Eddy covariance mapping and quantification of surface CO$_2$ leakage fluxes

Jennifer L. Lewicki1 and George E. Hilley2

Received 31 August 2009; revised 21 September 2009; accepted 24 September 2009; published 5 November 2009.

[1] We present eddy covariance measurements of net CO$_2$ flux (F_c) made during a controlled release of CO$_2$ (0.3 t d$^{-1}$ from 9 July to 7 August 2008) from a horizontal well \sim100 m in length and \sim2.5 m in depth located in an agricultural field in Bozeman, MT. We isolated fluxes arising from the release (F_{cr}) by subtracting fluxes corresponding to a model for net ecosystem exchange from F_c. A least-squares inversion of 611 F_{cr} and corresponding modeled footprint functions recovered the location, length, and magnitude of the surface CO$_2$ flux leakage signal, although high wavenumber details of the signal were poorly resolved. The estimated total surface CO$_2$ leakage rate (0.32 t d$^{-1}$) was within 7% of the release rate. Citation: Lewicki, J. L., and G. E. Hilley (2009), Eddy covariance mapping and quantification of surface CO$_2$ leakage fluxes, Geophys. Res. Lett., 36, L21802, doi:10.1029/2009GL040775.

1. Introduction

[2] Measurement of the spatial distribution and quantification of surface CO$_2$ emissions derived from volcanic, geothermal, and metamorphic (VGM) sources have been utilized for volcano and geothermal monitoring and estimation of the contribution of these emissions to the global carbon cycle [e.g., Baubron et al., 1991; Farrar et al., 1995; Chiodini et al., 1998; Chiodini et al., 1999; Bergfeld et al., 2001; Hernandez et al., 2001; Notsu et al., 2005; Werner and Cardellini, 2006]. In addition, techniques with the ability to detect and characterize potential CO$_2$ leakage from storage reservoirs will be important for the monitoring and verification of geologic carbon sequestration (GCS) projects [e.g., Oldenburg et al., 2003; Intergovernmental Panel on Climate Change, 2005]. Hereafter, we refer to surface CO$_2$ emissions from any of the afore-mentioned sources as CO$_2$ “leakage”.

[3] The accumulation chamber (AC) method [e.g., Chiodini et al., 1998] measures soil CO$_2$ flux on small spatial scales (cm2) and has been reliably used to map surface CO$_2$ leakage and quantify CO$_2$ emissions from VGM systems. Eddy covariance (EC), a micrometeorological technique traditionally used to measure net ecosystem exchange (NEE) under certain atmospheric and terrain conditions [e.g., Baldocchi, 2003], offers the benefit of an automated CO$_2$ flux measurement that does not interfere with the ground surface, is averaged over both time and space, and has a relatively large spatial scale (m2-km2). EC can reliably measure volcanic CO$_2$ fluxes [Anderson and Farrar, 2001; Werner et al., 2000, 2003; Lewicki et al., 2008], suggesting that the method has the potential to map the spatial distribution of surface CO$_2$ leakage fluxes and quantify total leakage rates from geologic systems. While forward modeling has been used to predict atmospheric CO$_2$ concentrations resulting from both low density and dense gas leakage fluxes [Costa et al., 2005, 2008], inverse modeling of EC CO$_2$ fluxes has only recently been used to predict surface CO$_2$ flux distributions [Lewicki et al., 2009]. Lewicki et al. (2009) attempted to detect, locate, and quantify relatively small leakage flux signals within a background ecosystem at a field facility where CO$_2$ was released at controlled rates from a horizontal well in the shallow subsurface. The leakage signal was enhanced by removing fluxes that could be due to NEE and a least-squares inversion of a limited set (75) of measured EC CO$_2$ fluxes and modeled footprint functions was performed. While somewhat encouraging, the small number of observations and poor control on NEE resulted in coarse definition of the leakage signal and vast underestimation of its magnitude.

[4] In the present contribution, we build on our previous work by using EC CO$_2$ flux measurements made during a recent controlled release of CO$_2$ at the same rate (0.3 t d$^{-1}$), but over a longer period (29 versus 7 days) than that measured by Lewicki et al. [2009]. We improved the filter that removes NEE, while avoiding loss of leakage signal. We perform a least-squares inversion of EC fluxes and modeled footprint functions to map the spatial distribution of surface fluxes. The surface leakage signal was accurately located and quantified (within 7% of the release rate) based on this approach. Results demonstrate the potential for EC to map and quantify CO$_2$ emissions from VGM systems and GCS sites under amenable atmospheric and terrain conditions.

