
lized by resonance, such as occurs in benzene.

The structures shown in Fig. 5B would nor-

mally be found in charge density wave ground

states, but instead they are equally contrib-

uting resonance structures. Particularly in one

dimension, the energy of delocalized sys-

tems is usually lowered by distortions. We

recently reported the preparation and solid-

state characterization of radical 4, although we

were unable to rationalize its electronic struc-

ture and properties (11). Compound 4 crystal-

lizes as a highly one-dimensional but uniformly

spaced p-step structure, and the magnetism

may be fit to the antiferromagnetic Heisenberg

S 0 1
2

linear chain model (Fig. 5D). Despite its

relatively large bandwidth, the absence of a

superlattice, and its uniform stacking, com-

pound 4 has s
RT

of 1.4 � 10j3 S/cm, and the

electronic structure of this compound is best

rationalized by the one-dimensional RVB

ground state (Fig. 5E). The primary mode of

interaction in 5 consists of a linear chain of

almost perfectly superimposed p-dimers, in

which all of the spin-bearing carbon atoms

are in registry. The structure of 4 places

neighboring molecules in the stack such that

they can only interact through the overlap of

one pair of active (spin-bearing) carbon atoms

per phenalenyl unit, leading to the p-step

structure in which the remaining four active

carbon atoms per phenalenyl unit do not

interact with their nearest neighbor molecules.

In fact, a form of the p-step mode of inter-

action is also present in 5 (Fig. 1D) and gives

rise to the three-dimensional electronic struc-

ture of this compound. Nevertheless, in

common with lithium (Fig. 4A), in which a

number of different interatom electron-pair

bonds are possible, compounds 4 and 5 both

allow resonance among many pairs of inter-

molecular (carbon-carbon) bonds.

The structure and properties of compounds

4 and 5 allow us to answer the questions posed

by Anderson (2). The RVB ground state exists

in one (4) and three (5) dimensions; it is

stabilized by resonance and prefers a high-

symmetry structure; it conducts electricity but

is not a metal; and the excitation spectrum is

complex: In the case of 5, the (band) structure,

magnetic susceptibility, conductivity, and elec-

tronic spectrum imply different energy gaps

(0, 0, 0.11, and 0.34 eV, respectively).
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Penetration of Human-Induced
Warming into the World’s Oceans

Tim P. Barnett,1* David W. Pierce,1 Krishna M. AchutaRao,2

Peter J. Gleckler,2 Benjamin D. Santer,2 Jonathan M. Gregory,3

Warren M. Washington4

A warming signal has penetrated into the world’s oceans over the past 40 years.
The signal is complex, with a vertical structure that varies widely by ocean; it
cannot be explained by natural internal climate variability or solar and volcanic
forcing, but is well simulated by two anthropogenically forced climate models.
We conclude that it is of human origin, a conclusion robust to observational
sampling and model differences. Changes in advection combine with surface
forcing to give the overall warming pattern. The implications of this study
suggest that society needs to seriously consider model predictions of future
climate change.

Wide-ranging evidence shows that Earth has

been warming in recent decades (1). Observa-

tions show that È84% of the total heating of the

Earth system (oceans, atmosphere, continents,

and cryosphere) over the last 40 years has gone

into warming the oceans (2). Therefore, if one

wishes to understand and explain this warm-

ing, the oceans are clearly the place to look.

There have been only a few studies that

have tried to both detect (i.e., differentiate

from expected natural variability) and attribute

(i.e., ascribe a cause to) the observed ocean

warming signal (3–8). All used the equivalent

of a single ocean-basin temperature measure

and tracked its change with time. This

approach neglects information on how the

warming penetrates vertically into the ocean,

and variations of the penetration from basin to

basin. The studies all suggest human impacts

on the oceans, but some did not consider the

possibility that the observed warming was due

to natural external forcing such as solar

variability or volcanic activity.

Here we investigate the warming since

1960 on an ocean-by-ocean basis and focus

on how the signal penetrates down into the

ocean. We use a recently upgraded and much

expanded observed ocean data set (2), which

provides the best available description of the

ocean_s warming signal and its evolution

through time. In addition to examining these

observational data, we compare them to sim-

ulations from two independent climate models,

the Parallel Climate Model (PCM) (9) and the

Hadley Centre model (HadCM3) (10). We

then use the results of numerical experiments

with these models to attribute the causes of the

observed warming. The models allow gross

heat budgets to be constructed by basin; these

show that changes in net surface heat flux

combine with advection at depth to give the

observed signal.

