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ABSTRACT

Grain size distribution (sorting) is determined by deposition.  It may affect sediment

bulk and elastic properties in a non-linear and non-unique way.  The quantification of these

relations is important for seismic reservoir characterization, especially in geological settings

where sand/shale (bimodal) mixtures are present.  Below, effective-medium equations are

introduced for calculating the porosity and elastic moduli of such bimodal granular

mixtures. These equations can be used for theoretical mixing of sand and shale in

dispersed or laminar modes and, ultimately, for seismic forward modeling and reservoir

characterization.

INTRODUCTION AND PROBLEM FORMULATION

Grain size and grain size distribution are basic characteristics of sediment texture

(Figure 1).  They are determined by the depositional history and affect reservoir quality via

two of the most important bulk properties–porosity and permeability.  They also affect the

elastic properties of the sediment.  As a result, seismic attributes can be, in principle,

interpreted in terms of texture and porosity.

Figure 1.  Thin sections of unconsolidated sand showing deteriorating sorting (from left to right).

Images courtesy Norsk Hydro.

The effect of texture on sediment bulk and elastic properties is not simple.  Consider a

water-saturated section of a Gulf Coast well at a depth of about 900 m (Figure 2).  The
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section includes several depositional cycles whose vertical extent is apparent in the gamma-

ray (GR) curve.  The porosity curve approximately mirrors the GR curve, with high

porosity matching the sandy (low-GR) zones.  The P-wave impedance curve approximately

mirrors the porosity curve with the low impedance matching high porosity.
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Figure 2.  Well log curves for a Gulf of Mexico well.  From left to right—GR; bulk density; density-

derived porosity (PhiD) and neutron porosity (NPHI); P-wave impedance (Ip) and S-wave impedance

(Is).  Data courtesy Lake Ronel Oil Company.
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Figure 3.  Cross-plots of well log data from Figure 2.  Left to right:  bulk density versus GR;

density-derived porosity (PhiD) versus GR; P-wave impedance versus GR; and PhiD versus NPHI.

In spite of the congruency between different log curves apparent in Figure 2, the cross-

plots of sediment properties do not produce unique trends (Figure 3).  The increasing GR

acts first to increase and then reduce the bulk density; reduce and increase porosity; and

increase and reduce the impedance.

The elastic modulus versus porosity cross-plot also has two branches, in accord with
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the changing GR values (Figure 4).  Within the same porosity range, the shale-branch

sediment is softer than the sand-branch sediment.

The V-shaped cross-plots, such as in Figure 3, second frame, are well-known in powder

technology (Cumberland and Crawford, 1987).  They result from mixing particles of two

distinctively different mean sizes such that the small particles fill the pore space between

the large particles (dispersed mixing).  In the above field example these are the shale and

sand particles, respectively.
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Figure 4.  Compressional modulus (M-modulus), the product of bulk density and P-wave velocity

squared,  versus total porosity for data shown in Figure 2, color-coded by GR.  The curves are from

the sand/shale mixing theory.  The large dark-blue symbols represent the pure sand and pure shale end

points and for the critical concentration point (upper left corner).  The large red symbol at the critical

concentration point is from approximate Equation (19).  The two laminar mixture curves that connect

the pure sand and pure shale end points are from Equations (22) and (23) and are practically identical to

each other.

This bimodal mixture effect clearly manifests itself in a synthetic data set of Estes

(1992) where the porosity and elastic-wave velocities have been measured in mixtures of

round glass beads of two sizes—0.5 and 0.05 mm (Figure 5).  Porosity is approximately

the same, and the elastic-wave velocities are approximately the same at the end points where

the pack is made of either large or small grains.  As the fraction of small grains increases,

porosity first decreases from 0.38 to its minimum of 0.26 and then increases again to 0.36.

Both P- and S-wave velocity first increase and then decrease.  The maxima of the elastic-

wave velocity corresponds to the porosity minimum.
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The V-shaped cross-plots have been recognized in geophysics (Smith and Gidlow,

1987) and used, for example, for identifying clay-supported and framework-supported

sediment domains (Herron et al., 1992).  The V-shaped cross-plots of the density-derived

porosity and  neutron porosity (such as in Figure 2, right panel) appear as early as 1974 in

the Schlumberger log interpretation manual.
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Figure 5.  Mixtures of glass beads of two sizes, 0.5 and 0.05 mm.  Porosity (left) and P- and S-wave

velocity (right) versus the volume fraction of small beads.  After Estes (1992).