2. Methods

[5] The CO$_2$ release was conducted at Montana State University, Bozeman, MT. The field site was nearly flat, with vegetation composed mostly of prairie grasses and alfalfa and was mowed on 26–27 June 2008. A well was located in the field with a 70-m-long perforated and nearly horizontal section at its center and unperforated sections on its two sloping ends. The perforated section was located at 1.3–2.5 m depth and was divided into six zones separated by inflatable packers. From 9 July to 7 August 2008, 0.3 t CO$_2$ d$^{-1}$ (300 kg CO$_2$ d$^{-1}$) were released from the well, 39.0 kg CO$_2$ d$^{-1}$ from the far southwest perforated zone and 52.2 kg CO$_2$ d$^{-1}$ from each of the other five zones (see Lewicki et al. [2009] for additional field site information).
[6] We measured soil CO$_2$ flux repeatedly on a grid at 2.5 to 10 m spacing (Figure 1) from 6 July to 2 August 2008 using the AC method. A soil CO$_2$ flux map was interpolated from grid measurements made on 25 July 2008 using a minimum curvature spline technique. Surface CO$_2$ leakage discharge (t d$^{-1}$) was estimated based on grid measurements as described by Lewicki et al. [2007].

[7] We deployed an EC station 35 m northwest of the center of the release well from 12 June to 26 August 2008 (Figure 1). A Gill-Solent WindMaster Pro sonic three-dimensional anemometer/thermometer measured wind speeds in three orthogonal directions and sonic temperature at 10 Hz. A LI-COR LI-7500 open-path CO$_2$:H$_2$O infrared gas analyzer measured CO$_2$ and water vapor densities at 10 Hz. Both sensors were mounted atop a tripod tower at 3.2 m height. Photosynthetically active radiation (PAR) was measured by a LI-COR LI-190SA quantum sensor at 2 m height every 5 s and averaged over 30 min.

[8] Net CO$_2$ flux (F_c) was calculated for 30-minute periods as the temporal covariance of CO$_2$ density (c) and vertical wind velocity (w),

$$F_c = \overline{wc}$$

where the overbar denotes time averaging and primes denote fluctuations in w and c relative to their mean values. Coordinate rotation, WPL correction, raw signal de-spiking, and filtering F_c data according to stationarity and friction velocity criteria were applied as described by Lewicki et al. [2009].

[9] The large variability of NEE may mask relatively small CO$_2$ flux leakage signals. Lewicki et al. [2009] estimated NEE according to:

$$NEE = - (\frac{F_{\max} \alpha PAR}{\alpha PAR + F_{\max}}) + R_{eco} \quad (2)$$

where F_{\max} is the maximum CO$_2$ flux at infinite light, α is the apparent quantum yield, and R_{eco} is ecosystem respiration [Folge et al., 2001]. If F_{\max}, α, and R_{eco} can be estimated, ecosystem fluxes can be removed from F_c to estimate residual F_c (F_{cr}) that may result from non-biologic sources [Lewicki et al., 2009]. Our previous work estimated R_{eco} by assuming it depends exponentially on soil temperature. Because this model was unable to uniquely distinguish between contemporaneous CO$_2$ leakage and R_{eco} effluxes, it tended to overestimate R_{eco} resulting in removal of part of the leakage signal. To avoid this problem, this work estimates the photosynthetic uptake component of NEE (first term on right side of equation (2)) as described by Lewicki et al. [2009], but assumes that R_{eco} was constant during the observation period and equal to the average of background nighttime F_c values measured before and after the CO$_2$ release (18 g m$^{-2}$ d$^{-1}$). F_{cr} values were then calculated by removing modeled NEE from the F_c time series.

[10] Each EC flux measurement sources a particular area upwind of the sensors whose geometry depends on factors such as sensor height, atmospheric stability, and surface roughness. The footprint function, $f(x_m - x', y_m - y', z_m - z)$, describes the relationship between F_c measured at point (x_m, y_m, z_m) and the distribution of source CO$_2$ fluxes at the surface from which ecological signals are removed ($Q_c(x', y'$, $z = z_0)$) [e.g., Horst and Weil, 1992; Schmid, 1997]:

$$F_{cr}(x_m, y_m, z_m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} Q_c(x', y', z = z_0) \cdot f(x_m - x', y_m - y', z_m - z_0) dx' dy' \quad (3)$$

If the spatial distribution of Q_c is relatively constant over time, changes in F_{cr} will divagate this distribution as the footprint function varies with atmospheric conditions [Lewicki et al., 2009].