We first define a model-based Bfingerprint[
describing the warming signal at each vertical

level using the geographical and temporal

variability of ocean temperature (11). The

observations, projected onto this fingerprint at

each level, show that the strength of the warm-

ing signal varies from ocean to ocean (11)

(Fig. 1). The warming extends to depths of
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700 m or more in both the North and South

Atlantic oceans, but is largely confined to the

upper 100 m of the northern Pacific and

northern Indian oceans. The northern Indian

Ocean is particularly unusual in that it has a

subsurface maximum. Both the northern and

southern Pacific Ocean show a sign reversal in

the warming signals, indicating a cooling at

È150-m depth. These differences between

oceans constitute the spatial structure of the

warming fingerprint. The final dimension of

the signal is the temporal evolution of the dif-

ferences. Because we are interested in low-

frequency variations, we use decadal time

averages to describe this time evolution.

Our purpose is to understand the origin of

this complex time- and space-dependent sig-

nal. We explore three possible causes: natural

variability internal to the coupled ocean-

atmosphere system; external natural variabili-

ty, such as solar or volcanic forcing; and

forcing arising from human activity Eemission

of greenhouse gases (GHGs) and sulfate

aerosols^.
The likelihood that natural internal climate

variability is the cause of the observed

warming signal can be examined by analyzing

a long control run of the PCM; i.e., how well

did natural internal variability in the control

run project onto the warming fingerprint (11)?

This approach was used in earlier work (3) and

is a variant of standard detection and attribu-

tion analysis (12–15). It has the advantage of

having a simple geometric explanation while

being rigorous in a statistical sense (11).

The strength of the warming signal in the

control run (sampled in the same places as the

observations) is shown in Fig. 2 for each

ocean. This gives some indication of the

fluctuations in signal strength that one might

expect due to natural internal variability alone.

Because we had multiple realizations of the

40-year time period in the control runs, we can

show the 90% confidence limits of the natural

variability by the hatched region. Also shown

is the signal strength in the observations (red

dots) from Fig. 1. The illustration demonstrates

that the warming signal is far stronger than

would be expected from natural internal varia-

bility, as estimated by the model. To assess

whether the model_s estimate of natural

variability is reasonable, we compared the

levels of variance in the control run at decadal

time scales to those observed and found that

they matched reasonably well (16) (supporting

online text). Therefore, the control run

variations are a reasonable representation of

natural internal variability, at least on the

decadal time scales of interest here.

Another possible candidate for the warming

signal is natural variability external to the

ocean-atmosphere system, such as solar varia-

bility or volcanic eruptions (BSV[ forcing).

We explored this possibility by analyzing

PCM runs forced by estimates of observed

solar variability and volcanic aerosol loadings

(17). The results of four such runs were com-

bined and the warming signal strength esti-

mated in the SV data set. The results (Fig. 2)

show that in none of the oceans can the SV

forcing (green triangles) replicate the observed

warming. Indeed, at these space and time scales,

the SV forcing produces signal strengths indis-

tinguishable from those expected from natural

internal variability (hatched region).

The final candidate for explaining the

signal is anthropogenic factors, such as well-

mixed GHGs and sulfate aerosol particles. We

examined this possibility in an ensemble of

Fig. 1. Warming signal
strength by ocean and
depth. The dots repre-
sent the projection of
the observed tempera-
ture changes onto the
model-based pattern
of warming. They show
substantial basin-to-
basin differences in
how the oceans have
warmed over the past
40 years, although all
oceans have experi-
enced net warming over
that interval. The hori-
zontal bars represent
the T2SD limits asso-
ciated with sampling
uncertainty.

Fig. 2. Multiple realiza-
tions from the PCM
control run allowed es-
timation of the proba-
bility distribution of
signal strength associ-
ated with natural in-
ternal variability. The
hatched region rep-
resents the 90% confi-
dence limits of the
natural internal varia-
bility signal strength.
The observed signal
strength (red dots)
bears little resemblance
to that expected from
natural internal varia-
bility. The ensemble-
averaged strength of
the warming signal in four runs forced by observed solar and volcanic variability (green triangles) is
also shown. There is no agreement between the two. The solar plus volcanic signals are generally
indistinguishable from those expected from natural internal variability alone on the time and space scales
used in this study.