Marion (1990) and Yin (1992) have developed the heuristic theory of V-shaped plots

and supported it by laboratory measurements on synthetic geomaterials.  The V-shaped

plots resulting from Yin's (1992) measurements of the total porosity,  elastic-wave velocity,

and permeability in synthetic mixtures of Ottawa sand and kaolinite are shown in Figure 6.

.2

.4

.6

0 .2 .4 .6 .8 1

T
ot

al
 P

or
os

it
y

Clay Volume Fraction

0 MPa

10 MPa

20 MPa
2

3

0 .2 .4 .6 .8 1

Ip
 (

k
m

/
s 

g/
cc

)

Clay Volume Fraction

10 MPa

20 MPa

10

100

1000

0 .2 .4 .6 .8 1

k
 (
m

D
)

Clay Volume Fraction

0 MPa

10

100

1000

.3 .4 .5 .6 .7

k
 (
m

D
)

Total Porosity

0 MPa

Figure 6.  Mixtures of sand and clay.  Measurements were conducted on room-dry samples at varying

hydrostatic confining pressure (shown in the plots).  From left to right—total porosity; P-wave

impedance; air permeability versus volumetric clay content; and air permeability versus total porosity.

In this data set, both the particle type and its volumetric proportion in the mixture

(which is relevant to geologic sorting), strongly affect the properties of the synthetic

sediment in a non-linear and non-unique way.  This effect will persist in situ where the
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mineralogies of the sand and shale particles are, generally, different.

Being able to quantify the effect of sorting and sand/shale mixing on the bulk and

elastic sediment properties is crucial for rational synthetic modeling of the seismic

response of sand and shale sequences in situ.  In turn, such synthetic models can be used

to predict reservoir quality from real seismic attributes.  One important target of such

modeling are thin interbedded sand/shale layers in deep water sedimentary environments.

A specific question is how to connect the porosity and velocity depth-trend curves for pure

sand and pure shale, given the shale content.

To this end, the problem is posed to develop an effective-medium model for a mixture

of particles of two distinctively different sizes (a bimodal mixture) that relates the total

porosity to the content of the small particles in the mixture (shale content) and also relates

the effective elastic moduli of the mixture to the content of the small particles; total

porosity; effective pressure; and the pore-fluid bulk modulus.

TOPOLOGY OF BIMODAL MIXTURES—DISPERSED MODE

Consider two types of spherical grains of radii R  and r , respectively, mixed in varying

proportions.  The two end members of such mixtures are the packs of only the large grains

or only the small grains (Figure 7).  The porosity of the former is φSS  and that of the latter

is φSH .  The size of the large grains is much larger than that of the small grains ( R >> r ).

As a result, the small grain packs can fit within the pore space of the large grain pack and

still retain their local porosity of φSH .  This mixing mode is the dispersed mode.  It is the

most compact way of mixing grains of different sizes.

φSS > φ  > φSS φSH φ  = φSS φSH φ  = φSHφSS > φ  > φSS φSHφ  = φSS

φSH

Figure 7.  Dispersed mixing mode of large and small grains.  The large-grain end member is on the far

left and the small-grain end member is on the far right.  The critical concentration point is in the

middle.  The total porosity is given above the frames.  The fourth from the left frame shows a sub-

volume of the small particles that retains the porosity of the small grain pack end member.
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Depending on the proportion of the large and small grains, various mixture

configurations are possible, as shown in Figure 7.  The critical point in this figure is in the

middle, where the small grains completely fill the pore space of the large grain pack and the

large grains are still in contact with each other.  Yin (1992) calls this configuration critical

concentration.  The importance of this middle point is that it separates two different

structural domains.  The domain on the left is where the external load applied to the

mixture is born by the large grain framework.  In the context of sand/shale mixtures, this is

shaley sand.  The domain on the right is where the large grains are suspended in the small

particle framework which is now load-bearing.  This is sandy shale.

Let the number of the large and small grains in the mixture be L  and l , respectively.  

