
Nature © Macmillan Publishers Ltd 1997

Self-similarityof extinction
statistics in the fossil record
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The dynamical processes underlying evolution over geological
timescales remain unclear1,2. Analyses of time series of the fossil
record have highlighted the possible signature of periodicity in
mass extinctions3,4, perhaps owing to external influences such as
meteorite impacts. More recently the fluctuations in the evolu-
tionary record have been proposed to result from intrinsic non-
linear dynamics for which self-organized criticality provides an
appropriate theoretical framework5–7. A consequence of this
controversial8 conjecture is that the fluctuations should be self-
similar, exhibiting scaling behaviour like that seen in other
biological9 and socioeconomic10,11 systems. The self-similar char-
acter is described by a 1/f power spectrum P( f ), which measures
the contributions of each frequency f to the overall time series. If
self-similarity is present, then Pðf Þ < f 2 b with 0 , b , 2. This
idea has not been sufficiently tested, however, owing to a lack of
adequate data. Here we explore the statistical fluctuation
structure of several time series obtained from available palaeonto-
logical data bases, particularly the new ‘Fossil Record 2’18. We find
that these data indeed show self-similar fluctuations characterized
by a 1/f spectrum. These findings support the idea that a nonlinear
response of the biosphere to perturbations provides the main
mechanism for the distribution of extinction events.

The Phanerozoic record of life consists almost entirely of extinct
groups of organisms, indicating that extinction is the fate of most
lineages and that no biotas are infinitely resilient13. Considerable
effort has been devoted to explaining the so-called mass extinction
events in terms of external physical events14,15. The dynamics of the
biosphere are reflected, to some extent, in the time series provided
by the fossil record. Different theories have been tested by means of
analyses of this data set.

A direct inspection of the available time series16 of fluctuations in
the number of Ammonoidea families (Fig. 1) suggests a fractal
structure in this fossil record, which is consistent with statistical
measures such as the frequency distribution of extinctions and

lifetimes12,17, which also exhibit power-law decay. Although self-
organized criticality (SOC) is not the only mechanism leading to
power laws, we should first test whether or not there is evidence for
1/f dynamics in real time series. We have tested this idea by using the
data sets available from ‘The Fossil Record 2’ which includes all
groups that have a fossil record18 as well as information from other
databases, such as the Sepkoski compilation of Phanerozoic diver-
sity and extinction events for marine genera19.

Using a given time series y(t) (t ¼ 1; 2;…;N), where the
scale is typically in millions of years, we compute P( f ); this is done
by using the discrete Fourier transform20 through a standard
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Figure 1 Self-similarity in the fossil record time series (redrawn from House16).

Here we show the fluctuations in families of Ammonoidea (over a period of

320Myr, with a time resolution of 2 Myr). In a only one of each four original data

points is shown, giving a coarse resolution of 8Myr. In b we plot a segment of the

previous data, but at full (2-Myr) resolution.

Table 1 Scaling exponents for family origination and extinction

Origination Total ext. Per cent ext. Tot ext. rate PF ext. rate
...................................................................................................................................................................................................................................................................................................................................................................
Global (min.) 0:94 6 0:01 0:93 6 0:01 0:97 6 0:01 0:83 6 0:02 0:87 6 0:02

0:92 6 0:03 0:98 6 0:01 1:00 6 0:01 0:86 6 0:02 0:87 6 0:02
...................................................................................................................................................................................................................................................................................................................................................................
Global (max.) 0:93 6 0:01 0:92 6 0:02 0:97 6 0:01 0:84 6 0:02 0:88 6 0:02

0:91 6 0:03 0:93 6 0:01 0:99 6 0:01 0:88 6 0:02 0:90 6 0:02
...................................................................................................................................................................................................................................................................................................................................................................
Terr. (min.) 0:92 6 0:01 0:92 6 0:01 0:95 6 0:01 0:82 6 0:01 0:88 6 0:01

0:90 6 0:02 0:95 6 0:01 0:98 6 0:01 0:91 6 0:02 0:94 6 0:01
...................................................................................................................................................................................................................................................................................................................................................................
Terr. (max.) 0:91 6 0:01 0:89 6 0:02 0:92 6 0:02 0:81 6 0:03 0:87 6 0:02

0:90 6 0:02 0:91 6 0:01 0:95 6 0:01 0:87 6 0:03 0:90 6 0:02
...................................................................................................................................................................................................................................................................................................................................................................
Marine (min.) 0:97 6 0:01 0:95 6 0:01 0:98 6 0:01 0:88 6 0:02 0:88 6 0:02

