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Abstract. The recent expansion of permanent Global Positioning System (GPS)
networks provides crustal deformation data that are dense in both space and
time. While considerable effort has been directed toward using these data for
the determination of average crustal velocities, little attention has been given
to detecting and estimating transient deformation signals. We introduce here a
Network Inversion Filter for estimating the distribution of fault slip in space and
time using data from such dense, frequently sampled geodetic networks. Fault
slip is expanded in a spatial basis set Bg(x) in which the coefficients are time
varying, s(x,t) = -0 | ¢ (t)Bx(x). The temporal variation in fault slip is estimated
nonparameterically by taking slip accelerations to be random Gaussian increments,
so that fault slip is a sum of steady state and integrated random walk components. A
state space model for the full geodetic network is formulated, and Kalman filtering
methods are used for estimation. Variance parameters, including measurement
errors, local benchmark motions, and temporal and spatial smoothing parameters,

are estimated by maximum likelihood, which is computed by recursive filtering.
Numerical simulations demonstrate that the Network Inversion Filter is capable
of imaging fault slip transients, including propagating slip events. The Network
Inversion Filter leads naturally to automated methods for detecting anomalous

departures from steady state deformation.

1. Introduction

In the past 10 years there has been a tremendous
increase in the number and density of geodetic net-
works for the study of crustal deformation. In particular
the dramatic decrease in the cost of Global Positioning
System (GPS) receivers has led to a number of large
permanent GPS arrays, including the Southern Cali-
fornia Integrated GPS Network (SCIGN) [Bock et al.,
1993; Blewitt et al., 1993], the San Francisco Bay Area
Regional Deformation (BARD) network [King et al.,
1995], and two large networks in Japan, the GPS Re-
gional Array for Precise Surveying (GRAPES), and the
Continuous Strain Monitoring System (COSMOS) [Shi-
mada and Bock, 1992; Miyazaki et al., 1996]. Smaller
regional GPS networks have also been in operation in
the Pacific Northwest [Dragert and Hyndman, 1995),
the Big Island of Hawaii [Lisowski et al, 1996], and
elsewhere. While most of the recent growth has been
in GPS networks, frequently monitored dual-frequency
geodimeter networks have been in operation in Park-
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field [Langbein et al., 1990] and the Long Valley caldera
[Langbein et al., 1995] for the last decade.

Permanent GPS networks yield daily estimates of
site positions with a precision of a few millimeters in
the horizontal components over regional distances [e.g.,
Heflin et al., 1992; King et al., 1995]. Precision is gen-
erally a factor of 3 poorer in the vertical component.
Initially, permanent GPS networks incorporated rela-
tively few widely spaced receivers, and thus sacrificed
spatial coverage for improved temporal resolution [e.g.,
Shimada and Bock, 1992; Dragert and Hyndman, 1995].
However, the situation is now changing rapidly. The
Japanese GPS network currently consists of 610 perma-
nent GPS stations, with a station spacing of ~ 30 km
nationwide and a greater concentration in the Kanto-
Tokai area. Plans for the southern California (SCIGN)
array call for expansion from the current 40 station net-
work to as many as 250 permanent GPS receivers. With
these developments we now, or shall soon, have avail-
able deformation data that are dense in both space and
time.

Continuously operating GPS arrays have recorded co-
seismic displacements from a number of earthquakes
le.g., Bock et al., 1993; Blewitt et al., 1993; Tsuji et al.,
1995]. These step discontinuities in the GPS time se-
ries are reasonably easy to detect and quantify, and the
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measured displacements can be used to invert for the
spatial distribution of fault slip [e.g., Barrientos and
Ward, 1990; Arnadéttir and Segall, 1994;Freymueller
et al., 1994; Wald and Heaton, 1994; Bennett et al.,
1995].

These networks also provide precise measurements
of the average interseismic velocity field. Interseismic
deformation, as measured over the past two decades
with terrestrial geodimeters, is very nearly steady in
time [e.g., Savage and Lisowski, 1995]. In part be-
cause these measurements were most often collected
annually, the existence of transient interseismic defor-
mations has been difficult to separate from possible
time-varying systematic measurement errors [e.g., Sav-
age and Lisowski, 1995]. Evidence for transient inter-
seismic deformation has been reported [e.g., Jachens
et al., 1983], particularly in or near the creeping sec-
tion of the San Andreas fault [Langbein et al., 1990;
Linde et al., 1996]. Of course, transient postseismic de-
formations following earthquakes are well known [e.g.,
Prescott et al., 1984; Savage et al., 1994; Shen et al.,
1994; Birgmann et al., 1997]. Deformation in volcanic
areas is also notably nonsteady [e.g., Shimada et al.,
1990; Langbein et al., 1995].

Given station velocities, or in the case of geodimeter
measurements the rates of baseline length change, it is
possible to invert for the spatial distribution of fault slip
rate [e.g., Segall and Harris, 1986; Harris and Segall,
1987; Johnson, 1993; Fukahata et al., 1996]. Daily po-
sition determinations can provide much richer informa-
tion than simply the average velocity. In fact, with data
from frequently sampled, dense geodetic networks, it is
now possible to address questions such as, What is the
slip rate pattern on faults in space and time? Are there
slip waves that propagate aseismically at depth? What
is the source time history of slow earthquakes? Does the
pattern of aseismic slip rate change before large earth-
quakes? Rather than determine images of average slip
rate (as, for example, in the work of Segall and Harris
[1986]) we wish to determine the full space time history
of fault slip rate, in essence, to make movies of the slip
rate pattern.