Then the total volume of the mixture Vt  in the domain to the left of the critical

concentration point (shaley sand) is that of the large grain pack (Vtl):

Vt = Vtl = (4 / 3)πR3L / (1− φSS ), (1)

The pore volume of the large grain pack is

Vpl = (4 / 3)πR3LφSS / (1− φSS ), (2)

and the total volume of the small grains, counting the pore space between them, is

Vts = (4 / 3)πr3l / (1− φSH ). (3)

In the context of sand/shale mixtures, the latter is the total shale volume in the sediment.

If Vts ≤ Vpl , the small grains can fit into the pore space of the large grains without

distorting the initial large grain framework.  The pore volume of the mixture Vpm  is the

pore volume of the large grain pack Vpl  minus the small grain material volume:

Vpm = Vpl − (4 / 3)πr3l. (4)

As a result, the total porosity of the mixture φ  is

φ = φSS − β(1− φSH ), β ≤ φSS , (5)

where

β = [r3l / (1− φSH )] / [R3L / (1− φSS )]. (6)

For β ≤ φSS , β  is the volume fraction of shale C  in the whole rock.  In this C ≤ φSS

domain, the total porosity decreases from its (pure sand) end-member value φSS  to the
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minimum (critical concentration) value of φSSφSH .

If β > φSS , the large grains are suspended in the small grain pack.  The total volume of

the mixture now is the sum of the small grain pack volume and the large grain material

volume:

Vt = (4 / 3)πR3L + (4 / 3)πr3l / (1− φSH ). (7)

The pore volume of the mixture is that of the small grain pack:

Vpm = (4 / 3)φSHπr3l / (1− φSH ). (8)

As a result, the total porosity is

φ = φSH / [1 + (1− φSS ) / β ]. (9)

The volume fraction of the small grain pack in the mixture is, in the sand/shale mixture

context, the volume fraction of shale C  in the whole rock.  It is

C = [1 + (1− φSS ) / β ]−1. (10)

Then Equation (9) becomes φ = φcsC .

The summary of the above equations in the sand/shale mixture context is

φ = φSS − C(1− φSH ), C ≤ φSS ; φ = φSHC, C ≤ φSS ; (11)

where φSS  and φSH  are the porosities of the pure sand and pure shale end-members,

respectively.

The dry-rock bulk density ρDRY  of the mixture is

ρDRY = (1− φSS )ρSS + C(1− φSH )ρSH , C ≤ φSS ;

ρDRY = (1− C)ρSS + C(1− φSH )ρSH , C > φSS ;
(12)

where ρSS  and ρSH  are the sand and shale grain-material densities, respectively.  To

calculate the bulk density ρB  of the sediment with pore fluid, the term φρF , where ρF  is the

pore-fluid density, has to be added to ρDRY .

TOPOLOGY OF BIMODAL MIXTURES—LAMINAR MODE

The laminar mode of mixing is where the large grain packs and the small grain packs

fill the space as separate entities without changing the topology of the pore space inside the

packs (Figure 8).  The geological realization of this mode is "laminar shale" where the

shale is laminae between which are layers of sand (Schlumberger, 1989).
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The total porosity of this mixture is simply the weighed average of the sand and shale

porosities:

φ = CφSH + (1− C)φSS . (13)

The bulk density is

ρB = (1− C)[(1− φSS )ρSS + φSSρFSS ] + C[(1− φSH )ρSH + φSHρFSH ], (14)

where ρFSS  and ρFSH  are the densities of the pore fluids in the sand and shale bodies,

respectively.

Figure 8.  Laminar mode of large and small grains mixing.

The porosity dependence on the small grain (shale) content is non-linear and non-

unique in the dispersed mode and linear in the laminar mode (Figure 9).  The dispersed

mode curve reproduces the V-shapes apparent in Figures 3, 5, and 6.
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Figure 9.  Total porosity versus shale content for dispersed and laminar modes of mixing.  In this

example, the pure-sand porosity is 0.3 and the pure-shale porosity is 0.5.  The symbols indicate the

end members (pure sand and pure shale) and the critical concentration point.

ELASTICITY OF BIMODAL MIXTURES—DISPERSED MODE

Assume that the effective bulk ( K ) and shear ( G ) moduli of the pure sand and pure

shale end-members are known and are, respectively, KSS  and GSS  for sand, and KSH  and

GSH  for shale.  Also known are the grain material elastic moduli that are, respectively, K1

and G1 for the sand (large) grains, and K2  and G2  for the shale (small) grains.