0:99 6 0:01 1:00 6 0:01 1:00 6 0:01 0:87 6 0:02 0:89 6 0:02
...................................................................................................................................................................................................................................................................................................................................................................
Marine (max.) 0:93 6 0:01 0:91 6 0:01 0:97 6 0:01 0:91 6 0:02 0:92 6 0:02

0:98 6 0:01 0:96 6 0:02 1:01 6 0:01 0:89 6 0:02 0:90 6 0:02
...................................................................................................................................................................................................................................................................................................................................................................
Exponents are given for different extinction metrics, involving global, terrestrial and marine time series2. Both the exponent for the power spectrum b (first row of each pair of rows) and the
r.m.s. exponent a (second row) are given. ‘Origination’ indicates total number of new families; ‘Total ext.’ indicates total number of extinct families; ‘Per cent ext.’ indicates per cent of
extinction, measured relative to the number of families in existence; ‘Tot. ext. rate’ (TER) indicates total extinction rate; ‘PF ext. rate’ indicates per family extinction rate, measured as the TER
divided by taxic diversity. Deviations from the b ¼ 1 exponent are more frequent when rate-dependent measures are considered. This is expected as more information is involved and
deviations from sampling errors are more likely to occur.
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fast-Fourier-transform algorithm (FFT). P( f ) is

Pðf Þ ¼
1
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where CðtÞ ¼ 〈yðtÞyðt þ tÞ〉 is the so-called autocorrelation func-
tion. Then a log–log plot of P( f ) on f is used (Fig. 2) and the scaling
exponent b is computed from a least-squares fit (a linear regression
of log-transformed data is better than nonlinear fit on raw data
because the residual error will be distributed as a quadratic and
the minimum error is guaranteed). If long-range correlations are
present, then a scaling CðtÞ < t2 g will be observed with g ¼ 1 2 b
(refs 10, 21).

Several time series have been used, involving both origination and
different measures of extinction for families. First, we consider the
extinction sizes in families. Here the available data sets are mainly
for stratigraphic stages, which have an average duration of 7 Myr
(ref. 18). So in order to get an equally spaced data set with 1-Myr
resolution we need to generate more points. We have used a direct,
linear interpolation, the results of which are shown in Table 1.
Because this method can lead to spurious correlations, a different

procedure was also used to test the robustness of our results: a step-
function approach to each stage is introduced, together with a
square-root transformation20,21. Both methods gave basically the
same results. Both minimum and maximum measures are available,
based on assessments of uncertainty about dates of origin and
extinction and other factors2,22. In Table 1 we show our results for
family origination and extinction by using four different extinction
metrics2: most of the obtained scaling exponents are close to b < 1.
There is some drift towards lower b for time series based on rates of
extinction. This could be due to the biases in the estimation of the
total number of families per stage2. A decrease in b is expected as a
consequence of errors introduced by estimated stage duration.
These durations are poorly constrained, especially for stages
before 100 Myr ago, and their estimates vary considerably among
available geological timescales.

An additional, complementary measure is obtained by means of
the use of ‘random walk’ methods able to detect long-range
correlations10,21,23–25. Starting from the time series y(t), the running
sum

yðtÞ [ ^
t

i¼t

yðiÞ ð2Þ
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Figure 2 a, Pattern of family extinctions through

time of all organisms in terms of the number of

families. Maximum and minimum curves2 are

shown (inset) as well as the corresponding

power spectra (main figure). b, Fluctuation in the

marine families (inset) and the corresponding

power spectrum (main figure). Both series are in

a timescale of Myr and in both cases the spectrum

is not like white, uncorrelated noise (b ¼ 0) but

almost like 1/f-spectra, characteristic of long-

range correlations in scale-invariant systems.
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is computed, and the root-mean-square (r.m.s.) fluctuation F(t) is
obtained from

FðtÞ [ ½〈ðdyðtÞÞ2〉 2 〈ðdyðtÞÞ〉2
ÿ1=2 ð3Þ

where dyðtÞ ¼ yðt0 þ tÞ 2 yðt0Þ. The angle brackets indicate an
average over all times t0. If {y(t)} is random or a simple Markov
process, then we have FðtÞ < t1=2. But if no characteristic timescale is
involved, then a scaling FðtÞ < ta is observed with a Þ 1=2. The
r.m.s. exponent and b are related through 2a ¼ b þ 1. We have
computed a for all the previous data sets, and the resulting
exponents are given in Table 1 (see also Fig. 3). We can see that a
is also close to one and that all the pairs (a, b) are consistent with the
previous relation.

