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[1] We have developed a tool to detect transient deformation signals from large-scale
(principally GPS) geodetic arrays, referred to as a Network Strain Filter (NSF). The
strategy is to extract spatially and temporally coherent signals by analyzing data from
entire geodetic networks simultaneously. The NSF models GPS displacement time series
as a sum of contributions from secular motion, transient displacements, site-specific
local benchmark motion, reference frame errors, and white noise. Transient displacements
are represented by a spatial wavelet basis with temporally varying coefficients that are
estimated with a Kalman filter. A temporal smoothing parameter is also estimated online
by the filter. The problem is regularized in the spatial domain by minimizing a smoothing

(Laplacian) norm of the transient strain rate field. To test the performance of the NSF,
we carried out numerical tests using the Southern California Integrated GPS Network
station distribution and a 3 year long synthetic transient in a 6 year time series. We
demonstrate that the NSF can identify the transient signal, even when the colored noise
amplitude is comparable to that of transient signal. Application of the method to actual
GPS data from the Japanese GPS network (GEONET) on the Boso Peninsula also
shows that the NSF can detect transient motions resulting from aseismic fault slip.

Citation: Ohtani, R., J. J. McGuire, and P. Segall (2010), Network strain filter: A new tool for monitoring and detecting transient
deformation signals in GPS arrays, J. Geophys. Res., 115, B12418, doi:10.1029/2010JB007442.

1. Introduction

[2] In the past decade, there has been a tremendous
increase in the number and density of geodetic networks for
the study of crustal deformation. Large-scale permanent GPS
arrays have been developed in Japan (GEONET) [Hatanaka
et al., 2003], southern California [Hudnut et al., 2002], the
Basin and Range (BARGEN) [Niemi et al., 2004], the Pacific
Northwest (PANGA) [Miller et al., 2002], the San Francisco
Bay region (BARD) (see, for example, http://gcmd.nasa.gov/
records/GCMD_BARD-GPS.html), and elsewhere. In the
western United States, 875 continuous GPS receivers are
operated by the Plate Boundary Observatory (PBO) as part
of the National Science Foundation Earthscope Initiative
(for details, see http://pboweb.unavco.org/). These GPS net-
works yield daily estimates of site positions with a precision
of 1-2 mm in the horizontal and 3—4 mm in the vertical over
regional distances [e.g., Zhang et al., 1997] and are for the
first time providing deformation measurements dense in both
space and time. Networks of borehole tilt meters [Hirose and
Obara, 2005] and strain meters [Wang et al., 2008] provide
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greater sensitivity at periods shorter than a few weeks and
have yielded significant insights into transient processes [e.g.,
Hirose and Obara, 2005, 2006].

[3] For some time, much of the geophysical GPS com-
munity’s research effort has focused on obtaining accurate
interseismic velocities and coseismic displacements (which
are reviewed in, for example, Segall and Davis [1997] and
Sagiya [2004a, 2004b]). More recently, transient deforma-
tion events have received a great deal of attention. These
observations can be modeled as resulting from slip on faults
with a rupture velocity much less than the shear wave
velocity. Because these so-called slow slip events are nomi-
nally invisible to seismic instrumentation yet may release
significant elastic strain, they have become the subject of
great scientific interest. Slow slip events have now been
discovered in Japan [Hirose et al., 1999; Ozawa et al., 2001;
Miyazaki et al., 2003; Ozawa et al., 2002; Miyazaki et al.,
2006], the Cascadia subduction zone [Dragert et al., 2001;
Miller et al., 2002; Szeliga et al., 2008], Mexico [Lowry et al.,
2001; Kostoglodov et al., 2003; Larson et al., 2007], Central
America [Norabuena et al., 2004], New Zealand [Douglas
et al., 2005; McCaffrey et al., 2008; Delahaye et al., 2009],
and beneath Kilauea volcano in Hawaii [Cervelli et al., 2002;
Segall et al., 2006; Brooks et al., 2006]. It is now recognized
that slow slip events in Cascadia and Japan are accom-
panied by 1-5 Hz seismic signals referred to as “nonvolcanic
tremor” [Rogers and Dragert, 2003; Obara, 2002; Shelly
et al., 2007]. The moment magnitudes of these events range
from Mw 5.7 beneath Kilauea to greater than Mw 7 in some
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of the subduction zone events [Kostoglodov et al., 2003]. The
durations of these events also vary considerably; the Bungo
Channel event in southwest Japan lasted roughly 1 year, the
Cascadia slow slip event several weeks, the Kilauea silent slip
event only 1-2 days, while the Tokai gap, Japan slow slip
event lasted roughly 6 years [Miyazaki et al., 2006]. The
Cascadia events are known to be episodic, with repeat times
of 11-18 months [Brudzinski and Allen, 2007; Schwartz and
Rokosky, 2007]. Previously, slow earthquakes have been
identified on the San Andreas Fault from strain and creep
meter recordings [Linde et al., 1996].

[4] Transient postseismic deformation is also well estab-
lished [e.g., Heki et al., 1997; Hsu et al., 2007; Pritchard
and Simons, 2006]. Deformation in volcanic regions is well
known to be episodic, with transient strains preceding some
volcanic eruptions. The time scales of preeruptive deforma-
tion, however, can be quite variable. For example, permanent
GPS stations on Kilauea volcano recorded 8 h of extension
prior to a rift eruption in 1997 [Owen et al., 2000]. On the
other hand, a network of borehole strain meters showed
transient motion only 30 min prior to a basaltic eruption of
Hekla in Iceland [Linde et al., 1993].

[5] The large volumes of data provided by modern con-
tinuous geodetic networks present both opportunities and
challenges. With the order of 10° stations, each providing
three component positions daily, it is difficult to search
for spatially coherent deformation by visual inspection of
individual time series. The problem is complicated by the
presence of time-dependent noise, due to local benchmark
motion and unmodeled atmospheric and other effects.
Because of this, it is almost certain that more subtle signals,
due to smaller magnitude events, exist in data already col-
lected but have gone undetected. Given the size of the data sets
involved and the subtle nature of small transients, it is clear
that automated detection algorithms would be very desirable.