Consider first sandy shale (the three right-hand frames in Figure 7) where the pack of

the shale particles envelops the sand grains.  The mixture under examination is a composite

of two elastic elements—the softer element that is porous shale and the stiffer element that
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is the sand grain material.  The softer element envelops the stiffer element thus creating the

topology that is a realization of the Hashin-Shtrikman lower bound (HSLB).  Dvorkin et

al. (1999) show that if the elastic contrast between  the two elements is large, HSLB

accurately predicts experimental measurements.  The resulting expressions for the

mixture's elastic moduli are:

C ≥ φSS:

KMIX = [
C

KSH + (4 / 3)GSH

+
1− C

K1 + (4 / 3)GSH

]−1 −
4
3

GSH ,

GMIX = [
C

GSH + ZSH

+
1− C

G1 + ZSH

]−1 − ZSH , ZSH =
GSH

6
9KSH + 8GSH

KSH + 2GSH

,

(15)

where C  is the volume shale content as given by Equation (10).

The Hashin-Shtrikman's are the tightest elastic bounds for an isotropic mixture of

several elastic components.  The Voigt-Reuss bounds are more relaxed.  The lower (Reuss)

bounds for the bulk and shear moduli are (Mavko et al., 1998):

C ≥ φSS: KMIX = [CKSH
−1 + (1− C)K1

−1]−1, GMIX = [CGSH
−1 + (1− C)G1

−1]−1. (16)

The P- and S-wave velocity (ultrasonic pulse transmission) measured by Yin (1992) in

water-saturated pure kaolinite at 10 MPa hydrostatic effective pressure are VP  = 1.94 and

VS  = 0.99 km/s, respectively.  The corresponding bulk density is ρB  = 1.83 g/cc.  The

resulting bulk and shear moduli are KSH = ρB[VP
2 − (4 / 3)VS

2 ] = 4.5 GPa and GSH = ρBVS
2

= 1.8 GPa, respectively.  The bulk and shear moduli of pure quartz grains are K1 = 36.6

GPa and G1 = 45 GPa, respectively.  Using these inputs, the sand/shale mixture elastic

moduli are computed according to Equations (15) and (16) and plotted in Figure 10.
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Figure 10.  The effective bulk (K) and shear (G) moduli of the mixture of water-saturated kaolinite and

quartz grains computed according to Equations (15) and (16).  The results are for the sandy shale

domain where the volumetric shale content exceeds the porosity of pure sand (about 0.4).
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The difference between the HSLB and Reuss results is substantial, especially at the

critical concentration point ( C = φSS ≈ 0.4).  HSLB equations are slightly more

complicated than the Reuss equations, however they are more appropriate for an isotropic

mixture of elastic elements and thus recommended for estimating the elastic moduli of

sandy shale.

It is common in practical geophysics that the S-wave data are either not available or of

questionable quality.  In this case Equations (15) cannot be used because neither the bulk

not the shear modulus can be calculated from VP  only.  If the Poisson's ratio of the sand

grain material and that of the pure shale are the same, ν1 = νSH ≡ ν* , then by substituting

isotropic elasticity equations

K = M
1 + ν

3(1− ν)
, G = M

1− 2ν
2(1− ν)

, M = K +
4
3

G (17)

into Equations (15), HSLB for the compressional modulus of the mixture MMIX  can be

expressed in terms of the compressional modulus of the sand grain material,

M1 = K1 + (4 / 3)G1, that of pure shale, MSH = KSH + (4 / 3)GSH , and ν* :

C ≥ φSS: MMIX = KMIX +
4
3

GMIX ;

KMIX = MSH{[C +
3(1− C)(1− ν* )

(1 + ν* )(M1 / MSH ) + 2(1− 2ν* )
]−1 −

2(1− 2ν* )
3(1− ν* )

},

GMIX = MSH

1− 2ν*

4(1− ν* )(4 − 5ν* )
⋅

{[
C

15(1− ν* )
+

1− C

2(4 − 5ν* )(M1 / MSH ) + 7 − 5ν*

]−1 − (7 − 5ν* )}.

