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[11 We develop a two-dimensional boundary element earthquake cycle model including
deep interseismic creep on vertical strike-slip faults in an elastic lithosphere coupled to a
viscoelastic asthenosphere. Uniform slip on the upper part of the fault is prescribed
periodically to represent great strike-slip earthquakes. Below the coseismic rupture the
fault creeps in response to lithospheric shear stresses within a narrow linear viscous fault
zone. The model is applied to the GPS contemporary velocity field across the Carrizo
Plain and northern San Francisco Bay segments of the San Andreas fault, as well as
triangulation measurements of postseismic strain following the 1906 San Francisco
earthquake. Previous analysis of these data, using conventional viscoelastic coupling
models without stress-driven creep [Segall, 2002], shows that it is necessary to invoke
different lithosphere-asthenosphere rheology in northern and southern California in order
to explain the data. We show that with deep stress-driven interseismic creep on the

San Andreas fault, the data can be explained with the same rheology for northern and
southern California. We estimate elastic thickness in the range 44—100 km (95%
confidence level), fault zone viscosity per unit width of 0.5-8.2 x 10" Pa s/m, and
asthenosphere relaxation time of 24—622 years (0.1-2.9 x 10?° Pa s) for northern

and southern California. We estimate a slip rate of 21-27 mm/yr and recurrence time of
188—315 years for the northern San Francisco Bay San Andreas fault and slip rate of 32—
42 mm/yr with recurrence time of 247—-536 years for the Carrizo Plain.  INDEX TERMS:
8107 Tectonophysics: Continental neotectonics; 8159 Tectonophysics: Rheology—crust and lithosphere; 8150

Tectonophysics: Plate boundary—general (3040); KEYWORDS: San Andreas, slip rates, GPS
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1. Introduction

[2] Interseismic deformation at the ground surface across
major strike-slip faults is characterized by strain rates that
are highest near the trace of the fault and decay with
distance laterally away from the fault. For example, along
the Carrizo Plain section of the San Andreas fault, GPS data
provide the contemporary velocity distribution across the
section of the fault that last ruptured in 1857 as displayed in
Figure 1 (http://www.scecdc.scec.org). The data show high
strain rates at the fault trace that decrease to nearly zero
within about 80 km of the fault. In the San Francisco Bay
area, we have both the contemporary GPS velocity field
[Prescott et al., 2001] and longer term deformation rates
obtained by repeated triangulation surveys at Point Arena
and Point Reyes [Kenner and Segall, 2003]. Figures 2a and
2b show the velocity distribution across the 1906 break of
the San Andreas fault and the adjacent Hayward-Rodgers
Creek and Concord-Green Valley faults. We again see the
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highest strain rates near the San Andreas and adjacent faults.
Figure 2c shows a 90-year record of strain rates following
the 1906 earthquake. The strain rate across the 1906 rupture
was initially high after the earthquake and has been de-
creasing since.

[3] Several analytical models of interseismic deformation
along strike-slip faults such as the San Andreas fault have
been proposed, all based on the premise that the distribution
of strain across a strike slip fault is a result of locking of the
fault in the upper part of the lithosphere as the plates on
either side of the fault move past one another. Savage and
Burford [1973] proposed a mechanical model of interseis-
mic strain accumulation using a buried screw dislocation in
an elastic half-space (Figure 3a). In this model the mecha-
nism by which the plates move past one another is approx-
imated with uniform sliding on a buried vertical dislocation
extending from the locking depth to infinite depth. The slip
rate is prescribed to be equal to the far-field plate rate.

[4] A presumably more realistic model in which crustal
deformation occurs in response to coupled viscous flow in
the asthenosphere was first proposed by Nur and Mavko
[1974]. This so-called viscoelastic coupling model consists
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(a) Southern California Earthquake Center (SCEC) GPS velocities in Carrizo Plain region of

southern California. (b) Projection of GPS velocities onto profile perpendicular to the San Andreas fault.

Error bars are 20.

of a fault in an elastic lithosphere overlying a Maxwell
viscoelastic half-space. Coseismic rupture on the lithospheric
fault is modeled with sudden imposed displacement
across a uniform dislocation. Postseismic strain accumu-
lates in the lithosphere in response to viscous flow in the
asthenosphere. Savage and Prescott [1978] further devel-
oped this model to include interseismic strain accumulation
due to a constant far-field plate velocity resulting from an
infinite sequence of periodically repeating earthquakes
(Figure 3b). The Savage and Prescott [1978] model also
incorporates steady interseismic creep on the down-dip
extension of the coseismic rupture. The earthquake ruptures
the lithosphere from the free surface down to depth D and
creeps at a constant slip rate from depth D to the bottom of
the elastic plate.