[6] In this paper, we present a new method for detecting
spatially and temporally coherent signals in data from large
GPS arrays, which is referred to as a Network Strain Filter
(NSF). The method builds on previous efforts to develop
time-dependent methods for inverting geodetic data for
slip on faults and dilation of magma bodies, collectively
referred to as the Network Inversion Filter (NIF) [Segall and
Matthews, 1997; McGuire and Segall, 2003; Fukuda et al.,
2004; 2008]. The NIF is a time domain (Kalman) filter that
analyzes all data from a network simultaneously, rather than
processing individual time series station by station. This
allows the NIF to detect spatially coherent transients from
the steady state background strain field. This method has
been applied to geodetic data from California [Segall et al.,
2000; Murray and Segall, 2005], Taiwan [Hsu et al., 2006],
Turkey [Biirgmann et al., 2002], Cascadia [McGuire and
Segall, 2003], Sumatra [Hsu et al., 2006], and Japan [4oki
et al., 1999; Miyazaki et al., 2003; 2006; Ozawa et al.,
2001, 2002, 2003, 2005; Miyazaki and Larson, 2008], and
successfully imaged aseismic fault slip and magma intrusion.

[7] A potential disadvantage of the NIF for detecting strain
transients is that it requires one to specify potential sources
of deformation, such as faults or magma chambers prior to
analysis. While it is possible to develop such models for
small areas, doing so for all of Japan or all of western North
America is a daunting proposition. Furthermore, if either the
model fault geometry or the Green’s functions used to relate
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fault slip to displacement are not fully accurate, the estimate
will be biased, and possible transients may be missed. What is
needed is a method that identifies spatially coherent transient
deformation but does not require source-specific models.
This is the intent of the NSF. In the event that an interesting
signal is detected, independent data could be sought to con-
firm the transient, and more detailed modeling, possibly using
the NIF, could be undertaken.

[8] In the NSF, GPS time series data are expressed as a
sum of steady site velocities, spatially coherent displacements
representing transient crustal deformation, spatially uncor-
related benchmark wobble, and reference frame errors. From
the displacement time histories, it is possible to derive time-
dependent maps of surface displacement, velocity, and strain
rate, from which it is possible to detect transient deforma-
tion. In our approach, the deformation terms are expanded
in a wavelet basis. While other bases could be employed,
wavelets are efficient for representing spatially localized
processes, and they have proven to be advantageous in esti-
mating deformation fields from GPS data [Tape et al., 2009].
The coefficients of the wavelet basis, along with other time-
varying quantities, are estimated by Kalman filtering as in the
Network Inversion Filter. The approach outlined here handles
data from entire networks simultaneously and thus may be
able to detect subtle tectonic signals that are difficult to rec-
ognize from individual time series while at the same time
requiring no source-specific parameterization.

2. Method

2.1.

[9] In this section, we present the formulation of NSF
for data consisting of time series of station positions from
GPS arrays. The extension to time series of EDM or similar
differential displacement measurements is obvious. Point
strain and tilt data could also be included in a straight-
forward manner but is not done so here.

[10] The position x at time ¢ is expressed as,

Formulation

x(t) = x(to) +v- (t —to) +ulx,t) + L(x,t —to) + Ef(t) + €
§~N(0,02§X>, (1)

where v represents the secular site velocity, while u(x,?) rep-
resents a spatially coherent displacement field. By treating
the secular motion at each station independently, we can
accurately model arbitrarily short-wavelength variations in
this field. An alternative approach is to expand the steady
state secular displacements in basis functions as with the
transient motions; however, this approach introduces addi-
tional parameters and complicates transient detection. The
transient displacements wu(x,f) include both tectonic and
nontectonic (e.g., fluid withdrawal) components. Unlike the
NIF, where the source of deformation is explicitly modeled,
the NSF does not attempt to distinguish between tectonic and
nontectonic transients.

[11] The fourth term in (1), L(x,t — t), represents site-
specific noise from local benchmark instability, which we
model as a Brownian random walk with scale parameter 7
(units length time %) [Wyatt, 1989]. For numerical effi-
ciency, we combine the terms x(zy) and L(x,t — t;), into a
single random walk which initiates at x(¢y). The term F f(f),
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accounts for reference frame errors, where F is a Helmert
transformation and £'(¢) is a vector of rigid body translations,
rotations, and a scale factor [e.g., Miyazaki et al., 2003]. The
final term, €, represents observation error, which is assumed
to be normally distributed with zero mean and covariance
oY, where X, is the covariance matrix of the GPS posi-
tions provided from GPS analyses and ¢ is a scale factor to
account for unmodeled errors such as those due to multipath
or mismodeling of the tropospheric path delays. For numer-
ical efficiency, in the current implementation, 7 is assumed to
be the same at all GPS stations, although this restriction is
easily removed. Many GPS time series record seasonal sig-
nals which are believed to result from a combination of soil
moisture, hydrologic, and atmospheric loading, and antenna
mismodeling. We do not explicitly model seasonal errors in
this paper; however, it should not be difficult to incorporate
the approach of Murray and Segall [2005] in which seasonal
terms are modeled with an annual sinusoid with slowly
varying amplitude.

[12] The transient tectonic displacements wu(x,f) are
expanded in spatial basis functions B(x) with time-varying
coefficients c(z),

M
wi(x,1) =Y Bin(x) en(2), )

where the subscript i indexes displacement component and
M is the number of basis functions. The coefficients ¢(f) are
modeled as stochastic processes. If the deformation is steady
in time, the velocities are constant and ¢,,, m = 1, ..., M,
vanishes (the overdot indicates time derivative). For a nearly
steady state process, we model the accelerations by a sto-
chastic process with mean zero and variance o”. In partic-
ular, following Segall and Matthews [1997] we assume the

transient velocities follow a random walk, which implies
t.
o) = a / do(?), 3)
0

where w(?) is an independent white noise process w ~ N(0, 1)
and the constant of integration is absorbed into the secular
site velocities. The coefficients c(f) are thus given by inte-
grating (3),

c(t) = aw(t), (4)

where w(?) is an integrated random walk [e.g., Segall and
Matthews, 1997]. The integration constant here is absorbed
in the term x(#y). Combining equations (2) and (4), the tec-
tonic displacement term in (1) can thus be written as

M
ui(x, 1) = aZBim(z) Wi (£). (5)

All of the time-varying quantities, including the coefficients
w(f), the random walk estimates, and reference frame cor-
rections are estimated using Kalman filtering techniques
[e.g., Brown and Hwang, 1997], as in the NIF. By choosing
a nonparametric representation of the coefficients w(f), we
allow the data rather than a priori assumptions determine
the time-varying nature of the transient deformation. The
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hyperparameter o controls the temporal smoothing of the
transient displacements and can be estimated in the filter
using an extended Kalman filtering algorithm as discussed by
McGuire and Segall [2003]. In this work we assume that « is
constant in space and time. Fukuda et al. [2004; 2008] present
methods for incorporating time-varying «, which does a
better job of capturing abrupt transients. Their methods are
computationally intensive and are not implemented here,
where our principal goal is to identify subtle rather than
abrupt transients; however, future work could incorporate this
filtering approach.