There are major difficulties in time dependent in-
versions for slip rate. First, we do not know a priori
the nature of the temporal variations for which we are
searching. Second, geodetic measurements contain spa-
tially and temporally correlated errors, due, for exam-
ple, to atmospheric path delays, multipath, and random
benchmark motions [e.g., Wyatt, 1982, 1989]. Con-
siderable attention has been focused on the fact that
local monument motions substantially increase the un-
certainty in estimates of average velocity [Johnson and
Agnew, 1995]. Local monument motions also compli-
cate the detection of transient crustal motions. Thus,
any viable estimation procedure must allow for general,
nonparametric estimation of the temporal variations in
fault slip and account for correlated errors in the obser-
vations.

We present here a time domain filtering approach
to this problem, based on earlier work [Matthews and
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Segall, 1988; Matthews , 1991], that analyzes data from
the complete geodetic network, rather than baseline by
baseline. Analyzing all the data simultaneously allows
one to separate time-varying tectonic signals from local
monument motions. Time domain filtering leads nat-
urally to automated methods for detecting changes in
the underlying slip rates. That automated methods are
required is obvious when one considers that, for exam-
ple, the 600-station Japanese network already produces
9 x 10° three-dimensional positions per year.

We begin by briefly summarizing the method as de-
scribed in the following section. Given a collection of
deformation time series, we expand the source model in
a set of basis functions. We then pose a Gaussian model
for the time-varying coefficients of these functions that
enforces an a priori expectation that the source pro-
cess is steady state. We further pose Gaussian models
for local benchmark motions and observation errors at
each site. Recursive linear (Kalman) filtering is used
to estimate system processes at times of interest given
all past and present data and to forecast future obser-
vations. The scale parameters of the various Gaussian
processes are estimated by maximum likelihood. The
approach outlined here has the following properties: (1)
It enables separation of spatially coherent signals from
local motions; (2) it allows for real time anomaly de-
tection; (3) it handles arbitrary timing, location, and
type of observation; and (4) the recursive algorithm is
computationally efficient, providing optimal estimates
while obviating the need to solve huge systems of linear
equations.

2. Method

We model displacements at the Earth’s surface u,(x,1)
as a function of spatial coordinate x and time ¢ by

w(xt) = / 596, 1)Gy (%, €)1y (€)dB ()

+ L(x,t) + e (1)
The three terms on the right side of (1) represent the
underlying deformation signal, local benchmark mo-
tion, and measurement error, respectively. In (1), and
throughout this paper, we assume that the true defor-
mation can be adequately represented by some spatially
and temporally varying displacement discontinuity, or
slip s(&,t), across one or more planar fault surfaces in
a homogeneous, isotropic, elastic half-space. Deforma-
tion at depth below the seismogenic zone may, in fact,
be distributed across a fault zone of finite width, in
which case the slip approximates the integrated strain
across the fault. Although our focus here is on fault
slip, opening mode sources (dikes) can be treated with
the same procedure. We have not attempted to model
distributed volume or pressure sources at this point.
In (1), p,q,7,= 1,2,3, summation on repeated indices
is implied, and ny(€) is the unit normal to the fault
surface ¥(§). The Gy, (x, ) are proportional to deriva-
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tives of the elastostatic Green’s tensors [e.g., Aki and
Richards, 1980].

We take the measurement errors to be normally dis-
tributed with a covariance matrix that is known (for
example from the GPS data processing), at least to
within a scalar factor o2. There has been considerable
discussion as to the appropriate stochastic model for lo-
cal benchmark motions. Wyatt [1982, 1989] found that
monument displacements exhibit l/flrequency2 power
spectra, indicative of a Brownian random walk process.
Recent work by Langbein and Johnson [1997] suggest
that local motions of geodetic monuments are Brown-
ian, although other stochastic models are possible. In
either case, random local motions should be spatially
uncorrelated, at least at the scales (kilometers to tens
of kilometers) at which geodetic stations are typically
spaced, whereas tectonic motions are spatially coherent
at these scales. Tectonic motions at scales less than the
spacing between stations, on the other hand, may be
indistinguishable from local benchmark instability.

For the purposes of this analysis we take the local
motions to be Brownian with scale parameter 7

B(t)=r /0 duw(t), )

where dw is formal white noise. Note that 72 has units
length?/time. Other nontectonic processes, such as sub-
sidence due to large scale fluid withdrawal or extensive
landsliding, are not well modeled by random benchmark
motions and should be treated separately.

We take the estimated slip to be a linear combination
of spatial functions B(x)

M

sp(x,8) = 3 e (£)Be(x),

k=1

3)

where M is the number of basis functions included in
the estimate. The basis functions are usually chosen
in such a way that the resulting slip distribution satis-
fies prior expectation about the nature of the solution,
for example that it is spatially smooth [Matthews and
Segall, 1993], although the approach here is general and
uniform slip bases can also be used.
Substituting the model for slip (3) into (1) yields

M
= YN POFY + Lxt) + e (9

Ur(Xn, 1)

where summation on p is implied and

FY = [ BOG, e Om(OdEE). ()
If the network contains N stations with coordinates
Xp, n =1,2,... N, the 3 x N displacement components
can be collected in a data vector d,

di(tj):u,(xn,tj), i:3(n—1)+7’ (6)
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Letting m = 3(k — 1) + p, we can write the observation
equation in the following form

3M

> em(ty) Fim +-Lilt;) + €5

m=1

d;(t;) = (M

Numerous geodetic measurements have shown that
interseismic deformation accumulates in a nearly steady
state manner [e.g., Savage and Lisowski, 1995]. The
goal here, however, is to search for small departures
from steady state deformation. Because we do not know
a priori the functional form of these transients, a non-
parametric description is required. Given the prior ex-
pectation that slip is nearly steady, we adopt a stochas-
tic model in which the slip accelerations are nearly zero.
If the accelerations are identically zero, then the slip
velocity is constant, and relative station displacements
accumulate linearly in time. Assuming the basis func-
tions are appropriately normalized, this implies, from
(3), that the ¢,, are small. We thus adopt the stochas-
tic representation