[s] Simple physical models of the creep process have
been developed in which creep on the lower part of the fault
is driven by stresses in the plate. Turcotte and Spence
[1974] modeled the creeping fault as an edge crack in an
elastic plate driven by loading at the ends. They ignored
coupling between the elastic plate and the viscous astheno-
sphere. Li and Rice [1987] modeled the coupling between
the viscous asthenosphere and elastic lithosphere through a
generalized Elsasser model cast in terms of lithospheric
averaged stresses and displacements in the plate. Numerical
models of the dynamic process of postseismic creep, not
including interseismic loading, have been developed for
strike-slip faults in an elastic half-space by Hearn et al.
[2002] and in an elastic layer coupled to a viscoelastic
substrate by Kenner and Segall [2003] and Linker and Rice
[1997]. Kenner and Segall developed finite element models
of stress-driven postseismic creep on the San Andreas fault
following the 1906 earthquake coupled to viscoelastic flow
in the asthenosphere. Parsons [2002] developed a numerical
model of the San Francisco Bay area faults including
interseismic loading between earthquakes. Reches et al.

[1994] analyzed GPS and triangulation data along the San
Andreas fault using a finite element model with nonlinear
crustal rheology. Numerical models must be conditioned by
running the calculations through many earthquake cycles
until the flow in the asthenosphere is steady state, that is the
flow pattern repeats in time with the cyclic pattern of slip on
the fault.

[6] Segall [2002] modeled the data in Figures 1 and 2
using the Savage-Prescott coupling model with D = H, that
is, with coseismic rupture extending through the elastic
plate and no interseismic creep on the fault. He showed that
GPS measurements of interseismic velocities across the
Carrizo Plain segment of the San Andreas fault imply a
longer relaxation time (higher viscosity) than inferred from
the post-1906 strain rate data recorded by triangulation
surveys in the northern San Francisco Bay area. Here,
relaxation time is defined as 2n/p where 1 is viscosity and
w is elastic shear modulus. Specifically, it was shown that
the Savage-Prescott model places a tight lower bound of
35 years on the relaxation time of the asthenosphere in the
Carrizo Plain section of the San Andreas fault while the
post-1906 strain rate data places a tight upper bound of
20 years on the relaxation time. Figure 4 illustrates the
sensitivity of these model parameters to the data fit. As
suggested by Segall [2002], this discrepancy between
relaxation times could be attributed to at least three causes:
(1) A true difference in lithosphere-asthenosphere structure
between northern and southern California, (2) nonlinear
lower crust, upper mantle rheology, or (3) aseismic creep
below the seismogenic part of the lithosphere. It is the
latter possibility, that of triggered aseismic creep, that we
investigate here.

[7] Nonlinear asthenosphere rheology would be consis-
tent with results of laboratory experiments of ductile olivine
flow which show that the effective viscosity is lower at
higher strain rates [e.g., Karato and Wu, 1993]. Indeed,
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Figure 2. (a) GPS velocities in northern San Francisco Bay region of California [Prescott et al., 2001].

SAF, San Andreas fault; HF, Hayward fault; CGVF, Concord-Green Valley fault. (b) Projection of GPS

velocities onto profile perpendicular to the San Andreas fault. Error bars are 2o. (¢) Triangulation and
trilateration measurements of post-1906 strain rate transient [Kenner and Segall, 2003]. Error bars are 2c.
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Figure 3. (a) Savage-Burford model. Interseismic deformation is modeled as slip on a buried
dislocation that slides at the plate rate, V),. (b) Savage-Prescott coupling model. Cyclic motion down to
depth D and steady sliding below D on a fault in an elastic layer over viscoelastic half-space. Slip rate on
the fault is equal to the plate velocity, V,,.
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(a) Fit to post 1906 strain rate data using Savage-Prescott viscoelastic coupling (Figure 3b)

model for two values of #;z. Optimal value is 7z = 17. Poor fit with #; = 30 demonstrates the ability of the
data and model to place an upper bound of about 25 years on #z. (b) Fit to Carrizo Plain data using
Savage-Prescott model for two values of 7z. Optimal value is 7z = 80. Poor fit with ¢ = 20 demonstrates
the ability of the data and model to place a lower bound on values of #z at about 30 years.

Pollitz et al. [2001] inferred nonlinear upper mantle viscos-
ity from modeling of interferometric synthetic aperture radar
data following the Hector Mine, California, earthquake.
They showed that the observations could best be explained
with a time-varying viscosity that is initially low after the
earthquake and increases with time.

[8] Aseismic creep on a discrete fault zone underlying the
coseismic rupture plane is also a likely mechanism. Kenner
and Segall [2003] showed that the post-1906 strain rate
transient is reproduced with postseismic slip within a
discrete vertical shear zone underlying the coseismic rupture.
They fit the data with a creeping fault in an elastic lithosphere
overlying a viscoelastic half-space with a 200 year relaxation
time. Furthermore, seismic tomography suggests that the
major faults in the San Francisco Bay extend well below the
cutoff depth of seismicity as a discrete zone [Henstock et al.,
1997; Parsons, 1998; Parsons and Hart, 1992]. A similar
result has been reported for the San Andreas fault in southern
California by Zhu [2000].