Fig. 3. Anthropogenic
forcing signal strength
(green hatched region)
compared to that ob-
tained from the obser-
vations (red dots). There
is excellent agreement
at most depths in all
oceans. The hatched
region shows the range
of the signal strength
estimates from five dif-
ferent realizations of
identically forced sim-
ulation with the PCM,
whereas the smaller
green dots within the
region are the individu-
al realizations.
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five PCM runs with such forcing (17, 18). The

results (Fig. 3) show the range of the signal

strength in five scenario runs by ocean and

depth (hatched area) in comparison with the

observations (red dots). An ocean-by-ocean

and depth-by-depth comparison shows that the

agreement is compelling. The immediate con-

clusion is that human influences are largely re-

sponsible for the warming signal. This level of

agreement could not have been tuned into the

models, because the fingerprint is too complex

in space and time. Further, about half of the

observations used in this study were not avail-

able when the computer simulations were run.

The different response of individual oceans

to GHG forcing is an interesting finding. The

physical reasons for this are fairly well known,

with one major surprise. For instance, it is well

known that deep convection is characteristic of

both the North and South Atlantic oceans (19).

That explains why the warming signal pene-

trates relatively deeply in these oceans. In

contrast, the northern Pacific Ocean is charac-

terized by a rather shallow meridional over-

turning circulation (20) that tends to isolate the

surface layers from the deeper ocean. It is also

true that no deep water is formed in the

northern Pacific. Both physical properties act

to confine the signal to the upper ocean. The

same situation is thought to hold over much of

the southern Indian Ocean.

One notable feature from the observed and

modeled signal strength (Figs. 1 and 3) is the

negative lobe at 150- to 200-m depth in the

Pacific. The simulation that captured this

signal showed that it is associated with a

thinning of the western Pacific warm pool

associated with shoaling of the deeper iso-

therms, which has also been observed in the

Pacific since the 1970s (20).

The major surprise is the northern Indian

Ocean, which has rather shallow signal pene-

tration and a subsurface maximum in signal

strength. The heat budget for this region (Fig.

4) shows that it is the only basin where the

ensemble variability includes zero for the net

surface heat flux, and where advective

warming is the dominant cause of the basin

temperature change over the last 60 years in

PCM. This result is likely due to the cancel-

lation of GHG warming by sulfate aerosol

cooling, a result recently found from direct

observations (21). Further simulations have

shown that carbon aerosols also play a role in

this effect (22), but are not included in the

simulations of this paper. Hence the warming

of this ocean over the past 60 years in the

simulation was largely due to changes in

advection. Recent observations show a slowing

of the shallow meridional circulation cell in

the Indian Ocean such that advection from

northern to southern Indian Ocean is reduced,

leading to a net warming of the northern

Indian Ocean (23), a result in accord with the

model predictions. Indeed, inspection of the

partition of net surface air/sea heat exchange

and advection for the various oceans (Fig. 4)

shows that in several basins, changes in

advection of heat by ocean currents re-

distribute the heat gained from the anthropo-

genic forcing, and so are important to

determining the structure and evolution of the

warming signal in the oceans Ecompare (7)^.
The normalization by surface area used in

Fig. 4 removes the geometric impact of ocean

size on our results. It also makes clear that the

southern oceans are absorbing more heat per

unit area than are the northern oceans. We

suggest that this is again due to the smaller

aerosol concentrations over the southern

oceans. They do not have the same near-

canceling effects observed in the more polluted

Northern Hemisphere (21, 22).

Is PCM unique in being able to capture the

complex observed signal? To address this

question, we repeated the analysis with

HadCM3, which was developed at the Hadley

Centre independently of PCM. The four

realizations from this model were the BAll[
forcings runs, which combined a variety of

forcings EGHG, solar, volcanic, aerosols, etc.

(24)^. HadCM3_s warming fingerprint (not

shown) is little different from PCM_s, but we

use exclusively PCM_s fingerprint here for

consistency. The results from HadCM3 are

compared to observations in Fig. 5. Using the

HadCM3 fingerprint gives even better agree-

ment (not shown), as one would expect. In any

event, Figs. 3 and 5 show that PCM and

HadCM3 both reflect reasonably well the

evolution and spatial characteristics of the

warming signal.

An interesting feature of the above result is

that the PCM and HadCM3 are very different

models. In the simulations used here, their

forcings are also rather different. How could

they give very similar evolutions of ocean

temperature? Whatever the combinations of

forcing used by the two modeling groups, the

net forcing at the surface of the ocean had to

be essentially the same. Inspection of each

model_s surface heat flux fields, in so far as

possible, shows this to be the case. The details

of the atmospheric forcing and climate feed-

backs that go into producing that net value do

not affect the overall oceanic response. The

story may be different in the atmosphere.