Em(t) = wm(t), (8)
where w,,,(t) are independent white noise processes with
variance . Integrating (8) twice with respect to time -
yields

cm(t) = Umt + Wi (t) (9)

where we assume, without loss of generality, that ¢, (¢ =
0) = 0, that is, we measure accumulated slip from the
time of the ﬁrst observation. W (t) is integrated random
walk, with scale parameter «

W(t) = /Ot B(t")dt’, (10)

where o has unit of length?/time®.
2.1 State Space Models

The stochastic equations for the local benchmark mo-
tion and the time dependence of the tectonic signal are
easily modeled using state space methods. These repre-
sent a stochastic system in terms of a state vector that
evolves linearly in time and is also linearly related to the
data. An advantage of this method over, for example,
frequency domain methods is that there is no require-
ment that the data be regularly sampled in time. A
further advantage is that the number of observations
at each measurement epoch can vary, so that missing
data from a particular station (or group of stations) are
easily handled.

Let X} represent the state vector at epoch #x,k =
0,1,2,.... The state space model is governed by the
observation equations (11) which relate the data to the
state vector

dp = HiXp+ e, & ~NORy),  (11)

and the state transition equation (12)

Xit1 = Top1 Xk + Ok41, 6 ~ N(0,Qr41), (12)
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which describes the evolution of the state vector due to
the system dynamics.

Random walk and integrated random walk are easily
represented in the state space formalism. For a random
walk X = B(tx) (equation (2)), and the state transi-
tion equation is

Th=1, Qr=T(tk —tr-1), (13)

i.e., the state at time ¢54; is equal to the state at time
t plus a random increment with variance proportional
to the elapsed time.

The signal (9) can be modeled with the state vector

X = [v, W(ty), W(t)]%, (14)
and
C(tk)z [tg,1,0]X}. (15)

The state space model is completed by specifying the
state transition matrix 7y and covariance Q

1 0 0

T, = 0 1 (tk—tk_.l) (16)
00 1
0 0 0

Q = | 0 olimiml gliel (1)
0 azg————)—t"_tz"‘l o?(ty —tr-1)

A simple example may be illustrative. The signal in
this case is quadratic in time, while the added error
process is white (Figure 1). When « is identically zero

SEGALL AND MATTHEWS: TIME DEPENDENT INVERSION

the model (9) is linear in time, and in fact the filter-
ing procedure described below yields the least squares
linear fit to the data. As « increases, the estimate be-
comes more oscillatory, and indeed with a very large
the estimated signal fits each data point. An interme-
diate choice of «, however, yields a very good fit to
the underlying quadratic signal. Note that it was not
necessary to know that the signal is, in fact, quadratic,
or even to prescribe a parametric form for the signal.
It is required, however, that the temporal smoothing
parameter « be chosen properly. Maximum likelihood
methods for selecting « are discussed below.
The state vector for the full geodetic network is

X = [v1, Wi(ty), Wi(te), va, Wz(tk),Wz(tk), e
var, War (i), War(t), Bui(ty), Ba(tr), ... Bn(te)]T
(18)

where M is the number of basis functions and N is the
number of stations in the network. The length of the
state vector is 3M + N: three terms for each basis vector
and one term for the random walk component at each
station.

The state transition matrix for the Network Inversion
Filter has the form

W 0 0 0

T,=| 0 - 0 0 19
0 0 T o0 (19

where there are M submatrices T} of the form defined
by (16). The process covariance matrix is of the form

400 T T T T T T T T T
3001
O Data
200 |- — alpha=0.0 b

— alpha =5.0

100 4
0 -
_1 00 ! 1 1 1 1 1 | - 1 1
0 10 20 30 40 50 60 70 80 90
b
400 T T T T T T T T T
800 | Data
200k |~ — True Signal N
— alpha = 0.05
100 b

0 v.

_1 00 1 i 1 1
0 10 20 30 40

100

Figure 1. Simple example to illustrate nonparametric estimation of an underlying signal. Data
generated by a second order polynomial with white noise added. (a) When a = 0 the filtered
estimate is exactly equivalent to a least squares fit of a straight line to the data. (Note that
the linear fit systematically underpredicts the data at short and long time, and overpredicts the
data at intermediate time.) With o = 5 the estimate clearly overfits the data. (b) With an
appropriate choice of a the underlying signal is reasonably approximated.
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QY 0 0 0
Qi = 0 - 0 0
0 0 QY 0

0 0 0  72(tk —th—1)INxn

(20)
where there are M submatrices Q¥ of the form defined
by (17). Here we have assumed that the random walk
variance is the same at all sites, which is unlikely to
be true in nature. Allowing for different random walk
statistics at each station is accomplished by straightfor-
ward modification of (20). This would, however, com-
plicate maximum likelihood estimation of the variance
parameters.

The observation matrix is

0

ty 0
0 0

0 0
Hy = F 0 1

10
00 tk ) IN)(N
(21)

The submatrix F', defined in (5) as the N x M matrix
that maps the contribution from each basis function to
the data, premultiplies the M x 3M matrix in square
brackets. The N x N identity matrix maps the local
benchmark motion into each observation.

Finally, the observation covariance is taken to be
known to within a scalar

Rk = O'ZEk, (22)
where X is an N x N matrix. In the GPS case, X} is
known from the GPS analysis software and includes cor-
relations between components and stations. The need
for a scale factor X arises because the analysis software
does not fully model all error sources (multipath for
example).

2.2 Filtering and smoothing

The state vector Xy is estimated at each state t; by
recursive linear Kalman (forward) filtering and (back-

ward) smoothing. Let
Xppj = E[X|di,....d), (23)
Ye1; = Cov[Xi|dy,...,d], (24)

be the conditional mean and covariance matrix of the
state at epoch k given data through epoch j. The left
side of (23) is read “X at epoch k given data to epoch
77 or more simply “X at k given j.”