2.2. Choice of Wavelet Functions

[13] In this section, we consider the choice of basis func-
tions B(x). Several commonly used functions, such as Fourier
series, are not well suited because they have global support
(that is, they are nonzero over the entire spatial domain) and
thus require many terms to represent localized deformation
due, for example, to volcanic inflation, or buried fault slip.
We require basis functions that are suitable for expressing
localized deformation in a large geodetic array. Specifically,
the functions should have nonzero values only over a local-
ized area. Furthermore, the basis should be differentiable, so
that the resulting strain distribution is well defined.

[14] While other choices such as splines or empirical
orthogonal functions could be considered, in this study we
use wavelet functions as a spatial basis to represent transient
deformation, u(x,t). Here we briefly overview some basic
properties of wavelets, starting with the one-dimensional
case. For geophysical examples, see Addison [2002], Kumar
and Foufoula-Georgiou [1994], and Kumar and Foufoula-
Georgiou [1997].

[15] A wavelet y(x) is a wave-like function with unit
2-norm fll//(x)l2 dx=1[e.g., Mallet, 1998]. The Deslauriers-
Dubuc wavelet of degree 3 (will be explained below) is
shown in Figure 1 as an example of one-dimensional wavelet.
A family of wavelet functions {; | j,k € Z} (where Z is the
set of integers) can be formed by dilating (or contracting) and
translating a unit wavelet w, which is sometimes called an
analyzing or mother wavelet. One such realization of a dis-
crete, dyadic wavelet family is

— kY Ax

vat) =2 () ez @

The indices j and k refer to different scales and shifts,
respectively, and Ax > 0 is the discretization increment
[Kumar and Foufoula-Georgiou, 1997].

[16] Orthogonal wavelets, which are orthogonal to all of
their translates and dilates [Mallet, 1998], have desirable
properties. In particular all square integrable functions g(x)

can be represented to arbitrary precision by a linear com-
bination of the form,

=3 3 e )

J=—00 k=—00

where g; . are coefficients. Note that as the scale gets larger,
that is increasing j, the number of translations and thus the
number of coefficients decrease.

[17] Orthogonal wavelets typically lack simple closed form
expressions in the spatial domain and are defined only on a
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Figure 1. One-dimensional Deslauriers-Dubuc wavelet of
degree 3.

regular grid. The distribution of GPS stations in the real
world, however, is irregularly spaced. Simply calculating the
value of an orthogonal wavelet for irregularly spaced points
is not as simple as it is for some nonorthogonal wavelets
that have closed form expressions. We proceed as follows;
orthogonal wavelets are obtained by solving two-scale dif-
ference equations that provide values on a dyadic grid
[Daubechies, 1992]. By setting the spacing of this dyadic grid
to be sufficiently small to allow us to linearly interpolate
between the grid points, we are able to calculate values at
arbitrary points with reasonable precision.

[18] An advantage of orthogonal wavelets is that it enables
the introduction of a scaling function (or “father wavelet”)
and so-called multiresolution analysis (MRA). When we
introduce a scaling function ¢(x), the terms with higher scales
(j = Jjo) in the expansion (7) in terms of the analyzing wavelet
can be replaced by a single scaling function (at scale jj).
Namely, with no loss of information, (7) can be written as,

= Z Do e (X) @y + Z Z Vie(x) g, (8)
k=—00 J=—00 k=—00
where
e )—zw(’ﬂ) jkez, (©)

and ¢;, and g;; represent the coefficients of the scaling
function and analyzing functions for the given scale and
translation, respectively. It should be noted that dilates and
translates of the scaling function {¢; | j, k € Z} also form an
orthogonal basis. In (8) all of the terms above the scale j, are
replaced with a single scaling function (see Appendix A).
In practice we represent the displacements with finite sums
of the form of equation (8). Choosing j,=0 and a mini-
mum wavelet scale jmin, then j = jyin, ..., =2, —1, 0, and k =
0,1,2, -, 27/mn—1.

[19] We examined several wavelets to use as a basis for this
analysis. Among wavelets, wavelets from the Deslauriers-
Dubuc interpolating scheme (hereafter referred to as DD
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wavelet) are advantageous. Though they are not exactly
orthogonal, they are suitable for MRA, have compact sup-
port, and are smooth [Sweldens and Schroder, 1996]. DD
wavelets of degree 2p — 1 are constructed to have compact
support over [-2p+1, 2p—1] [see Mallet, 1998; Sweldens
and Schrider, 1996]. For p = 1, the wavelet is a piecewise
linear function. When p = 2, the wavelet is smoother, with
a somewhat Gaussian shape. As p gets larger, the support
increases. We have found that the DD wavelet with p = 2
(degree 3) is a reasonable compromise between the size of the
compact support and the computational burden of calculating
the wavelet. The one-dimensional DD wavelet is illustrated
in Figure 1.

[20] An alternative approach is to use nonorthogonal
wavelets, such as the Mexican hat wavelet (second derivative
of the Gaussian). The advantage of nonorthogonal wavelets
is that they often have explicit analytical forms and are
therefore easier to compute. A disadvantage of nonorthogonal
wavelets is that they do not have the decomposition (8)
and therefore care is needed at the longest spatial scales.
While not reported here, we have also conducted numerical
experiments with nonorthogonal wavelets that achieve com-
parable results to those presented here with the DD orthog-
onal wavelets.

[21] In this work, we analyze only the horizontal dis-
placements, although the method can be simply extended to
include the (noisier) vertical component. At present we
neglect earth curvature, such that the east and north compo-
nents of displacement are expressed as functions of Carte-
sian coordinates, ug(xg,xn,t) and un(xz,xy,t). An alternative
approach would be to use spherical wavelets, as in the work
of Tape et al. [2009], which are advantageous for networks
with a large spatial extent. Spherical wavelets have proven
successful in estimating static velocity and strain fields from
geodetic data sets [Tape et al., 2009]. Wavelets on a sphere
also more naturally represent the data in geodetic coordinates,
i.e., east and north components.