We also analysed the extinction pattern for other taxonomic
levels. The study of the total extinction rate for genera of marine
animals19 gave b ¼ 2 0:86 6 0:03 and a ¼ 0:91 6 0:03 using the
proportional rate of extinction and b ¼ 2 0:83 6 0:02,
a ¼ 0:89 6 0:03 for the absolute rate of extinction. We can
extend our analysis to other types of data, involving different
particular groups of organisms. We have used two particularly
well known data sets: fluctuations in Ammonoidea families16

and the number of planktic foraminiferal species from the
Jurassic period to the Holocene epoch26. Here no interpolation is
needed and again well defined power laws were obtained:
b ¼ 2 0:88 6 0:03 and a ¼ 0:93 6 0:04 for Ammonoidea and
b ¼ 2 0:86 6 0:03 and a ¼ 0:91 6 0:03 for Foraminifera.

These results are consistent with a nonlinear, self-similar
behaviour of the biosphere. Where do these scale-free dynamics
come from? There are several possibilities; one of them is SOC,
where fluctuations over all timescales and power laws are a direct
consequence of criticality5–7. Some authors have shown that power
laws do not need to be generated through a SOC phenomenon17 but
can result from stresses (either biotic or abiotic) to which species are
subjected by their environment. Additionally, the reported fractal
nature of taxonomic systems27 shows that behind the self-similar
time series, a fractal-like organization of the biosphere is also
present. Recent SOC models of macroevolution have shown that
these scaling relations naturally fit into a self-organized, nonlinear
generic process13,23. Our results are also in agreement with other
studies of palaeontological time series based on other methods
from nonlinear dynamics7,28 as forecasting techniques. In all these
studies, data analysis supports the internal biotic organization as the
basic component for the response of the biosphere to external

perturbations.
Furthermore, these analyses provide evidence that might help

resolve two debates about macroevolutionary dynamics. The first is
the nature of mass extinctions: are they qualitatively, or merely
quantitatively, different from normal (background) levels of extinc-
tion? Early statistical tests29 suggested that there was a clear distinc-
tion, and that the five largest (the ‘big five’; ref. 14) mass extinctions
were qualitatively distinct. This view was supported by the finding
that times of mass extinction were associated with selective regimes
that were utterly different, and unpredictable, from observations
during background times13. Comparisons of probabilities and
magnitudes of extinction events have subsequently suggested3

however, that the ‘big five’ could be the skewed end of a continuous
distribution of extinction events of different intensity. This view is
supported by the scale-free pattern revealed by our study.

The second debate that is addressed by our study concerns the
causes of extinctions. When Raup and Sepkoski4 proposed that mass
extinction events over the past 250 Myr had followed a periodic
pattern of occurrence every 26 Myr, many workers focused on
extraterrestrial causes. Raup3 has extended this model to postulate
that all extinction events can be explained by extraterrestrial
impacts, the magnitude of the event depending broadly on the
magnitude of the object striking the Earth (see also Newman17). A
different (but perhaps complementary) view5 is that extinction
events are triggered by a multiplicity of factors, and that the internal
dynamics of the system play an important role. Although the role of
nonlinear dynamics in extinction and diversity is not new in
palaeobiology1,26,30,31, previous analysis dealing with fluctuations
in the fossil record involved low-dimensional, deterministic
approaches based on chaotic dynamics. But it seems clear that the
underlying assumptions (such as the low-dimensional character of
the dynamics, the lack of stochastic effects or the constancy of
parameters) are unlikely to hold. A high-dimensional picture where
many species evolve and interact seems more consistent with the
process of macroevolution, although the specific mechanisms that
could drive the biosphere dynamics are under discussion32. Our
studies, consistent with scale-free pattern of the fossil record,
support this latter view. Future analyses could usefully explore
factors such as the stationarity of the previous data sets or the
Signor–Lipps effect (the ‘backward smearing’ of extinctions result-
ing from incomplete sampling33) and their importance in gener-
ating correlations. M
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Figure 3 Log–log plot of the root-mean-square F(t) for different (typical)

palaeontological time series (see equations (2) and (3) in the text). Here both

per cent extinction (PE) and total extinction (TE) for different data sets have been