The conditional means and covariances satisfy the
one-step-ahead prediction equations,

Xit1(e = Tepr X | & (25)

Stk = Thpr Zepw T+ Qrer, (26)
and the update equations

Xijx = Xgjs-1 + Gruw (27)

ek = Zpjk-1 — Gp Hy Zppr-1-(28)
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Here, the innovation, or prediction residual, vy is the
difference between the observed data at time ¢; and
that predicted by the state vector conditioned on data
up to time tx_3

VkEdk_HkXHk—la (29)

and the Kalman gain G}, is given by
Gy =Xk k-1 HF (Re + Hx Si|x-1 HH)™ (30)

The Kalman filter proceeds by starting with a prior
estimate X;|o and covariance X;|o. The prior may
be “diffuse”, with large uncertainty on the steady state
slip v, or may reflect a priori information from previous
studies. Updating the state with the first observation
d; using (27) and (28) leads to the posterior mean X, |,
and associated covariance. Note that if the observation
agrees exactly with that predicted by the prior the in-
novation is zero and the state vector does not change,
although the covariance may change. The prediction
equations (25) and (26) are then used to estimate Xy | ;
and its covariance, and so on. The recursive filtering ap-
proach is both computationally efficient and also lends
itself well to the problem of anomaly detection, as dis-
cussed below.

Having stepped through all of the data going forward
in time, we end up with the conditional mean and co-
variance at the last epoch

Xnn. = EXweld],
ENelNc = COV[XNeld],

where N, is the number of observation epochs. To com-
plete the estimation procedure, we compute the poste-
rior means and covariance of the state at all times of
interest conditioned on all of the available data. This
may be accomplished using the same recursive predic-
tion and updating structure as in the filtering equations,
but now going backward in time. The recursive smooth-
ing algorithm, due to Rauch et al. [1965], has the form

Xitk + S Kepriv — Xegpi)a)s
(31)

Xe|N, =

Yiie + Sk Ckp1yN. — Zk+18)SE
(32)

YpyN, =

where the smoothing matrix at the k*® epoch is given
by

Sk:zk|kTE E—l

E+1]k" (33)

2.3 Maximum Likelihood Estimation of Filter
Hyperparameters

As seen from Figure 1, it is critical that the accel-
eration variance, or temporal smoothing parameter o2,
be chosen appropriately. It is also necessary to know
or estimate the random walk scale parameter, 72, and
the measurement variance, o?, from the data. Note
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that with a single baseline it is difficult to distinguish
between local benchmark motion and temporally vary-
ing fault slip. In other words, estimates of 72 and
a? are highly negatively correlated and poorly deter-
mined. This is not true with the Network Inversion
Filter, which analyzes all baselines simultaneously. Be-
cause time-varying fault slip is coherent across the net-
work, whereas benchmark wobble is incoherent, a net-
work analysis can distinguish between these effects.

We estimate the filter hyperparameters ¢, 72, and
a? by maximum likelihood. The likelihood is computed
using a recursive filtering approach that is numerically
efficient. Recursive computation of the likelihood is
based on the so-called prediction-error decomposition
le.g., Harvey, 1981], in which the joint probability den-
sity function of N, ordered observations is written as
the product of the conditional probability density func-
tions of each observation given the parameter @ and all
previous observations:

Ne
p(dy,...,dne | @) = [] pe(di | @;dy,..., deon).
k=1
(34)

The parameter vector @ has components a2, o2 and 2.
In general, the covariance matrix of the observational
errors Ry is known only up to the scalar multiplier, 2.
If the errors in the state-transition equation @ and the
a priori variance 1| o can be scaled by o2, then we need
only optimize the likelihood over a?/c? and 72/02.

From the decomposition (34), the loglikelihood for @
given d is

L(@|dy,... di-1)]

(35)
For Gaussian data, the conditional probability dens1ty
functions are Gaus51an with mean

Ne
ydne) = Zlog[Pk(dk | @;d,, ...,
k=1

ﬁv GPS Stations

Depth
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E(dk|d1,...,dk_1):&k|k_1, (36)
and covariances
E[(d; — di 1 -1)%] = 0V (37)

Thus the loglikelihood is

£(®/s% | d)
1

- §Zlog|Vk| -
k=1

where Ny is the total number of data Ng; = Zg;l ng,
with nj the number of observations at each epoch. (No-
tice that in the filtering procedure there is no require-
ment that all stations be observed at every epoch.) As
in (29), the vy are the innovations,

1
—§Nd log o2

N,
Zg~2 Z Ilg’ Vk—ll/k (38)
k=1

I/k:dk—&k|k_1:dk—Hka[k—-l) (39)

where both Hj and X | k —1 may depend on @. The
variance of the k" innovation is

Vi = Ry + Hy Sy - 1 HE. (40)

From (38) the maximum likelihood estimate of o2

Ne

1
9 Z T
o’ = — 1%
Na (= ’

Substituting (41) into (38) yields

Vk——lllk. (41)

L(©/c? | d)

N,

N,
1 S -t
2k§;log|Vk| §Ndlog kz_ll/k Vi~ v

1
*E(Nd - Nd log Nd)

I —=

(42)

0 2 4 6 8 10

Distance From Fault

Figure 2. Geometry of locked strike-slip fault. Fault is locked from surface to depth D. Depth
and distance are scaled by D. Below D the fault slips at a rate $(t). An array of displacement

sensors form an array across the fault.
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Figure 3. Simulated data over a buried strike-slip fault, with ¢ =3 mm and 7 =6 mm/yr%.
There are 41 baselines total; only the 21 baselines closest to the fault are shown, from west to

east, with origins offset vertically for clarity.

3. Estimating Ternporally Varying Slip
Rate

We consider first a simple example of an infinitely
long strike-slip fault locked from the surface to depth D
(Figure 2). Below that depth the fault slips everywhere
at rate $(t). The problem is one of antiplane strain, that
is, the only non-zero displacement is ugz, which varies as
a function of z; and x5 only. The displacement rate at
the Earth’s surface is well known to be

s(t)

ita(2z = 0,1) = == tan_l(%).