(18)

It is not likely that ν1 = νSH .  Therefore, Equations (18) have to be treated as an

approximation.  MMIX  computed from these approximate equations is compared to that

computed from the exact Equations (15) in Figure 11, left.  It appears that although the

Poisson's ratio of sand grains may be as low as 0.07 (pure quartz) and that of the water-

saturated shale may be as high as 0.45, the error in using Equations (18) does not exceed

5% if the common Poisson's ratio ν*  is set close to νSH .

The correct choice for ν*  should be based on the knowledge of the elastic properties of

shale in the region and depth range of interest.  Very shallow shales typically have a very

large Poisson's ratio that approaches 0.45.  In deep shales, Poisson's ratio may be close to
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0.3 (Figure 12).  In uplifted sedimentary sequences, relatively low (~ 0.3) Poisson's ratio in

shales may appear at shallow depths.
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Figure 12.  Poisson's ratio (as calculated from P- and S-wave log data) in shale versus depth for

selected wells.  Different color corresponds to different wells.

An alternative for VP -only modeling is to use the Reuss weighted average (lower

bound) for the compressional modulus:

C ≥ φSS: MMIX = [
C

MSH

+
1− C

M1

]−1. (19)

The relative error of using this equation instead of the exact Equations (15) may be

unacceptably large (Figure 11, right).

Consider next shaly sand (the three left-hand frames in Figure 7) where the packs of

the shale particles are located within the pore space of the undisturbed sand grain

framework.  Shaly sand can be treated as a mixture of two end members which are the pure

sand and the critical concentration sand/shale mixture (Figure 13).  Then the shaly sand
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elastic moduli vary between those of the end members which are the moduli of pure sand

( KSS  and GSS) and of the critical concentration mixture ( KCC  and GCC) as given by

Equations (15) at C = φSS .  The total porosity varies between φSS  and φSSφSH , respectively.

The volumetric concentration of the pure sand end member in shaly sand is 1− C / φSS

while that of the critical concentration mixture is C / φSS  (Figure 13).

φSS > φ  > φSS φSHφ  = φSS φSHφ  = φSS

+ =

Figure 13.  The sum of two end members (pure sand and critical concentration mixture) produces

shaly sand.

In shaly sand, the shale particles fall in the pore space of the pure sand framework and

do not significantly affect its stiffness.  Therefore, in order to calculate the effective elastic

moduli of shaly sand, it is logical to connect the elastic moduli of the end members by the

HSLB curve where the soft end member is pure sand:

C ≤ φSS:

KMIX = [
1− C / φSS

KSS + (4 / 3)GSS

+
C / φSS

KCC + (4 / 3)GSH

]−1 −
4
3

GSS ,

GMIX = [
1− C / φSS

GSS + ZSS

+
C / φSS

GCC + ZSS

]−1 − ZSS , ZSS =
GSS

6
9KSS + 8GSS

KSS + 2GSS

,

(20)

where KCC  and GCC are KMIX  and GMIX , respectively, as given by Equations (15) at

C = φSS .  The Reuss weighted average for VP -only modeling, similar to Equation (19) is

C ≥ φSS: MMIX = [
1− C / φSS

MSS

+
C / φSS

MCC

]−1, (21)

where MCC = KCC + (4 / 3)GCC .

The Reuss lower-bound may significantly differ from HSLB if the elastic contrast

between the end members is large (e.g., the contrast between pure quartz and porous shale).

However, if the elastic contrast is relatively small (as between pure sand and the critical

concentration mixture), Equations (20) and (21) provide results that are close to each other.

Therefore, the use of the Reuss bound is justified for the purpose of calculating the elastic
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modulus of shaly sand.

ELASTICITY OF BIMODAL MIXTURES—LAMINAR MODE

In the laminar mode, the effective elastic moduli of the sand/shale mixture

monotonically vary between those of the pure sand and pure shale end members.  If the

pure sand and pure shale bodies are arranged in an elastically isotropic configuration, the

effective elastic moduli of the laminar mixture lie between the lower and upper Hashin-

Shtrikman bounds (Mavko et al., 1998).  In traditional geophysical applications, an elastic

wave propagates approximately perpendicular to sand and shale layers.  Such layered

configuration is anisotropic.  Its elastic constants are given by the Backus average (Mavko

et al., 1998).  The compressional elastic modulus in the direction perpendicular to the

layers is simply the Reuss average  of the moduli of the layers:

0 ≤ C ≤ 1: MMIX = [
1− C

MSS

+
C

MSH

]−1. (22)

The compressional modulus is the product of density and P-wave velocity.  Therefore,

Equation (22) is not equivalent to the popular Wyllie's travel time average:

0 ≤ C ≤ 1: VP_ MIX = [
1− C

VP_ SS

+
C

VP_ SH

]−1, (23)

where VP_ MIX , VP_ SS , and VP_ SH  are for the P-wave velocity in the laminar sand/shale

mixture, pure sand, and pure shale, respectively.  However, if the elastic contrast between

sand and shale is not large (which is very often the case), Equations (22) and (23) give

essentially the same result (see Figure 15 below).

ELASTICITY OF PURE END MEMBERS

In many applications, the geophysicist will pick the elastic properties of pure sand and

pure shale from well logs (see, e.g., curves in Figure 2 where the pure sand values and pure

shale values correspond to the lowest and highest GR values in the interval, respectively).

Afterwards, these end-member values can be used in the mixing equations given above.

In case where the elastic properties of the pure sand and shale end members are

unknown, the uncemented (friable) sand equations (Dvorkin and Nur, 1996) based on the

Hertz-Mindlin contact theory can be used to estimate those.  The elastic moduli of the dry
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frame of sand are

KSS_ Dry = [
nSS

2 (1− φSS )2 G1
2

18π 2 (1− ν1)2 P]
1

3 , GSS_ Dry =
5 − 4ν1

5(2 − ν1)
[
3nSS

2 (1− φSS )2 G1
2

2π 2 (1− ν1)2 P]
1

3 , (24)

where G1 and ν1 are the shear modulus and Poisson's ratio of the grain material,

respectively; P  is the effective pressure that is the difference between the overburden and

pore pressure; and nSS  is the coordination number (the average number of contacts per

grain).  The coordination number depends on porosity.  Its upper bound can be estimated

from an empirical equation (after Murphy, 1982)

nSS = 20 − 34φSS + 14φSS
2 , (25)

where porosity is in fractions of unity.  The spread of data below this curve may reach 2

(Figure 14).  Eventually, the coordination number has to be calibrated by adjusting model

results to site-specific data with Equation (25) serving as a guideline.
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Figure 14.  Coordination number versus porosity.  The solid black curve is from Equation (25).  The

gray domain shows possible spread in coordination number values below the upper bound given by

Equation (25).

The elastic moduli of saturated sand are calculated from those of the dry frame via

Gassmann's (1951) equations:

KSS = K1

φSSKSS_ Dry − (1 + φSS )KFKSS_ Dry / K1 + KF

(1− φSS )KF + φSSK1 − KFKSS _ Dry / K1

, GSS = GSS _ Dry , (26)

where K1 and KF  are the bulk moduli of the grain material and pore fluid, respectively.

The elastic moduli of the grain material can be calculated from those of the mineral

constituents via ad-hoc Hill's average:
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M =
1
2

[ f iMi
i=1

m

∑ + ( f iMi
−1

i=1

m

∑ )−1], (27)

where M  is either bulk or shear modulus; subscript i  stands for i-th mineral constituent;

and m  is the number of mineral constituents.

Shale is not a granular composite such as sand.  Therefore, the validity of applying

Equations (24) to pure shale is not obvious.  However, there is evidence that these

equations provide reasonable elastic property estimates (see Gutierrez et al., 2001, and

example below).  To use Equations (24) in the pure shale case, the subscript "SS" has to be

replaced by "SH" and the shale grain elastic moduli G2 , ν2 , and K2  have to be used

instead of G1, ν1, and K1.

APPLYING ROCK PHYSICS THEORY

Figure 4 shows the results of applying the sand/shale mixture equations to the log data

from Figure 2.  Both the pure sand and pure shale end members were picked from the

compressional modulus versus porosity cross plot.  The dispersed-shale theoretical curves

were calculated from Equations (18) and (21).  The value of M1 was 100 GPa (pure

quartz) and the value of ν*  was 0.45, according to the original log data.

Equation (19) was also used to calculate the compressional modulus at the critical

concentration point.  The result falls below the value given by Equation (18) but still gives a

reasonable estimate for the elastic modulus at critical concentration and, in principle, can be

used for modeling.

