Earthquake Ruptures with Thermal Weakening and the Operation of Faults at Low Overall Stress Levels

Eric M. Dunham (Harvard), Hiro Noda (Caltech), James R. Rice (Harvard)

Maximum compressive stress at 68±7° from local SAF strike (from borehole breakouts, hydraulic fracturing, earthquake focal mechanisms)

[Townend and Zoback, 2004]
1. Maximum compressive stress at 68±7° from local SAF strike
2. Stresses in crust cannot exceed static friction (assuming $f_s \approx 0.8$)

⇒ Maximum $\tau/(\sigma - p)$ on SAF is ~ 0.3

[Noda, Dunham, and Rice, submitted 2008]
Stresses in SAFOD Pilot Hole:
\(\tau / (\sigma - p) \approx 0.2 - 0.3 \) at 2.2 km depth

[Hickman and Zoback, 2004]
Fault Mechanics and Dynamic Weakening Mechanisms

Stress constraints: low stresses acting on major faults

Geologic constraints: lack of pseudotachylytes (melted rock) near slip surface

Heat flow constraints: lack of heat flow signature around faults

Dynamic weakening reduces fault shear strength, τ, but *only during rapid sliding* ($V \approx \text{m/s}$); caused by changes in:

$$\tau = f(\sigma - p)$$

$f = \text{coefficient of friction (reduced by flash heating of asperity contacts)}$

$p = \text{pore pressure (raised by thermal pressurization)}$

$\sigma = \text{normal stress}$
Features of a Dynamic Weakening Model

“static” friction $f_s \approx 0.8$

$\frac{\tau}{(\sigma - p)} = 0.2302$ (shear / effective normal stress)

$2w = 100 \mu m$ (shear zone width)

$x = 8 m$

reasonable static stress drop

low stress during slip

[Noda, Dunham, and Rice, submitted 2008]
Weakening Mechanisms

1. Flash Heating of Microscopic Asperity Contacts

Strongly velocity-weakening friction

\[\frac{df}{dt} = \frac{a}{V} \frac{dV}{dt} - \frac{V}{L} \left[f - f_{ss}(V) \right] \]

- Conservation of energy and fluid with
 - distributed shear zone (~100 µm wide)
 - diffusion of heat and fluid (“adiabatic, undrained” when transport neglected)
 - thermal and hydraulic properties from drilling projects and exhumed faults

2. Thermal Pressurization of Pore Fluid

- undrained pressurization
 \[\left(\frac{\partial p}{\partial T} \right)_u \sim \text{MPa/K} \]
Faults Host Ruptures at Low Background Stress Levels

(flash heating is essential, thermal pressurization plays minor role)

\[\tau^b = \tau^\text{pulse} \]

\[\tau^b = \tau^\text{dyna} \]

\[2w = 100 \mu m \]

[Damaged] (thermal pressurization less effective)

[Uncertainty in hydraulic properties]

[Intact] (thermal pressurization more effective)

[Noda, Dunham, and Rice, submitted 2008]
Self-Similar Scaling

Scaling (of slip pulses, not cracks) consistent with natural earthquakes:
\(\sim 0.14 \) mm slip / m rupture length = 0.14 m/km

\[\tau^b = 0.2302 \sigma_o \] (pulse) \[\tau^b = 0.2381 \sigma_o \] (crack)

\[r = 0.8, \ 2w = 100 \ \mu m \]

snapshots every 350 \(\mu s \)

[Noda, Dunham, and Rice, submitted 2008]
Succession of Weakening Mechanisms at Rupture Front

State evolves very quickly, subsequent weakening from thermal pressurization

Summary: Strong rate-weakening permits slip pulses on faults at $\frac{\tau}{(\sigma-p)} \sim 0.3$ (rupture mode fairly insensitive to thermal pressurization)

Open question: How to use these laws in large-scale simulations? Increase L? Increase both L and hydraulic properties (holding dimensionless ratios fixed)?

[Noda, Dunham, and Rice, submitted 2008]
Thermal Pressurization of Pore Fluids by Distributed Shear Heating

Conservation of fluid mass (neglecting changes in p from fault-zone strains)

$$\frac{\partial p}{\partial t} = \alpha_{hv} \frac{\partial^2 p}{\partial y^2} + \Lambda \frac{\partial T}{\partial t}$$

p = pore pressure
α_{hv} = hydraulic diffusivity
Λ = undrained pressurization

Conservation of energy

$$\frac{\partial T}{\partial t} = \alpha_{th} \frac{\partial^2 T}{\partial y^2} + \frac{\tau \dot{\gamma}}{\rho c}$$

T = temperature
α_{th} = thermal diffusivity
ρc = volumetric heat capacity

Conservation of fluid mass

$$\int \dot{\gamma}(y) dy = V$$

$\dot{\gamma}$ = strain rate
V = slip velocity

heat while holding fluid mass m fixed (undrained response)

- thermal expansion coefficient of water ($\sim 10^{-3}$ K$^{-1}$) $>>$ solid matrix
- water and matrix equally compressible (\sim GPa$^{-1}$)

$$\Lambda = \left(\frac{\partial p}{\partial T} \right)_m \sim \text{MPa/K}$$

[Rice, 2006; building on Sibson, 1973 and many others; thermal and hydraulic properties of fault-zone materials constrained by measurements from exhumed faults and drilling projects]