(43)

Consider a linear array of stations which stretch across
the fault in the range —8D < z; < 8D. In the simula-
tion presented here, there are 41 stations in the array.
Simulated data (Figure 3) are generated from the un-
derlying slip history s(¢) with added measurement error,
0 =3 mm, and rardom walk local benchmark motion
with 7 = 6 mm/yr?. Note that while it is possible to
discern the linear trends in the data, possible changes
in the rate of deformation are difficult to detect by eye.

The first step in the analysis is to estimate the filter
hyperparameters, 2, 72, and o2, by maximum like-
lihood. Numerical calculations of the likelihood for
a range of 7/o and a/c verify that these parameters
are essentially uncorrelated, indicating that the Net-
work Inversion Filter can distinguish between random
benchmark motion and time-varying slip. This result
simplifies the task of computing maximum likelihood es-
timates considerably, since one need only conduct two
univariate optimizations in the two coordinate direc-
tions to find the optimal values.

Figure 4a shows minus twice the log likelihood (—2£),
as a function of 7, for @« = 0. The corresponding esti-
mates of o are shown in Figure 4b, which shows that
the estimates of o decrease with increasing 7. Ten val-
ues were computed, with the minimum corresponding
to the maximum likelihood estimate. As seen from Fig-
ure 4, even this crude approach to optimization yields
estimates that are in excellent agreement with the true
values.

With this estimate of 7/c held fixed, we next com-
pute —2L as a function of o (Figure 5). A clear min-
imum in —2L exists corresponding to & = 23.5. We
also compare the maximum likelihood estimate of o
with the “optimal” estimate, where optimal is defined
as minimizing the root-mean-square difference between
the true and estimated slip rate (Figure 5b). In this
example the optimal value of « is slightly greater than
the maximum likelihood estimate, corresponding to a
somewhat more oscillatory slip rate. When analyzing
actual, rather than simulated, data we will necessarily
rely on the maximum likelihood estimates of a. The
previous simulations suggest that these estimates may
be close to optimal.

Given estimates &, 7, and &, it is possible to com-
pute smoothed estimates of the slip history. Figure 6
compares the estimated slip and slip rate histories with
the true process. Despite the fact that the signal is not
at all obvious in the raw time series (Figure 3), and
that the filter has no prior knowledge of the character
of the signal, the Network Inversion Filter does a good
job of recovering the true, exponentially increasing, slip
history.

The smoothed slip rate significantly underestimates
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Figure 4. (a) Plot of —2£ as a function of random walk parameter 7 for the data set shown
in Figure 3. The maximum likelihood estimate (minimum of —2£) is shown with the star. (b)
Corresponding estimate of o. The maximum likelihood estimate is shown with the star and the
correct values with the closed circle.

the rapid rise in slip rate at the end of the year, even how & affects the estimated slip rate history, we com-
considering the formal uncertainties in the smoothed es-  pute results for three values of «, including the maxi-
timate. This occurs because the smoothed covariance mum likelihood estimate (Figure 7). Increasing o to 39,
(equation (32)) does not include uncertainties in the fil-  which according to Figure 5b is nearly optimal, results
ter hyperparameters, notably «. To get a better idea of in a more oscillatory slip rate that somewhat better fits
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Figure 5. (a) Plot of —2L as a function of the temporal smoothing parameter o for the data
set shown in Figure 3. The maximum likelihood estimate (star at minimum of —2£) occurs at
& = 23.5. (b) Root-mean-square error in the slip rate as a function of a. While the maximum
likelihood estimate is nearly optimal, a slightly larger value of o would decrease the root-mean-
square rate error slightly.
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Figure 6. Comparison of the the estimated (a) slip and (b) slip rate histories with the true
underlying process. Smoothed estimates are shown with 2 standard deviation confidence intervals.

the true slip rate toward the end of the year. Decreas-
ing « to 14 flattens the slip rate and results in a poorer
fit to the true slip rate.

The power of full network filtering in recovering the
underlying signal is illustrated by considering simulated
data from two neighboring stations (Figure 8). This
figure shows the decomposition of the observed data
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Figure 7. Estimates of slip rate as a function of time
for different values of the temporal smoothing parame-
ter a. The solid curve shows the estimate corresponding
to the maximum likelihood estimate of . For a slightly
larger value of a the estimated slip rate oscillates too
much about the true slip rate. For a slightly smaller
value of o the estimated slip rate does not fully recover
the increase in slip rate near the end of the year.

into signal, local benchmark motion, and measurement
error as in (1). Recall that the Network Inversion Filter
equations specify that the local benchmark motions are
spatially incoherent, whereas the signal arises from fault
slip in an elastic medium, and is thus spatially coherent
across the network. Thus, the smoothed estimate is
able to distinguish the underlying coherent signal, even
though the two data series are significantly different.
Note that in some cases the estimated signal does not
even “go through the data”, because it must also be
consistent with data from the entire network, not just
a single station.

4. Slip Rate Anomaly Detection

Time domain filtering methods are not only able to
estimate past fault slip histories, but they also lead
rather naturally to alarm, or anomaly, detectors. As
the previous example illustrates, it can be difficult to
visualize transient signals by eye in data from a large
array, especially if one wants to associate the transients
with an inferred fault slip process. When one consid-
ers the Japanese national GPS network already pro-
duces 2 x 10° positions per year, it is easy to see that
automated procedures are needed to assess whether
changes in the style of crustal deformation have taken
place. Time domain filtering is ideal for this because
the formulae consist of repeated predictions and up-
dates. That is, one is continually predicting the next
state, conditioned on all past data, and then comparing
with the next set of observations. When the new data
differ significantly from the prediction, this is a natural
indicator of a change in the underlying process.
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Figure 8. Decomposition of two neighboring baselines into signal, local benchmark motion,
and measurement error. Notice that the estimated signal at the two sites is very similar even
though the time data series are significantly different. The differences are due to the different
local benchmark motions and measurement errors at the two stations. The signal is coherent
between stations.