used. We also show the scaling for fluctuations in families of Ammonoidea and

the corresponding scaling for a random white-noise process from a N ¼ 150 time

series. Here a ¼ 1=2.
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The ability to recognize individual animals has substantially
increased our knowledge of the biology and behaviour of many
taxa1. However, not all species lend themselves to this approach,
either because of insufficient phenotypic variation or because tag
attachment is not feasible. The use of genetic markers (‘tags’)
represents a viable alternative to traditional methods of indivi-
dual recognition, as they are permanent and exist in all indivi-
duals. We tested the use of genetic markers as the primary means
of identifying individuals in a study of humpback whales in the
North Atlantic Ocean. Analysis of six microsatellite loci2,3 among
3,060 skin samples collected throughout this ocean allowed the
unequivocal identification of individuals. Analysis of 692 ‘recap-
tures’, identified by their genotype, revealed individual local and
migratory movements of up to 10,000 km, limited exchange
among summer feeding grounds, and mixing in winter breeding
areas, and also allowed the first estimates of animal abundance

based solely on genotypic data. Our study demonstrates that
genetic tagging is not only feasible, but generates data (for
example, on sex) that can be valuable when interpreting the
results of tagging experiments.

Skin biopsy4 or sloughed skin5 samples from free-ranging hump-
back whales (Megaptera novaeangliae) were collected across the
North Atlantic between 1988 and 1995. Total-cell DNA was
extracted6, and the sex7 and genotype at six mendelian inherited8

microsatellite loci9 were determined for each sample. From the
3,060 samples analysed, we detected 2,368 unique genotypes. The
expected number of samples collected from different individuals
with identical genotype arising by chance was estimated at less than
one (see Methods). Because of this, and the fact that all samples with
identical genotypes were of consistent sex, we believe that the 3,060
samples represented 2,368 individual whales. Of the 692 recaptures
observed during the study, 216 occurred on the summer feeding
grounds (Fig. 1). Of these, 96% (n ¼ 207) occurred within the same
feeding area (Fig. 1), confirming previous behavioural10,11 and
genetic12,13 observations of maternally directed fidelity to specific
feeding grounds. The remaining 4% (n ¼ 9) of the recaptures on the
summer feeding grounds were detected in different but adjacent feeding
grounds (Fig. 1). However, significantly more recaptures were detected
within these sampling areas than would be expected if the areas
constituted one intermixing feeding aggregation and is consistent
with the notion of maternally directed site fidelity (see Methods).

Of the 114 individuals recorded on both summer feeding and
winter breeding grounds (Fig. 1), two had migrated from the West
Indies to either Jan Mayen or Bear Island (in the Barents Sea). These
genetic recaptures represent the most extensive one-way move-
ments (6,435 and 7,940 km, respectively) recorded in this study, and
support recent findings13,14 that whales feeding in the Barents Sea
share a common breeding ground with other North Atlantic hump-
back whales. In three other individuals, which were each sampled on
three occasions, movements were documented from a feeding
ground to the breeding range and back, involving minimum
migration distances of up to 10,000 km between the first and last
sampling event. No feeding ground was disproportionately
represented among the recaptures in the West Indies (Fig. 1),
supporting the current view that humpback whales in the North
Atlantic constitute a single panmictic population13,15,16 (G-test,
G5d:f : ¼ 4:68, P , 0:46).

As with traditional identification methods1, microsatellite data
lend themselves to abundance estimation using mark–recapture
statistical methods17, although to our knowledge this has not
previously been attempted. Using breeding-ground samples col-
lected during 1992 and 1993, we estimated the North Atlantic
humpback whale population at 4,894 (95% confidence interval,
3,374–7,123) males and 2,804 (95% confidence interval, 1,776–
4,463) females. This total of 7,698 whales is substantially (albeit not
significantly) higher than the most recent previous photographic-
based estimate of 5,505 (ref. 10) (95% confidence interval, 2,888–
8,122). Preliminary results from new and more reliable photo-
graphic estimates are also larger than previous estimates (T.S. et al.,
manuscript in preparation), and could partly be due to population
growth during the intervening decade since the previous estimate18.
The significantly different estimates for males and females are
unexpectedgiventhe evensexratio observed onthe feedinggrounds19

(Table 1) and among 198 calves that we sampled in the breeding range
(data not shown). The estimates are independent of between-sex
sampling biases, and so the observed deficit of females probably
reflects within-sex behavioural differences, for example that indivi-
dual females display a higher degree of preferences with respect to
region and/or residence time in the breeding range than do males.

Our results demonstrate that genetic tagging is effective even in a
large population of wide-ranging and inaccessible mammals such
as cetaceans. Further, the data obtained from genetic tags can be
used to address evolutionary20, demographic19 and behavioural21