[11] The Flux Source Area Model (FSAM) of Schmid [1997] was used to model footprint functions during the CO$_2$ release using the following inputs: (1) $z_m = 3.2$ m; (2) surface roughness height, $z_0 = 0.05 \text{ m}$; (3) measured mean horizontal wind direction; (4) cross-wind turbulence near the surface (σ/u'_w, where σ and u'_w are the standard deviation of wind speed in the cross-wind direction and friction velocity, respectively); (5) calculated Monin-Obukhov length, L. We calculated f at the center of each 2.5 m \times 2.5 m pixel in the model domain for each F_{cr} measured during the release. We averaged f at each point for the 611 footprints to reveal areas from which 50, 75, 90, and 95% of the footprint weights were contained during the release time (Figure 1).

[12] We modeled the spatial distribution of surface fluxes (Q_{cr}) during the CO$_2$ release using a linear, least-squares inversion of 611 modeled footprint functions and observed F_{cr}, following the methods described by Lewicki et al. [2009]. Since the area within \sim75 m of the EC station contributed to 90% of F_{cr} measured during the CO$_2$ release (Figure 1), the model domain was selected as 150 \times 150 m. Often in such inversions, the best-fit modeled Q_{cr} shows large point-to-point oscillations, producing a rough solution that is physically unrealistic. To ameliorate these effects, we apply a finite-difference approximation of curvature between each of the adjacent Q_{cr} values that is minimized.
along with the misfit between observed and modeled F_{cr} [e.g., Harris and Segall, 1987]. The modeled Q_{cr} distribution is a compromise between the constraints provided by observations versus those that require a spatially smooth solution, the relative influence of which is controlled by the weight (w_{sm}) applied to the curvature finite difference approximation. By systematically changing the value of w_{sm}, we can determine values of this parameter that result in the greatest decrease in the solution roughness that does not necessitate a correspondingly large change in the data misfit (see Lewicki et al. [2009] for detailed discussion).

3. Results

[13] The surface CO$_2$ flux leakage signal measured by the AC method was expressed as six point sources of elevated CO$_2$ flux, aligned along the surface trace of the well (Figure 1). The CO$_2$ leakage discharge estimated based on these measurements was 0.31 t d$^{-1}$.

[14] A shift upwards in F_c values occurred after the field was mowed due to a decrease in plant leaf area and photosynthetic uptake (Figure 2a). Elevated F_c values were measured during the CO$_2$ release, relative to the time prior to and after the release. The mean and standard deviation of the F_c time series were -18.9 and 31.6 g m$^{-2}$ d$^{-1}$, respectively. The mean and standard deviation of F_{cr} time series were 1.9 and 15.0 g m$^{-2}$ d$^{-1}$, respectively; NEE subtraction thus removed the negative bias from and decreased the variability of fluxes, while preserving elevated values during the release (Figure 2b). During the release, relatively high F_{cr} was typically measured when the EC station was located down wind of the well (mean horizontal wind direction $\sim 90–180^\circ$; Figure 2c).

[15] We conducted checkerboard tests to assess the ability of the inversion to resolve Q_{cr} features of different spatial scales within the model domain. A $w_{sm} = 1$ was used in the inversions because it provided the optimal compromise between spatial continuity across the model solution space and misfit between measured and modeled F_{cr} (Figure S1a). Checkerboards were assigned alternating patches of low and high Q_{cr} with dimensions of 25×25, 50×50, and 75×75 m (Figures S2a, S2c, and S2e, respectively). A given checkerboard was weighted by each of the 611 footprint functions modeled during the CO$_2$ release (equation (3)), to yield 611 synthetic F_{cr} values. Randomly distributed noise with the mean and standard deviation of F_{cr} measured during the release was added to the synthetic F_{cr}. The spatial distribution of Q_{cr} was then modeled by inversion of the synthetic F_{cr} and footprint functions (Figures S2b, S2d, and S2f). Results indicate that 25×25, 50×50 and 75×75 m Q_{cr} patches centered within ~ 18, 35, and 53 m, respectively, of the EC station were recoverable, while 25×25 and 50×50 m patches centered at greater distances from the EC station were unrecoverable (Figure S2).

[16] Figure 3 shows maps of Q_{cr} modeled based on inversion of the measured F_{cr} and modeled footprint functions during the CO$_2$ release using $w_{sm} = 0.31$, 1.0, and 3.2. For each of the inversions, an area of relatively high Q_{cr} with the approximate length of, but greater width than the surface CO$_2$ flux leakage signal observed in Figure 1 is present near the surface trace of the well. With increasing w_{sm}, the Q_{cr} anomaly magnitude decreases, while its geometry becomes rounder and its center moves closer to the well trace. Surface CO$_2$ leakage discharges, estimated by integrating Q_{cr} values over the model domain, were 0.40, 0.32, and 0.23 t d$^{-1}$ for $w_{sm} = 0.32$, 1, and 3.2.