As an example we generated three years of synthetic
data with constant slip rate (at 20 mm/yr) for the first
two years, but with an exponentially increasing signal
added in the third (Figure 9). In this example the mea-
surement error (o) is 3 mm, and the scale of the random

benchmark motions (7) is 4 mm /yr?. We imagine that
the first two years of data would be used to estimate the
variance parameters o2, 72, and o?. Based on these es-
timates one could predict the expected slip rate for the
following year. We then compare the filtered estimates

Simulated Data: tau = 4; sigma =3

Displalecement (mm)

L L 1

1.5 2 25 3
Time (years)

Figure 9. Simulated data over a buried strike-slip fault. For the first two years the slip rate
is constant; an increasing exponential is added in the third year. Here 0 =3 mm and 7 = 4
mm/ yr%. There are 41 baselines total; only the 15 baselines closest to the fault are shown, from
west to east, with origins offset vertically for clarity.
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Figure 10. Minus twice the logarithm of the likelihood
(—2L) as a function of temporal smoothing parameter
« for the first two years of data shown in Figure 9.
Note that —2£ monotonically increases with a when
the underlying slip rate is constant.

with the prediction to determine how long it takes for
the Network Inversion Filter to determine that the fault
slip rate has increased.

The procedure follows that described previously, ex-
cept that when the underlying slip rate is constant -2
times the logarithm of the likelihood (—2£) is flat for
small « and rises for larger o (Figure 10). This indi-
cates that the data are consistent with a constant rate
process (o = 0), but are adequately modeled so long as
« is sufficiently small. In this case the predicted slip
rate for the first two years is essentially steady for «
less than ~ 5. To avoid missing potential variations in
slip rate, we choose & = 3.

22,401

The first two years of data were filtered and smoothed
using the estimated 7 and &. The prediction equations
(12) were then used to forecast the slip rate in the third
year. Because the prior expectation of the Network In-
version Filter is that fault slip is a constant rate process,
the predicted slip rate is constant, with uncertainty that
increases with time depending on « (Figure 11). The
greater the acceleration variance «, the more rapidly
the slip rate uncertainty increases with time.

The filter was then initiated on data from the third
year, using the state at end of year two (t = 2) as a
prior. We again use & = 3. Figure 11 compares the
smoothed estimates (for 0 < ¢ < 2 years) and the pre-
dictions (for 2 < t < 3 years) with the filtered esti-
mates (using (27) and (28)) for the third year. In the
anomaly detection mode the Network Inversion Filter
outputs estimates conditional only on data up to the
nresent epoch, whereas in the previous example the slip
rate was smoothed (i.e., conditioned on all of the data).

The filtered slip rate estimate increases steadily, and
significantly exceeds the forecast slip rate at the 3 stan-
dard deviation level for roughly ¢t > 2.9 years. This in-
dicates that there is a significant increase in estimated
fault slip rate relative to the previous two years. Thus,
for this example, the filter is able to detect a significant
change in slip rate after roughly 0.9 years.

The choice of temporal smoothing parameter « de-
serves some discussion. If « is chosen to be too large,
the uncertainties in the predictions grow very rapidly

Slip-Rate Predictions
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. . l
sok | Estimate/Prediction N
"= +/- 3 sigma !
— = True Slip-rate I
50F | o Filtered Estimate )
/
!
< !
€40
E
2
i
430
%)
20
10
0 1 1 1 1 1
0 05 1 1.5 2 2.5 3
Time (yrs)

Figure 11. Ability of the Network Inversion Filter to detect an anomalous increase in fault
slip rate. Smoothed slip rate estimates are shown for the first two years of data from Figure 9
(“estimate”) along with 3 standard deviation error bounds. The slip rate is then predicted for the
third year (“prediction”) based on the state at the end of the second year. At the beginning of
the third year, filtered estimates (conditional on data only up to that point) are shown (“filtered
estimate”), along with 3 standard deviation error bounds. Notice that at ¢t ~ 2.9 years, the
filtered and predicted slip rates are different at the 3¢ level, indicating that a significant increase

in slip rate had occurred.
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and a huge change in underlying slip rate would be re-
quired to fall outside the confidence bounds of the pre-
dictions. On the other hand, if the choice of « is too
small during the filtering stage, the estimates are forced
to be nearly steady and the model may not fit the data.
In an actual situation in which a change in slip rate
was suspected, the acceleration variance could be rees-
timated using additional data to determine whether «
should be increased. Doing so would improve the filter
performance when tracking the growing slip rate tran-
sient.

5. Inversion for Variable Fault Slip in
Space and Time

We consider now true space-time inversions, in which
the fault slip depends both on time and spatial coordi-
nate on the fault surface s(x,t). The inverse problem,
which is well known to be nonunique, is regularized by
seeking solutions that minimize some norm of the slip.
A number of regularizing norms can be used (see, for
example, Matthews and Segall [1993] for a discussion
in the context of antiplane slip on a vertical fault). As-
suming that an appropriate norm and inner product are
defined

||s(x)|[2 =<s,8>, (44)

where angle brackets denote inner ‘product, such that
the set of admissible solutions to the inverse problem
defines a Hilbert space, and that the observation equa-
tions (1) are bounded linear functionals, then the for-
ward problem can always be written in the form of an
inner product

di(tj) =< S(E,tj),q)i(f) > +£i(tj)+€ij 1=1,2,. (i\gs

Simulated Data:
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Figure 12. Geometry of horizontal detachment fault.
Fault depth is D and extends for 0 < z; < L. Fault
slip is antiplane and varies with lateral distance and
time s(z1,t). An array of GPS instruments extends
from —-3D <z < L+ 3D.

where the ®;(£) are known as “representers”, and N is
the number of observing stations in the network.