Fig. 4. Gross heat budget by ocean showing the
important role that heat advection by ocean
currents plays in the anthropogenic warming of
the world’s oceans. The PCM’s net ocean surface
heat flux averaged over 1940 to 1999 is shown by
the ‘‘NSHF’’ bars, the modeled changes in ocean
basin heat storage by the ‘‘Stor’’ bars, and the
advection of heat by ocean currents needed to
close the heat budget by the ‘‘Adv’’ bars. The
latter was obtained as a residual from the first
two estimates. The uncertainty bars indicate
T1SD based on the ensemble spread. The actual
energy change (joules) over the time period
has been normalized by surface area of respec-
tive oceans to give the average heating rate in
W/m2. This normalization makes it appear that
the net advection over the globe is nonzero, a
condition that vanishes using the area-weighted
fluxes.

Fig. 5. Comparison of
the model-predicted
anthropogenic signals
between HadCM3 and
observations for the
oceans. The format is
described in Fig. 3. Com-
parison of Figs. 3 and 5
shows that both mod-
els capture the main
structure of the signal
in the observations.
These figures were
derived by using the
warming signal defined
by PCM as the basis set
to allow a consistent
comparison.
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It is also important to investigate the in-

fluence of the upgraded data set (2), sampling,

and model uncertainties on our conclusions. In

all our results, we use a sampling strategy that

compares model and observations only where

observations exist; we do not use the infilled or

interpolated data set (11). As a test, however,

we repeated the analysis using the infilled data

and found that it made no difference to the

conclusions. More details on these sampling

issues are found in (16). We also estimated the

impact that model errors might have on the

results. Multiple models run with the same

GHG forcing (25) show a factor of 2 dif-

ference in ocean basin heat content after 80

years of integration (26, 27). We estimated the

effect that this had in the detection scheme and

still found robust detection results above the

level of natural variability (16). Therefore, the

conclusion that the observed ocean warming is

due to human influences is robust to major

perturbations of both the observed data set and

model error.

The implications of our results go far

beyond identifying the reasons for ocean

warming. First, they show that uncertainties

in the models used here are too small to affect

the conclusion attributing the historic ocean

warming signal to anthropogenic forcings, at

least for the temperature-driven part of the

signal. Second, taking these new results with

those obtained in the last few years Ee.g.,

(1, 28–30); see earlier detection studies cited

above^ leaves little doubt that there is a

human-induced signal in the environment.

Third, because the historical changes have

been well simulated, future changes predicted

by these global models are apt to be reasonably

good, at least out to, say, 20 to 30 years into

the future. How to respond to the serious

problems posed by these predictions is a

question that society must decide.
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Ecosystem Collapse in Pleistocene
Australia and a Human Role

in Megafaunal Extinction
Gifford H. Miller,1 Marilyn L. Fogel,2 John W. Magee,3

Michael K. Gagan,4 Simon J. Clarke,5 Beverly J. Johnson6

Most of Australia’s largest mammals became extinct 50,000 to 45,000 years
ago, shortly after humans colonized the continent. Without exceptional cli-
mate change at that time, a human cause is inferred, but a mechanism
remains elusive. A 140,000-year record of dietary d13C documents a permanent
reduction in food sources available to the Australian emu, beginning about the
time of human colonization; a change replicated at three widely separated
sites and in the marsupial wombat. We speculate that human firing of land-
scapes rapidly converted a drought-adapted mosaic of trees, shrubs, and nu-
tritious grasslands to the modern fire-adapted desert scrub. Animals that
could adapt survived; those that could not, became extinct.

Humans are thought to have colonized Aus-

tralia between 55 and 45 thousand years ago

(ka) (1–5), and most of its large animals

became extinct between 50 and 45 ka (6, 7).

The 60 taxa known to have become extinct

include all large browsers, whereas large graz-

ing forms, such as red and gray kangaroos,

were less affected. The selective loss of large

browse-dependent taxa suggests that ecosys-

tem change may have been important, although

animal size may have played a role (8). In-

ferential evidence of vegetation reorganization

and a changed fire regime beginning 45 ka

is recorded in terrestrial (9, 10) and marine

(11, 12) sediment cores. But no records of

ecosystem status through this time interval

are available from the vast semiarid zone.

We used isotopic tracers of diet preserved

in avian eggshells and marsupial teeth (13, 14)

to monitor ecosystems before and after human

colonization. These dietary reconstructions doc-

ument ecosystem collapse across the semiarid

zone between 50 and 45 ka.

We recovered eggshells of the Australian

emu Dromaius novaehollandiae and the ex-

tinct giant flightless bird Genyornis newtoni

from longitudinal desert dunes and shoreline-
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