[22] We assume a separable isotropic basis, so that two-
dimensional wavelets are constructed as tensor products of
corresponding one-dimensional wavelets. As explained in
Appendix B, the two-dimensional representation includes
tensor products of (1) wavelets in the east direction with
wavelets in the north direction, (2) wavelets in the east
direction with scaling functions in the north direction, (3)
wavelets in the north direction with scaling functions in
the east direction, and (4) scaling functions in east and north
directions. The transient deformation term from equation (5)
can thus be expressed as

E Blm xvaN Wm § E Jn‘w’f

Jo

+ Z Z Z ‘ll]e_lq.kz (XE’ XN) W;klykz (t)

J=imin ki

202D Y, b Wi, (1)

XE; xN Jn ki ke (t)

j:jmin k ke
d
+ZZZ oy G20 W] g, (0)
J=min ki ka

(10)
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Figure 2. An example of the two-dimensional Deslauriers-
Dubuc wavelet of degree 3 with the scale j = —1. (a) East-
west analyzing wavelet, ¥°. (b) North-south analyzmg
wavelet, U". (c) Diagonal analyzing wavelet, ¥“.

where jnin and jg ( jmi,, < jo) are the minimum and maximum
scales, respectively. ®; ; . is the two -dimensional scaling
function, and ¥ ., ‘I’j,kl,k2> and U, /i %k, are the three two-
dimensional analyzmg wavelets (whlch we refer to as east-
west, north-south, and diagonal analyzing wavelets; see
Appendlx B for details), and wjo k,» Wik kp» Wik and
wj «,.k, are coefficients. Owing to the property of the MRA,
we can set the maximum scale to an arbitrary integer; thus,
we hereafter set the maximum scale j, to be zero; all signals
at longer spatial wavelengths are included in the scaling
function ®; ; .. Given the periodic (wraparound) condi-
tion, where wavelets that spill over at one side of the
boundary are wrapped around at the other side, the scaling
function, ®;_, becomes constant [4ddison, 2002]. The three
analyzing wavelets are illustrated in Figure 2 for the DD
wavelet at the scale, j = —1. Note that the number of trans-
lations, k; and k,, are functions of the scale j, as they are in
the one-dimensional case.

2.3. Minimum Scale and Regularization

[23] As discussed in section 2.2, the number of translations
is limited by the extent of geodetic array. Some considera-
tion, however, is needed to choose the minimum and maxi-
mum wavelet scales. The largest scale is set by the extent of
the geodetic array in latitude and longitude; the analyzing
wavelets are contracted to represent smaller-scale structures.
The choice of minimum scale wavelet is determined by the
station spacing. Choosing a minimum scale that is too small
results in mapping local noise processes into deformation,
leading to spurious estimates of transient deformation. At the
extreme, there is no point in including wavelets that do not
span any geodetic stations. Even excluding this case, there are
generally more wavelet coefficients than there are stations:
the problem is strictly underdetermined.
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[24] To produce a smooth strain field that satisfies the
geodetic observations thus requires some weighting of the
wavelet coefficients. We regularize the otherwise under-
determined estimation problem by mlmmlzlng a spatlal norm
of the transient strain rate field, \* ||£(x)||3, where & = dit/ox
(for the time being we consider one-dimension only; tensor
components are discussed below) the subscript S indicates
a smoothing norm, and A\’ is a scalar. We define a second
derivative, smoothing (semi-) norm as

1F () 115 = (f (x).f () = /(f”(X))zdx

(11)

and prime indicates spatial derivative. Expanding the tran-
sient strain rate field in spatial basis as in (2),

(12)

the norm of the strain rate field can thus be written as

I() ll5=¢'Te, (13)

where the components of the Gram matrix [' are given by
I'; = <Bj, B/>. Here <,> indicates the inner product asso-
ciated with the smoothing norm in (11). It should be noted
that because the norm in (13) is a derivative norm, the
orthogonality of the wavelets does not imply that the Gram
matrix is the unit matrix, in fact it is not.

[25] Given a wavelet basis of the form (6), the inner
products that yield the components of the Gram matrix are
of the form

Wi, Do 22y (5 = k) 22y (- nise) >

(14)

For general j, m, and k, n, the resultant inner product may have
to be integrated numerically. Note however, that because
wavelets have compact support, the inner product will vanish
for wavelets of the same scale (j = m) and offset greater than
the wavelet’s support.

[26] To the extent possible given the data, a smooth solu-
tion maps the signal into the longer wavelength spatial scales.
Thus, of particular interest is the contribution to the Gram
matrix from wavelets at the same offset but different scales.
This determines how the different spatial scales should be
weighted in the estimation. For j = m, k = n, and the second
difference seminorm (11), equation (14) becomes

oo [Tz s

81//,:,1( a‘/’,:k

<8x’8x

(15)
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Making the substitution &£ =2 7x — kAx and applying the chain
rule yields

0 Vik 6‘/’j,k

Vie, Wik 52791 y/(©) I = 27 / (v"(€)%de. (16)

As made explicit here, the norm and associated inner product
imply spatial differentiation of the wavelets. Equation (16)
shows that welghtmg the different wavelet scales by 277 is
appropriate given the specified smoothing norm and associ-
ated inner product. The integral in (16) represents the squared
norm of the gradient of the analyzing wavelet. The Gram
matrix also includes terms related to the inner product
of wavelets at different scales and offsets. For the current
study, we have not computed the full Gram matrix, rather
approximating it with a diagonal matrix with entries of the
form (16). With this approximation it is not actually nec-
essary to compute the 1ntegra1 in (16), as this value can be
absorbed into the scalar \%.

[27] In two dimensions, we employ a Laplacian (semi)
norm

e B= [ [ (Prepse. a9

In a two-dimensional case, each component is expanded in
four sets of sums, as in equation (10). However, due to the
distributive property of the inner product, this simply results
in (many) more terms in the computation of each entry in
the Gram matrix. Also, as discussed in Appendix B, we
form two-dimensional wavelets as tensor products of one-
dimensional wavelets. Importantly, the norm of any com-
ponent of the strain rate or any linear combination of strain
rate components such as the areal dilatation rate will involve
spatial (partial) derivatives of order three — one from the
definition of strain and two from the second derivative
smoothing. Thus, the norm of any of the surface straln rate
components at the same scale and offset scales with 2%/ as in
one dimensional. In contrast, ﬁrst derivative smoothing of the
strain rate field scales with 2~/ Our numerical tests indicate
better results with second derivative smoothing, so that is
employed here. With a diagonal approximation of the Gram
matrix, the definite integrals of the analyzing wavelets and
scaling functions can be absorbed into the smoothing param-
eter A%, as in the one-dimensional case. While one pre-
sumably achieves better results by numerically computing the
full Gram matrix, we have not attempted to do so.