The regularized inverse problem is thus to minimize
the norm of the fault slip ||s(x)||, subject to the con-
straint that the residual norm be less than some thresh-
old. The solution is in the form of a linear combina-
tion of the representers ®; [Matthews and Segall, 1993;
Parker, 1994]. Here, rather than use the representers as
basis functions, we define related orthobasis functions,
as follows. The Gram matrix is defined as the inner
product of the representers, with components

Fij =< @i,q)j > . (46)

Expressing the Gram matrix as T UAUT,
where A is a diagonal matrix of eigenvalues (A
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Figure 13. Simulated data over horizontal decollement. Here ¢ =3 mm and 7 =1 mm/yr%.

There are 20 baselines total, shown, from west

to east, with origins offset vertically for clarity.
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Figure 14. Growing slip event on a horizontal decollement. (a) True slip rate. (b) True slip.

diag(A1,Ag,... AN) with Ay > X3 > ... An), and U an
orthogonal matrix of eigenvectors. This decomposition
allows one to define orthobasis functions as.

N
B = Uji®;
j=1

The slip is reconstructed from a linear combination of
the orthobasis functions, as in (3), where the coeflicients
¢k (t) are estimated via the filtering equations. The ob-
servation equation (7) thus takes the form, making use
of (3), (45), and (47),

d(t) = UAe(t) + L(t) + e

(47)

(48)

Thus, the matrix that maps the contributions from each

basis function to the observations in (21) is given by
F =UA.

Given the bases B;, the spatial squared nornt of the
solution, from (3), (46), and (47), is

< 5,5 >=c’Ac. (49)

This demonstrates that the orthobasis functions cor-
responding to the largest eigenvalues make the largest
contribution to the solution norm. In the context of the
Bayesian Network Inversion Filter, spatial smoothing
enters through the prior state vector, X; |, and asso-
ciated covariance, ¥ | o. Given the a priori expectation
that the solution norm is small, we set the prior state
vector, X |o = 0, where 0 is a zero vector of length
3M + N. Based on (49) the corresponding covariance
is

2110 = v2diag(1/A1,0,0,1/X2,0,0...1/Ax,0,0,0x),
(50)
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where Oy is a zero vector of length N. In this way
the basis functions with the greatest norm are a priori
judged to be zero with small prior variance, whereas
basis functions with lesser norm are a priori taken to
be zero with much greater prior variance and are thus
more loosely constrained. Note that in practice we trun-
cate the spectrum of eigenvalues, reducing the number
of independent basis functions, in order to ensure that
numerically unstable components are not considered in
the solution.

The proportionality constant 42 scales the overall size
of ;| o and thus controls the weight put on fitting the
data versus minimizing the spatial norm of the esti-
mated slip. In the work by Matthews and Segall [1993]
the corresponding parameter was chosen by cross vali-
dation. Here we make use of the overall Bayesian con-
text of the Network Information Filter and estimate v
by maximum likelihood. Thus, for space time inversions
it is necessary to estimate three parameters (7/0, a/o,
and /o) by maximum likelihood.

5.1 Example 1: Accelerating Slip Patch

Consider a horizontal detachment fault subject to an-
tiplane deformation (Figure 12). As in the earlier ex-
amples, slip is only out of plane and there is a single
non-zero displacement ug, which varies only as a func-
tion of z; and z5. Displacement at the Earth’s surface
can be written as

L S
I (¢, )de

“rep O

where for notational simplicity we let £ = z;. From
observations of ug(z,t) we seek to estimate the fault

slip s(¢,1).

As described above, the inverse problem is regularized
by seeking solutions that minimize a spatial norm of
the slip. For simplicity, we employ here the L2 norm
corresponding to the following inner product

L
<f9>= [ FOae. 52)
0
The representer ®; is thus given by
1 D
q’; = — (53)

TR @i D

We generate synthetic data (Figure 13) from a grow-
ing slip zone on a horizontal decollement. The true slip
and slip rate are shown in Figure 14. Measurement er-
rors and local benchmark motions are added with ¢ = 3
mm and 7 = 1 mm/yr3.

In order to accelerate the maximum likelihood opti-
mization we generated preliminary estimates of 7 and &
by analyzing each baseline separately assuming steady
state deformation (as was done for example by Lang-
bein and Johnson [1997]). The median values from the
network were 7 = 1.6 mm/yr? and & = 2.9 mm. As ex-
pected, T overestimates the correct value, as non-steady
deformation is included in the benchmark motion in this
estimate. The next step was to maximize the likelihood
over /o, and y/o. This yielded estimates of & = 294,
and ¥ = 0.029 (the latter being the minimum value al-
lowed). Given these estimates, a full network analysis
of the likelihood yielded an improved estimate of the
random walk variance 7+ = 0.63, which is within 40%
of the correct value. Finally, a/c, and v/0 are recom-
puted with the updated value of 7. The loglikelihood
surface as a function of «/c, and y/¢ is shown in Fig-



SEGALL AND MATTHEWS: TIME DEPENDENT INVERSION 22,405

a 2
40 %%%% . Estimated Slip Rate
£ VN
5,08 //,,,//%///5//
" (g 02 —0 2 pone
Y 0 o ° pistan®
b
Estimated Slip

40

I Wi
)
i,
M,

Slip Amplitude (mm)

/
7 24
7

R

N
NN
NN
NN

NN
N
AN

Figure 16. Estimated (a) slip rate and (b) slip, for propagating slip event corresponding to
the data shown in Figure 13. Hyperparameters estimated by maximum likelihood correspond to
+ =0.63,6 = 2.94,& = 136.5, and ¥ = 19.35. Compare to true slip and slip velocity shown in
Figure 14.

ure 15. Maximum likelihood estimates are & = 136.5
and 4 = 19.35.

