribution of the logarithm of the first-order rate coefficient used to simulate heat loss from the top of the aquifer. 

Units are in log(1/days). 

 

3.3 Thermal Transport Parameters 

The Snake River Plain contains several rock types including basalts, rhyolites, and sediments. Rather than account for all of these 

various rock types, for our initial runs, we assumed a homogeneous system with respect to the thermal properties. This is a reasonable 

choice given the order of magnitude variation in many of the other relevant parameters compared to the smaller range expected for 

thermal conductivity and heat capacity. We have chosen thermal transport properties of basalt since this is the dominant rock type in the 

ESRP. 

The thermal conductivity used in the simulations was 1.65 W/(m K). This value is close to the average value of 1.76 ±0.37 W/(m K) 

reported by Brott et al. (1976). This value is also in the range of mean values of 1.95, 1.69, and 1.45 W/(m K) from three different 

studies (Schön, 1996); the mean value of 2.11 W/(m K) from 98 samples (Epplebaum, 2014), and 1.69 W/(m K) from Sharma (2002). 

The specific heat capacity of basalt was taken from the equation of Waples and Waples (2004) which is based on the work of Robertson 

and Hemingway (1995). At 15ºC the specific heat capacity is 718.7 J kg-1 s-1.  Using this specific heat capacity and the thermal 

conductivity discussed in the previous paragraph, we compute the thermal diffusivity to be 8.01E-7 m2 s-1. 

4. RESULTS 

The head distribution calculated in the multilayer model is similar to that obtained in the single layer ESPAM model. The key 

differences are in the extreme northeast corner and the area slightly south of there. The heads in these area are lower than expected and 

may be the result of the large increase in aquifer thickness over a relatively small distance in these areas. Based on these results, we 

conclude that the multilayer model adequately represents the head distribution as determined with the ESPAM model. 

The temperature distribution in the top layer (layer 1) and the bottom layer (10) are provided in Figure 6 and Figure 7, respectively. A 

cross-sectional view along row 52 (in the middle of the grid) is provided in Figure 8. These temperature distributions can be compared 

to kriged measured temperatures which are provided by Welhan (2016) and included as Figure 9. There is general agreement between 

the temperature range obtained with the heat flow model (5.8 – 30.1ºC) and the kriged values. (< 10 - 34ºC). While the upper layer 

temperatures seem to reproduce the higher temperatures along the southwest side of the aquifer, other features such as higher 

temperatures along the “axial thermal high” seen in Figure 9, appear to be missing. However, the deeper portion of the aquifer (Figure 

7) appears to show the axial high as well as elevated temperatures in the northeast and long the central portion of the northern boundary. 

The simulation also shows elevated temperatures in layer 10 between the north western corner and the north-central portion of the 

aquifer (~19ºC) that is not seen in the kriged map. Figure 9, however, does not include any data in the area. 

The cross-section view along row 52 (Figure 8) clearly shows vertical temperature gradients in the aquifer. Where the aquifer is 

thickest, the 11ºC temperature contour plunges deep into the aquifer.  

We urge caution in interpreting differences between aquifer temperature measurements and the simulated results obtained in the heat 

flow model. In particular, the kriged temperature measurements neglect vertical temperature variation even though vertical temperature 

gradients are known to exist in the aquifer. Also, as we have seen, little, or no, temperature data are available in some areas of the plain. 
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Nonetheless, we believe that the results show that the model produces a reasonable match to the 2D variation of temperature in the 

aquifer. Additional calibration will be required to develop greater confidence in the model. 

 

Figure 6. Calculated temperature distribution in the top layer of the aquifer. Units are in oC. 

 

Figure 7. Calculated temperature distribution in the bottom layer of the aquifer. Units are in oC. 
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Figure 8. Temperature distributions along row 52. The vertical exaggeration is 100. 

 

 

Figure 9. Kriged temperature distributions for the Eastern Snake River Plain. (Welhan 2015). 

5. CONCLUSIONS 

A thermal transport model of the Eastern Snake River Plain has been developed. The groundwater flow portion of the model is based on 

the two-dimensional ESPAM model which has been calibrated and appears to represent the aquifer system quite well. We expanded this 

model to a multilayer model that successfully reproduces the head values. Heat flow was simulated using MT3DMS by altering the 

solute transport parameters to mimic heat flow parameters. Thermal properties were based on literature values as well as measurement 

taken at the INL site. The model reasonably reproduces measured temperatures in the Eastern Snake River Plain aquifer. We are 
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currently adding viscous dissipation effects to the model. The heat transport model developed in this study will be a useful tool for 

improving our understanding of heat flow in the Eastern Snake River Plain. 
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