2.4. Kalman Filtering

[28] The unknowns to be estimated at each observation
epoch include the secular velocity at each station, the coef-
ficients representing the transient displacement field, the
random walk benchmark components, the reference frame
parameters, and the temporal smoothing hyperparameter («).
All of these are incorporated into the state vector X that
is estimated by the extended Kalman filter (Appendix C).
The total number of parameters estimated at each epoch is
4*M (M = number of basis functions, times 2 components
of displacement, times 2 coefficients/basis) + 2*N (for the
secular velocity of each component) + 2*N (for benchmark
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wobble at each station) + 2 (reference frame translations
in each component) + 1 (the hyper parameter o). The total
number of basis functions M is 1 (for the scaling function) +
3*(number of scales; jo — jmin T l)*(number of wavelet
translations at each scale (for U¢, U, and U%)). However, in
practice, we do not include basis functions that are poorly
observed by a particular network in the estimation. For the
studies shown below, we have only included basis func-
tions which have an amplitude of > 10% of the peak ampli-
tude at > 5 stations. Tape et al. [2009] followed a similar
selection approach in estimating continuous velocity fields
from discrete data using wavelet basis functions.

[29] The state vector at all epochs is estimated through an
extended Kalman filter, a recursive least squares estimator.
The state at epoch £, given data up to that epoch is written as
Xk, With covariance matrix Cy . The state at epoch £+ 1 is
predicted based on the stochastic state evolution equations
yielding, Xy 1x. New data at epoch k£ + 1 is incorporated in
a weighted least square sense, leading to an updated state.
This state is conditional on data up to epoch & + 1, written as
Xit11k+1 With covariance Cy.q+;. These estimates, based
on all available data up to the current epoch, are referred to
as filtered estimates. The process iterates until the final data
epoch; if there are N, epochs, this yields Xy n_. Smoothed
estimates, conditional on all data, Xy, are obtained by
backward application of the Kalman filter (see Appendix C).

[30] Following Segall and Matthews [1997] the regulari-
zation is introduced in the Kalman filter through the a priori
state X0 and covariance, Cyy, that is, the state prior to
the first observations [see Segall and Matthews, 1997,
equation (50)]. For the transient velocity coefficients, the ¢
terms in equation (3), we set the prior state to zero, and the
corresponding components of the prior covariance matrix to
Cio= AZahag(Z(’ /), where diag indicates a diagonal matrix,
and 1/X* weights spatial smoothing relative to fitting the
data. That is, all wavelet coefficients are a priori set to zero,
but that the confidence in this is least for the longest wave-
length spatial scales. Thus, the coefficients only move away
from zero if the data demand. The coefficients corresponding
to the transient dzsplacement on the other hand are set to zero,
with very small variance, 1e-8 m?, because at time =0, there
has been no time for transient d1sp1acement to accumulate.
The secular site velocities are also initialized at zero, but with
very broad prior uncertainty (0.05 m/yr). For the reference
frame terms the C, terms are set to le-4 m?, which is suf-
ficient in our experience to absorb frame errors in actual data
sets. For the random benchmark motion term, we set C;o
terms to le-4 m?, which as explained above accounts for
uncertainty in the site position at the initial epoch. For the
synthetic tests conducted here the random walk error is taken
to be 3 mm/yr'?

[31] The prlor estimate and variance of the temporal
smoothing parameter « requires some consideration. In our
experience a poor choice of a can lead to instability in the
extended Kalman filter. Our implementation actually propa-
gates log(a), which has the benefit of keeping this quantity
nonnegative. In the simulations here, we initialize the filter
with a small value, e.g., log(a);,0=—9 with large variance
Var[log(a)]yo=7. This allows sufficient leeway for the
temporal smoothing parameter to adapt to transients. In
practice for a given data set, the prior value of « has to be
adjusted so that it implies a nearly steady transient field, such

6 of 17



B12418

A 'y .
35°N N A
foase r} s L,
A . ? j ;f A . A AAA
-~ A M A AA
“:Aé’ / /f} ‘A a A a :
34°N VPO f};:‘;“ e aa
*f"§ A A AA A
120°W  119°W  118°'W  117°'W  116°W

34°N

116°W

117°W

120°W  119°W  118°W

Figure 3. Simulation using the station distribution of the
Southern California Integrated GPS Network (SCIGN, black
triangles). The black vectors show the distribution of the
(top) transient and (botom) secular displacement at the final
epoch at all GPS stations. White arrows give the scale in
each plot; note that the magnitude of the secular field is sig-
nificantly larger than that of the transient field. The two
white triangles give the locations of stations BILL (south-
east triangle) and BRAN (middle triangle).

that any actual transients will force the estimate of « to
increase [McGuire and Segall, 2003].

[32] As a check on the filtered estimates, the residual
variance should be consistent with that expected given the
nominal errors in the data. From equation (1) the predicted
data is given by

£(1) = %(t0) + ¥+ (1 — to) + it(x, 1) + Ef (1), (18)
where the hat indicates predicted value. Thus, the residual
variance in the station positions should be

var(x(t) — £(t)) ~ var{(L(x, 1) + &)™} = T (t — to) + °Z,
(19)

since the benchmark motions and white noise are assumed
uncorrelated. One can check the filter residuals to ensure
that this is reasonably well satisfied. It should be noted
however that residuals satisfying (19) does not prove that the
filter has correctly resolved the signal into its constituent
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components, transient displacement, random walk, reference
frame error, etc. The various components of the state vector
must be examined a posteriori to demonstrate consistency
with the model assumptions.

3. Synthetic Test

[33] We carried out simulations to test the performance of
the filter by analyzing synthetic GPS data. We generated
synthetic data for a network with the geometry of the South
California Integrated GPS Network (SCIGN) with 219 sta-
tions. We set a hypothetical buried fault, 250 km long and
20 km wide, with a dip of 10 degrees running along the strike
of the San Andreas Fault. This was not chosen to represent a
known structure, but rather to simply generate a coherent
transient field. We generated a 6 year long synthetic time
series, with a slow slip event starting in year two and lasting
for three years that produced a transient displacement field
concentrated in the L.A. basin (Figure 3). The signal ampli-
tude was chosen such that the peak amplitude of the transient
field is similar to the amplitude of the benchmark wobble,
but both are much smaller than the secular field (Figure 3).
The time history of slip is imposed such that resultant dis-
placement has a gradual (slow) initialization, followed by
rapid growth, and ends gently. The station displacements are
computed from the transient slip using Green’s functions for
homogeneous elastic half-space. Secular motion is added
based on actual SCIGN data. Finally, we add local bench-
mark motion, modeled as a random walk process with a scale
parameter of 1.5 mm/yr'’, and measurement errors, assumed
to be Gaussian white noise with a scale of 2 mm. Because of
the long duration of the event, the contributions from secular
motion and benchmark wobble make it difficult to identify
the transient signal by eye in individual records.

[34] Figure 4 illustrates the locations and dimensions of
the wavelets used to represent the transient deformation
field. Note that there are many wavelets at the smallest scale
and that the number of small scale wavelets depends on the
station density.