The slip and slip rate estimated by the Network In-
version Filter, using the hyperparameters determined
by maximum likelihood, are shown in Figure 16. The
filter does a reasonably good job of recovering the true
slip event. The maximum slip is essentially correct at
40 mm, and the overall slip distribution is reasonably
well approximated. The estimate does contain sidelobes
that are not present in the true distribution, and the es-
timated slip rate does not recover the exponential rate
increase very well. We note that the likelihood surface
(Figure 15) is relatively flat near the minimum, and in
fact a solution with somewhat more spatial smoothing
(4 = 8.0) and less temporal smoothing (& = 290.0) does

an even better job of recovering the true slip rate pat-
tern in space and time. This example emphasizes that
one must examine a number of solutions corresponding
to a range of filter hyperparameters around the max-
imum likelihood estimates before drawing geophysical
interpretations from the inversion results.

5.1 Example 2: Propagating Slip Pulse

We next consider an example with a slipping zone
that propagates from left to right across the horizon-
tal decollement (Figure 17). Data are generated with
errors of ¢ =3 mm and 7 = 1 mm/yr?, as before (Fig-
ure 18). The maximum likelihood calculation proceeds
as before; however, in this case there are no steady state
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Figure 17. Propagating slip event on a horizontal decollement. (a) True slip rate. (b) True slip.

components to the solution and thus =y is weakly con-
strained. The likelihood was maximized by the smallest
value of v tested (¥ = 0.0029).

The slip and slip velocity estimated by the Network
Inversion Filter, shown in Figure 19, do a reasonably
good job of recovering the input propagating slip event
(Figure 17). The stochastic, non-steady, components of
the slip velocity are constrained to be zero at t = 0,
so that it takes roughly 0.1 years for the estimated slip
rate to build up. Following this, the sense of a slip
event propagating from left to right across the fault is
clearly identifiable in the estimate, and the maximum
slip velocity is approximately correct.

As suggested above, the solution is insensitive to
for sufficiently small values. We find that the estimated

slip rate (and slip) is practically indistinguishable for
4 < 0.003. For larger values of v, temporally stationary
sidelobes are introduced into the estimated slip rate.

6. Discussion

A number of factors will warrant further analysis.
The filtering equations can be simply extended to cover
the more realistic case in which each station exhibits
random local motions with distinct scale parameters
(say 7; at the jth station). A straightforward attempt
at maximum likelihood estimation of the greatly in-
creased set of hyperparameters, however, is not likely
to be computationally feasible. One can always esti-
mate approximate values of the 7; by analyzing each
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Simulated Data: Propagating Slip Pulse
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Figure 18. Simulated data over horizontal decollement, with ¢ =3 mm and 7 =1 mm/yr%.
There are 20 baselines total, shown, from west to east, with origins offset vertically for clarity.

baseline separately assuming steady state deformation
(as in the work of Langbein and Johnson [1997]). It may
then be possible to refine these estimates using an ex-
tension of the Network Inversion Filter. Seasonal effects
are also likely to be present in geodetic measurements.
For example, seasonal variations related to rainfall have
been observed in the two-color geodimeter data at Park-
field [Langbein et al., 1990]. Such effects introduce local
motions that may be random with respect to the direc-
tion of the perturbation, but nevertheless temporally

Slip Rate (mm/yr)

correlated. Time domain filtering can be extended to
estimate stochastic seasonal variations, although at the
expense of added model complexity.

Another issue that must be investigated is the influ-
ence of misspecification of the fault geometry on the
estimated slip rate pattern. In the work described here
we have assumed that the fault geometry is known, and
this is never precisely so. Of course, elastic inhomo-
geneity, anisotropy, and unmodeled inelastic deforma-
tion can potentially bias results from the Network In-

Estimated Slip Rate

Figure 19. Estimated (a) slip rate, and (b) slip for propagating slip event corresponding to
the data shown in Figure 18. Hyperparameters estimated by maximum likelihood correspond to
7 =0.6,6 = 2.9,& = 1.05 x 10%, and 4 = 2.9 x 10~3. Compare to true slip and slip velocity

shown in Figure 17.
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Figure 19. (continued)

version Filter. Ultimately, the power of the technique
will be determined by its ability to elucidate processes
within the Earth.

7. Conclusion

We have introduced a Network Inversion Filter, which
combines elements of linear inverse theory and discrete
time Kalman filtering, for estimating the distribution
of fault slip in space and time using data from dense,
frequently sampled geodetic networks. Although not
explicitly considered here, it is possible to include other
data types, including data from creep meters and strain
meters, so long as the the noise spectra of the data are
reasonably well characterized.

The Network Inversion Filter is shown, by simulation,
to be capable of recovering nonparametric estimates of
fault slip transients in the presence of correlated er-
rors including local benchmark instability. We have
also shown that with a sufficient density of stations and
signal to noise ratio, it is possible to image fault slip
transients, including propagating slip events. While
we do not necessarily claim that the transients simu-
lated here all occur in nature, we do suggest that the
methods described here provide the appropriate tool for
searching for such slip transients. One of the most strik-
ing results of this work is the recognition that random
benchmark motions can easily obscure significant slip
transients (see, for example, Figure 3), suggesting that
similar events may have occurred and simply escaped
detection. While strain meters have vastly greater sen-
sitivity to deformation than do GPS baseline vector de-
terminations, there are very few places with sufficiently
dense strain instrumentation to be able to distinguish
between tectonic strain and deformation very local to
the instrument.

The Network Inversion Filter leads naturally to au-
tomated methods for detecting anomalous departures

from steady state deformation. We argue that the Net-
work Inversion Filter provides a rational basis for an-
alyzing data generated by large networks for deforma-
tion transients that might precede volcanic eruptions
and perhaps earthquakes.
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