The laminar shale curve was calculated from the Backus average, as given by Equation

(22), and also from Wyllie's time average, as given by Equation (23).  The two results are

practically identical.

The next example is from a vertical well in La Cira Field in Colombia (Gutierrez,

2001).  These well log data span a depth interval from 150 to 600 m that includes shale

sequences and fluvial sand bodies.  The compressional modulus that is plotted versus total

porosity in Figure 15 exhibits the familiar dispersed-shale V-shape.

In this example, Equations (24) – (26) were applied directly, without picking the end-

member elastic properties from the cross-plot.  It was assumed that the sand grains were

quartz, with K1 = 37 GPa and G1 = 45 GPa, and the shale grains were clay with K2  = 21

GPa and G2  = 8 GPa (see Mavko et al., 1998, for mineral elastic moduli).  The pure sand
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and pure shale end-member porosity values have been selected as φSS  = 0.3 and φSH  = 0.2,

respectively.  The corresponding coordination number values from Equation (25) are nSS  =

11 and nSH  = 14, respectively.  The bulk modulus of the water in the pore space was 2.5

GPa, calculated according to the site-specific salinity.

The results of modeling using the effective pressure of 2 MPa (for the shallow part of

the interval under examination) and 10 MPa (for the deep part) are superimposed on the

data in Figure 15.  The dispersed shale V-shaped curves accurately mimic the data.
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Figure 15.  Compressional modulus versus total porosity for a La Cira well.  The depth interval

spans from 150 to 600 m.  The two dispersed shale V-shaped theoretical curves are shown for the

effective pressure of 2 and 10 MPa.

DEPTH TRENDS

Compaction in sedimentary basins acts to reduce the total porosity of sand and shales.

Traditionally, the effect of compaction on porosity φ  has been approximated by an

exponent

φ = φ0e
−aZ , (28)

where Z  is depth; φ0 is porosity at Z  = 0; and a  is a fitting coefficient.  The coefficients

in Equation (28) are site-specific.  Also, in uplifted and eroded environments, Z  = 0 may

not correspond to the current-time zero depth and may be, in fact, negative.

According to Allen and Allen (1990), compaction coefficients appropriate for North

Sea basins are φ0 = 0.63 and a  = 0.51 km-1 for shale, and φ0 = 0.49 and a  = 0.27 km-1

for sand.  These parameters were used to construct the porosity versus shale content and

depth trend shown in Figure 16, left, for both dispersed and laminar mixing modes.
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The corresponding velocity trends for shale and sand end members can be determined

from site-specific well log data or theoretically estimated from Equations (24).  The result

of the latter approach is shown in Figure 16, right.
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Figure 16.  Total porosity (left) and P-wave velocity (right) versus depth and shale content.  Inputs for

the elastic property modeling are the same as in the example shown in Figure 16.  The two-branch

surfaces are for the dispersed shale mode.  The intersections of these surfaces with the vertical planes

of zero and 100% shale content give the pure sand and pure shale compaction curves, respectively.

These curves are connected by single-branch laminar mode surfaces.

CONCLUSION

Sand and shale sequences, often charged with hydrocarbons, become visible to the

geophysicist if illuminated by seismic radiation.  The resulting seismic images are useful as

long as they can be transformed into the images of porosity, lithology, pore fluid, and pore

pressure.  A way of obtaining such transforms is by relating the reservoir bulk properties

and conditions to the elastic properties, forward modeling the response to seismic radiation,

and comparing the synthetic seismograms to real reflection data.

Data show that the elastic and bulk properties of sand/shale mixtures depend on the

mixing mode which may make the mixture very unsimilar to the initial end members, in all

respects.  The above examples of the effect of this complexity on density, porosity, and

elastic-wave velocity are supplemented by sand/shale permeability data (Figure 6).
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Fortunately, the complex and often confusing projections of natural events into the

human mind often result from simple and logical laws.  Once these laws are understood,

they can be rationalized in mathematically simple ways and offered for practical usage.

The equations presented in this paper give an example of such rationalization.  They can be

used for designing rock physics transforms between the elastic and bulk properties of

sand/shale depositional sequences and, eventually, creating porosity and lithology volumes

from volumes of seismic data.
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