[35] The primary decision to be made in analyzing the
synthetic data set is the choice of the prior covariance matrix
for the state vector. We follow the procedure described in
section 2 which is straight-forward for the elements corre-
sponding to the transient displacement, the secular velocity,
the benchmark wobble, and the frame translations. For «,
we chose a prior (log(a)y 0 = —9; Var[log(a)];10=7) that
corresponds to the a priori assumption that there are no sig-
nificant transient displacements but allows the freedom for
the estimate of « to increase if required by the data. To esti-
mate the smoothing weight \?, we ran the filter for a number
of values of \? and calculated the model norm of the result-
ing transient strain field (the two-dimensional extension of
equation (13), but with ¢ rather than its time derivative) at the
final epoch. The tradeoff between the roughness of the tran-
sient field and the magnitude of \* is very strong (Figure 5).
This tradeoff arises because small values of \* allow the
secular field to be mapped into the transient field. In the limit
that \? is extremely small, there is no need for the elements of
the state vector corresponding to the secular field, because the
entire signal can be mapped into an arbitrarily rough transient
field. This can be seen in the temporal evolution of the filtered
estimate of « for different values of \> (Figure 6). For small
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Figure 4. The distribution of wavelet translations used at the different spatial scales in the SCIGN syn-
thetic test. Small panels show examples of the two-dimensional Deslauriers-Dubuc diagonal wavelets for
the j =0, —1, =2, —3 scales at a particular translation. (top) The positions of various translations that were
selected for the inclusion in the state vector based on the selection criteria for being well observed. The
different color circles indicate different scales, j (red, 0; magenta, —1; green, —2; cyan, —3). Black triangles
indicate the location of the GPS stations. Note that there are fewer wavelets where the station density is
sparse. Each horizontal axis is regularized to a dyadic scale.

values of A (say 0.001) the filter maps the (large amplitude)
secular signal into the transient field (because it has larger a
priori uncertainty), which in turn forces « to increase rapidly
(Figure 6). In contrast, when \? is larger, o tends to drift
toward lower values (consistent with steady deformation)
until soon after the onset of the transient (roughly 2002.0).
Our synthetic experiments have indicated that choosing a

value of \* that is at or slightly larger than the inflection point
in the tradeoff curve (Figure 5) leads to a good recovery of the
true transient signal. Figure 7 compares the estimated tran-
sient displacement field at the final epoch for three values of
A? that bracket the inflection point in the tradeoff curve.
Below the inflection point (A? =0.05) the recovered signal is a
combination of the secular and transient fields, while at the
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Figure 5. The model norm of the transient strain field at the final epoch for the synthetic data set as
estimated by the filter for different values of the spatial smoothing parameter \*.
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Figure 6. Estimated values of o determined by the forward run of the filter on the synthetic data set as a
function of time (epoch) for various values of A?. The estimate plotted at a particular time uses all data
from previous times. The estimate at the final epoch is applied to all epochs as part of the backsmoothing
run of the filter. When the spatial damping is too small (e.g., \* = 0.001) the filter immediately increases
the value of « to allow the secular field to be mapped into the transient term. For more appropriate values
of A\? the estimate of o decreases (as the filter accumulates evidence of the lack of a transient) until the
transient displacement rate reaches its peak (between 2003 and 2004) when the estimate of « is forced to
increase abruptly by the data. The variations between about 2000 and 2003 result from the filter converg-
ing on a well constrained estimate of « to separate the transient motion under the smoothing constraint
and do not reflect an actual transient in the data set. They result from the large amount of a priori uncer-
tainty given to the value of a.
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Figure 7. The estimated transient displacement field (top left) for a value of \* = 0.05 at the final epoch
just below the inflection point in Figure 5, (top middle) for a value at the inflection point (\* = 0.1), and
(top right) for a value above the inflection point (\*=1.0). (left) The transient signal is highly contami-
nated by the much larger amplitude secular field, whereas for the appropriate choice of A* the estimated
transient agrees well with the input transient (compare to Figure 3). For a larger value (\* = 1) the
transient is oversmoothed in space. (bottom) The estimated secular field for each value of 2.
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Figure 8. Synthetic GPS time series for the stations BILL and BRAN shown in Figure 3. The filtered
estimate of the secular velocity has been subtracted from the synthetic data (blue asterisks). The black
curve denotes the backsmoothed estimate of the transient displacement, and the green curve denotes the
estimated benchmark term for each component. The red curve is the sum of the black and green curves
and shows the overall fit to the data.
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Figure 9. The 1996 Boso Peninsula transient event. Map
showing the transient displacement field estimated by
differencing the mean station positions from one month of
data before and after the event (red arrows) and the transient
displacement field estimated by the filter at the final epoch
(black arrows). Stations CHIO, CHOE, OOAM, and TOMI
are shown as a square, triangle, circle, and diamond.

inflection point (\*> = 0.1) the filter has properly separated the
transient field from the secular field (Figure 7).

[36] The filter’s success in identifying the transient for \* =
0.1 results from the spatial coherence of the transient signal.
Through the update equations of the Kalman filter, when the
transient displacement begins to increase strongly around the
middle of the data set (2003.0) the growing residual between
the current estimate of the state vector and the data gets
mapped into an increase in o, and hence into an increase in the
magnitude of the estimated transient signal. This behavior is
very similar to that seen in the NIF employing both syn-
thetic and real data sets [McGuire and Segall, 2003]. Figure 8
shows examples of the estimated transient (black curves) and
benchmark motion terms (green curves) for a station in the
middle of the transient region (BRAN, middle white triangle
in Figure 3) and a station far removed from the transient
(BILL, southeastern white triangle in Figure 3). The simu-
lated data in Figure 8 has had the estimated secular velocity
removed from each component so the sum of the transient
field and the benchmark term (shown by the red curve) is
effectively a measure of the fit to the data. Both stations have
drifts of ~5 mm over time periods of a few years due to the
benchmark wobble term. For station BILL, the filter properly
maps this motion into the benchmark term (green curve)
rather than the transient term because this motion is not
spatially coherent. For station BRAN, the ~5 mm transient
motion to the southwest is properly mapped into the estimated
transient field because it is spatially coherent with nearby
stations (Figure 3). The success of the filter in this case is
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encouraging given that the amplitude of the signal (~5 mm)
was similar to that of the colored noise at a given station,
given the long duration of the simulated transient.