Figure 2. Time series of (a) F_c and (b) F_{cr}. The 611 F_{cr} values used in the inversion are circled. Dashed lines and gray zones show timing of mowing of the field and CO$_2$ release, respectively. (c) Plot of F_{cr} versus wind direction measured during the CO$_2$ release.
respectively (Figure 3). Figure S1b shows the decrease in leakage discharge with increasing w_{sm}.

4. Discussion and Conclusions

[17] We present an example of inversion of measured EC CO$_2$ fluxes and modeled footprint functions to both map the spatial distribution of and accurately quantify surface CO$_2$ fluxes derived from subsurface CO$_2$ leakage. The map of modeled Q_{cr} ($w_{sm} = 1$) indicated the presence of CO$_2$ leakage from an area of similar length to, and nearly centered on the surface trace of the horizontal well (Figure 3b). Also, assuming that the 0.3 t CO$_2$ d$^{-1}$ released from the well was emitted at the surface, EC estimated the surface CO$_2$ leakage discharge within 7%, based on modeled Q_{cr} (Figure 3b). Furthermore, the leakage discharge estimated based on EC measurements (0.32 t d$^{-1}$) compared closely to that estimated based on AC measurements (0.31 t d$^{-1}$).

[18] The choice of w_{sm} used in the inversion affects both the spatial distribution and magnitude of the modeled CO$_2$ leakage signal. With increasing w_{sm}, smoothing dominates over data misfit in the inversion yielding a smoother and lower magnitude Q_{cr} distribution (Figures S1 and Figure 3). A w_{sm} providing the optimal compromise between spatial continuity across the model solution space and misfit between measured and modeled F_{cr} should therefore be selected to yield the most accurate mapping and quantification of CO$_2$ leakage (e.g., Figure 3b).

[19] As demonstrated by checkerboard resolution tests (Figures S2), inversion of the F_{cr} and footprint functions available to us during the CO$_2$ release should be able to recover a Q_{cr} signal with a spatial scale on the order of ≥ 50 m located at the distance of the release well from the EC station (35 m), while Q_{cr} features of smaller scale will be difficult to recover. The maps of modeled Q_{cr} therefore showed leakage signals of similar length to that observed in Figure 1, but were unable to reproduce the narrow width of the measured leakage CO$_2$ flux anomaly. Inversion resolution could be improved if multiple EC stations are deployed in different locations or an array of EC sensors is installed at more than one height at a given location and repeatedly sample a leakage area with different flux footprints. However, the AC method will likely remain the most effective tool for detailed mapping of small-scale heterogeneities in surface CO$_2$ fluxes.

[20] Based on inversion of EC observations, Lewicki et al. [2009] roughly located a CO$_2$ leakage signal of similar magnitude and geometry to that investigated in the present study, while they underestimated the CO$_2$ leakage discharge by 93%. Our results improve upon those of Lewicki et al. [2009] with respect to both mapping and quantification of Q_{cr}, likely because (1) a larger data set was available for the inversion (611 versus 75 F_{cr} measurements) and (2) estimation of $Reco$ based on average background nighttime F_c minimized loss of CO$_2$ leakage signal in F_{cr} calculations. $Reco$ estimation in future studies could be improved by concurrent AC and/or EC measurements of CO$_2$ fluxes in background areas away from, but with similar ecosystem characteristics as the area under investigation for CO$_2$ leakage. Furthermore, estimation of NEE and its removal from F_c may not be necessary in many VGM areas where geologic leakage fluxes dominate over ecosystem fluxes. Our results suggest that EC may have significant utility for mapping and quantification of surface CO$_2$ emissions derived from leakage from natural geologic sources and GCS sites.
Acknowledgments. We thank G. Chiadini and D. Vasco for valuable manuscript review, L. Dobeck and K. Gullickson for assistance in the field, and H. P. Schmid for the FSAM source code. This work was funded by the ZERT Project, Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the U.S. Department of Energy under contract DE-AC02-05CH11231.

References

Intergovernmental Panel on Climate Change (2005), IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge Univ. Press, Cambridge, U.K.

G. E. Hilley, Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA.

J. L. Lewicki, Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA. (jilewicki@lbl.gov, ph)