4. Application to the 1996 Boso Slow Earthquake

[37] In May of 1996, anomalous transient displacements
were observed in the Japanese continuous GPS array,
GEONET, deployed by the Geographical Survey Institute
(GSI) of Japan [Ozawa et al., 2003; Sagiya, 2004a, 2004b].
Similar slow slip events were also observed in 2002 and
2007 [Ozawa et al., 2007]. The stations exhibiting transient
motion cover the whole Boso Peninsula, extending about a
100 km by 100 km area (Figure 9). The time series in and
around the Boso Peninsula clearly shows that the GPS sta-
tions exhibit gradual movement toward the southeast, with
amplitudes of up to ~10 mm and a duration of about 10 days.
The amplitude decreases with distance from the station CHIO
(the southeast station in Figure 9, shown by a square) sug-
gesting that the source is located offshore of CHIO. Several
studies concluded that this transient deformation resulted
from aseismic slip on the interface between the subducting
Pacific plate and the overlying plate [Ozawa et al., 2003;
Sagiya, 2004a, 2004b].

[38] Weused GPS data around the Boso peninsula recorded
by GEONET to test the capability of the NSF for auto-
mated detection of this transient. We used 47 GPS stations
(Figure 9), with 104 daily position determinations from
1 April to 13 July in 1996, including approximately 40 days
before and after the transient event. The daily station coor-
dinates are those obtained through routine analysis of the
Geographical Survey Institute of Japan [Hatanaka et al.,
2003; Geographical Survey Institute, 2004]. Routine
GEONET analysis divides the network into regional sub-
networks; stations around the Boso peninsula belong to the
“south Kanto-Tokai district” that consists of the same
antenna-receiver-monument type. This avoids errors due
to different antenna phase center variations. Here, we chose
stations around the south Kanto district, excluding the more
distant stations in the Tokai district.

[39] We applied the NSF to the GEONET data using the
same procedure as for the simulation. Because of the rela-
tively small area, we only consider the translational compo-
nents in the reference frame errors. For this relatively short
data set, neither secular displacements nor seasonal variations
are significant. The DD wavelet function of the degree 3 is
employed as a basis, and only horizontal components of the
time series are analyzed.

[40] We determined an appropriate value of the spatial
smoothing parameter A following the same method as in the
synthetic test. The tradeoff curve (Figure 10) is similar to the
synthetic example (Figure 5) and we choose A\* =2 as the best
estimate. The abrupt nature of this transient results in a very
clear increase in the temporal smoothing parameter o at
1996.38 for all values of A\? (Figure 11). Owing to the short
duration of the data set, we set the prior variance on the
secular term to be very small (25 (mm/yr)?) as this would not
be well resolved. The estimated secular displacements over
the time period are typically about 1mm and their removal
leads to the flat baselines seen in Figure 12. The scale factors,
o and 7, were set to 5 and 10 mm/, /year, based on inspection
of the time series. The minimum scale of —2 was determined
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Figure 10. The model norm of the transient strain field at the final epoch for the Boso data set as esti-
mated by the filter for different values of the spatial smoothing parameter \.

to be sufficient to represent the transient field for this rela-
tively small array.

[41] The time history of the estimated transient signal is
illustrated in Figure 12 for several stations. The variation in
the amplitude of the inferred transient signal from station to
station is consistent with the data. However the transient
is stretched out over a longer time period from roughly
1996.33 to 1996.40 than the data. The estimated transient
field in Figure 12 begins before the actual transient due to

the backsmoothing process in the filter algorithm. The signal
is oversmoothed in the time domain because one value of «
is assumed to apply to the entire data set, which is transient
free for the first and last 40 days. Clearly an implementation
that allows for a time variable «, such as the particle filter
approach used by Fukuda et al. [2004], would be neces-
sary to accurately recover the abrupt time history of the
transient. However, for the purpose of detecting the tran-
sient, the ~1 week bias in oversmoothing is not a significant
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Figure 11. The estimate of o determined by the forward run of the filter, similar to Figure 6, on the Boso
data set as a function of time for various values of \*.
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Figure 12. Time series of displacement at four GEONET stations (CHIO, CHOE, OOAM, TOMI) in
(top) east and (bottom) north for raw data (blue dots) with the estimated secular trend removed. The esti-
mated transient signal (black line), benchmark motion (green line), are shown as in Figure 8. See Figure 9
for the location of the stations. The red line is the sum of the black and green curves and shows the fit to
the data.
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drawback. Overall the transient is well localized in both
space (Figure 9) and time (Figure 12), demonstrating the
ability of the NSF to find such events in real data sets.

5. Discussion

[42] Results presented in the previous sections show that a
combination of wavelets with Kalman filtering techniques
enables us to separate spatially coherent transient signals
from secular motions and localized, colored noise processes,
without introducing source-specific models. An important
application of the NSF is to search for subtle signals due
to smaller slow earthquakes, which would be useful in sys-
tematic mapping of slow earthquakes or similar processes in
tectonic regions such as Japan, Cascadia, and California. The
algorithm is capable of detecting subtle coherent motions that
would be good candidates for further analysis. For example,
regions the NSF identified as hosting possible transients
could be analyzed using the fault-based Network Inversion
Filter. Like the NIF, the NSF takes advantage of informa-
tion from the whole network simultaneously. This should be
superior to methods that treat individual time series separately
and subsequently search for spatial coherence. Additionally,
all of the parameters including secular velocity are estimated
simultaneously rather than having to be removed ahead of
time which may introduce spurious transients.

[43] As seen in the recovered transient time series, for both
the simulations and the Boso Peninsula data, there is a ten-
dency for the filter to produce overly smooth estimates of
the transient signal. This is a well-known attribute of the
stochastic model, which assumes small departures from
steady state, equation (3), with a constant temporal smoothing
parameter (see discussion by Segall and Matthews [1997]).
Fukuda et al. [2004; 2008] have introduced a Monte Carlo
Mixture filter that propagates a discrete representation of
the probability density function of « rather than its mean
and covariance. Furthermore, « is allowed to evolve based
on variations in the data. Such an approach, coupled to the
expansion in equation (5), would allow for improved recov-
ery of the transient displacement field.

Appendix A: Multiresolution Analysis

[44] With a multiresolution analysis (MRA) the space of
all square integrable functions in p dimensions, L*(R’), is
subdivided into nested subspaces spanned by a set of scal-
ing functions [see Mallet, 1998]. Define the subspace of
L*(%”) spanned by a family of scaling function at a given
scale j as

V;=Span{¢,;(®} k= (ki k- k) kez, (Al
k

where the over bar denotes closure and Z is the set of integers
(Figure Al). In short, V; represents the subspace spanned by
all the translations of the scaling function at scale j. MRA
requires that the subspaces are nested,

Vi Vi

jez (A2)

with
V_oo = L*(RF).

Voo = {0}, (A3)
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The subspace spanned by analyzing wavelet at scale j, IV}, is
such that

Viee=V; & W;. (A4)
In other words, the space spanned by the scaling function at
scale j — 1, is the sum of the subspace spanned by the scaling
function and analyzing wavelet at scale j (Figure A1). This
result readily extends to

Vie =V, @ W; & W1 (AS)

It is easily seen that by combining equations (A1) to (A4)

PR =V,oWd& W1 &

= BWp oW @W,e W &@Wia @ (A6)
Any square integrable function can be represented by a linear
combination of scaling functions at the largest scale, and a
linear combination of analyzing wavelets at all smaller scales.
Note that the subspace spanned by the scaling functions at
scale j contains all subspaces spanned by analyzing wavelets
at larger scales. This is reflected for the one-dimensional case
in equation (8) and is illustrated for a one-dimensional series
in Figure A2.

Appendix B: Wavelets in Two Dimensions

[45] Following the convention of Mallet [1998], define
scaling functions and analyzing wavelets W'(xy,x;) in two
dimensions as

U ko (x1,32) = 270 (273 — by, 277xy — ko),
jak17k2 €Z7 i:172737 (Bl)

(I)quAkz ()C],Xz) = 27jq)0(27j)€1 — k]7 27jX2 — kz), j, k],kz S Z.
(B2)

The two-dimensional wavelets can be constructed as the
tensor product of one-dimensional wavelets and scaling
functions at the same scale.

U= g(n) - ylx) =0, 1), (B3)

V= y(n) - ¢ln) = V'(x, x), (B4)

U= yl) - yln) =, x), (BS)
and

= o(x1) - dlxz) = (31, 32). (B6)

Here ¢(x;) and ¢(x;) are the one-dimensional scaling func-
tions in the x; and x, directions, and y(x;) and y(x,) are the
one-dimensional analyzing wavelets in x; and x, directions.
We refer to the functions ¥¢, 0", and U as the east-west,
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Figure Al.
ing functions and analyzing wavelets. Note that the sub-

Schematic relation of subspaces between scal-

space spanned by the scaling functions at scale j — 1, V-
is equivalent to that spanned by the scaling functions V
and analyzing wavelets W} at scale j.

north-south, and diagonal wavelets. The scaling function
in two dimensions is the tensor product of the two one-
dimensional scaling functions.

[46] According to Mallet [1998], any square integrable
two-dimensional function g(x;,x,) can be represented as

X17XQ Z Z ok ko xl )Q) lOkl o
ky=—00 ky=—00
e
DYDY 951, 1, (01 02) 5
J=—00 kj=—00 ky=—00

+ \II J. ki sk (xl’xz) _fkl ko + 15 Jk sk (xl’xz) ka] ,kz] (B7)

where Jo is an arbitrarily scale and ¢; x x,» Cikkp Cik,
cj %k, are coefficients.

Appendix C: A State Space Modeling

[47] The data at epoch £, dy, are related to the state vector
Xy through the observation equation, which is nonlinear
because « is included in the state vector,

d = h(Xp) + & & NN(07 §k> (C1)
ey is the measurement errors where Ry, = 0°%,. In this work,
only horizontal displacements are analyzed. The state vector
Xk consists of quantities that describe the underlying pro-
cesses of the system as follows:

© O L el ) e
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where M is the number of basis functions and N is the
number of stations. (e) and (n) denote east and north com-
ponents, respectively. Here only translation component is
considered for the reference frame errors. The total number
of state vector elements is 2*2*M+2*N+2*N+2*1+1. The
observation equation includes our model for the GPS time
series (equation (1)). In the NIF, it has sometimes been
augmented with additional “pseudodata” for enforcing posi-
tivity or smoothing constraints [McGuire and Segall, 2003].
However, there are no nonlinear constraints that need to be
enforced in this manner in our current implementation of the
NSF.

[48] The state transition equation propagates the state
vector and its covariance matrix forward in time and is a
simple linear equation for our chosen stochastic models for
L and c.

X =1, - X+ & O ~ N(07 gl)

Bk =T, - Xy l: (C3).

Here the matrix Ty is the state transition matrix that pre-
dicts the state of system at epoch k + 1 from the previous
epoch k, and Qy is the covariance matrix of the process
noise accounting for statistical variability in the system.
These matrices are specified by stochastic process assigned
for the various elements of the state vector.

[49] Given the observation equation (Cl) and the pre-
dicted values of the state vector and its covariance from
equation (C3), the extended Kalman filter update equations
can be used to incorporate the current data into the estimate
of the state vector,

=Xk + Ky (C4)

D, O Vi

K. =X

-1
T
=k+1 - Sktlfk —k+1 (Rk+1 —k+1 Zk+1\k Hk+1) , (C5)

Viyr = — hk+l<zk+l\k)' (Co)

By iterating the prediction and update steps, one can pro-
ceed through the data set to determine the best estimate of
the state vector at each epoch given all of the data up to that
point. It is often desirable to determine the best estimate of
the state vector at a given epoch given all of the data (from
both before and after that epoch). This estimate is deter-
mined by effectively running the filter backward in time
using an efficient algorithm known as the Kalman smoother
[see Rauch et al., 1965; Segall and Matthews, 1997]. The
time series of the transient component deformation shown in
Figures 8 and 12 are these backsmoothed estimates.

[50] Acknowledgments. We thank L. Zhen for producing the
synthetic GPS data used in simulations, the Geographical Survey Insti-
tute of Japan for the GPS data access, and A. Morimoto for useful infor-
mation about wavelets. We thank the Grant-in-Aid for Young Scientists
[KAKENHI(18740283)] of the Ministry of Education, Culture, Sports,
Science and Technology of Japan and the postdoctoral fellowships for
research abroad of the Japan Society for the Promotion of Science. We also
acknowledge support from NASA grant NNG04GC93G. This research was
supported by the Southern California Earthquake Center. SCEC is funded
by NSF Cooperative Agreement EAR-0529922 and USGS Cooperative

15 of 17



B12418

signal

OHTANI ET AL.: THE NETWORK STRAIN FILTER

B12418

Figure A2. An example of the relationship between scaling functions and analyzing wavelets for multi-
resolution analysis of a signal. The original signal consisting of 2° data points is decomposed into a com-
ponent (4_;) represented by a linear combination of scaling functions V_;, and a component (D_7)
represented by a linear combination of analyzing wavelets W_5, at scale j = —7. Note that the independent
variable for all of our wavelets is in space, and no wavelets are used in the time domain in this paper. The
component 4_; can be further expressed with larger spatial scale components of scaling functions and
analyzing wavelets. For example, the component 4_; can be further decomposed into A_ and D_g. Thus,
the original signal can be represented by the sum of 4, D_¢, and D_.
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1332. We used the Wavelab package to calculate wavelets. R.O. is grateful
for continuous support from the members of the tectono-hydrology
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