[s] In this paper, we show that different relaxation
times (viscosities) in northern and southern California
are not necessary to explain the GPS and triangulation
data if the fault below the coseismic rupture responds as
a linear viscous shear zone. We develop boundary ele-
ment models of interseismic deformation with stress-
driven creep in the lower lithosphere coupled to
viscoelastic flow in the asthenosphere. Several different
models of interseismic creep on the fault in the lower
lithosphere are tested against the geodetic data. While
other researchers have produced various mechanical mod-
els of deep creep on strike-slip faults, we choose to use
the boundary element approach because it has the advan-
tage of incorporating the coupling of the lithosphere and
asthenosphere exactly without the computational expense
of finite element calculations.

[10] We begin our analysis by comparing four different
viscoelastic coupling models of interseismic deformation
along strike-slip faults (Figure 5). The first is the “no-

creep” model of Savage and Prescott [1978] in which the
coseismic fault breaks the entire elastic plate without
interseismic creep on the fault. This was the model used
by Segall [2002] to analyze the San Andreas fault data. The
second is the kinematic “constant-creep’ model of Savage
and Prescott [1978] in which the fault is locked inter-
seismically to a depth D and creeps at an imposed constant
rate (equal to the plate velocity) from depth D to the bottom
of the elastic plate. The other two models incorporate
stress-driven creep through application of boundary ele-
ment techniques. In the “constant-stress’” model, the fault
creeps at a constant resistive shear stress below depth D
throughout the earthquake cycle. In the “viscous-creep”
model, the fault below depth D responds as a linear viscous
shear zone.

2. Viscoelastic Coupling Models

[11] All of the coupling models in this paper are based
on the notion of an idealized earthquake cycle. The
models consist of periodic motion on an infinitely long
fault represented by a dislocation in a two-dimensional
elastic layer overlying a Maxwell viscoelastic half-space
(Figure 5). Sudden slip imposed at regular time intervals
from the Earth’s surface to depth D represents great
strike-slip earthquakes. Between depths D and A the fault
creeps. The long-term slip is uniform over the entire
depth of the fault. The coseismic rupture and aseismic
creep load the viscoelastic asthenosphere, which relaxes
at a rate determined by the relaxation time (equal to 2n/p,
where m is viscosity and p is shear modulus). The
asthenosphere flows to relax the stresses induced by fault
slip and in turn reloads the elastic lithosphere. After an
infinite number of earthquakes, the asthenosphere flow is
steady state, such that the flow pattern repeats in time
with the cyclic slip pattern on the fault, and the constant
far-field velocity of the lithosphere is equal to the long-
term slip rate on the fault.
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Figure 5. Coupling models. No creep, coseismic rupture breaks entire elastic plate. Constant creep,
creeping part of fault slides at constant slip rate. Constant stress, creeping part slides at constant (zero)
resistive shear stress. Viscous creep, creeping part deforms as linear viscous shear zone.

[12] We recognize that the notion of a periodic earth-
quake cycle is highly idealized. For example, the histor-
ical record and paleoseismic evidence suggests that
earthquakes are not truly periodic but are instead clus-
tered in time [e.g., Grant and Sieh, 1994]. The concept
of the earthquake cycle is a simplified representation
of the strain accumulation and release process, as central
to elastic rebound theory, that is certain to be more
complicated and irregular in nature. In addition, two-
dimensional models can not consider the effects of
earthquakes on other segments of the fault. However,
if the recurrence times and slip rates in the cycle models
are considered to be representative of the average
frequency and magnitude of large strike-slip earthquakes,
then useful information can be gleaned about this
process through comparison of theoretical models and
geodetic data.

2.1. Savage-Prescott Constant Fault Creep Model

[13] Inthe Savage and Prescott [1978] model (Figure 3b),
creep between depths D and H on the fault is imposed at a
constant rate, which we take to be equal to the far-field
plate rate. This cycle model builds on the solution for a
single earthquake on a fault in an elastic layer over a
viscoelastic half-space first presented by Nur and Mavko
[1974]. For the fault extending from the surface to depth D
in an elastic layer of thickness H with shear modulus p
overlying a viscoelastic half-space with the same elastic
shear modulus and viscosity, 1), the velocity field due to a
single earthquake with slip Au is

v(x,z) =

0o n—1
—ueft/tRZMF"(LZ’D’H), (1)

TR = (n— 1)'

where ¢ is time since the earthquake, 7z = 21/ is relaxation
time of the half-space, Au is the coseismic slip magnitude,
and

1 _ X
Fn(x7Z7D7H) = Etan ! (m)

! tan™ (z
2 2nH D

+1 tan™!
2 z+2nH+D
1 1

——tan ' (—— 2
2 (z+2nH7D) @)

For velocities at the ground surface (z = 0), the expression
for F,, simplifies to

X X
Fo(x,z=0,D,H) =t ’1(—)—t ).
n(xz )= (g —p) ™ \Zmip

3)

Savage and Prescott [1978] formed the earthquake cycle by
superposition as illustrated in Figure 6a. Periodic back-slip
motion (equal to minus the long-term slip rate) down to
depth D is added to steady sliding at the long-term rate on
the entire fault. This produces a locked fault with periodic,
sudden slip events down to depth D and steady sliding
below depth D. The steady forward sliding simply produces
a dislocation of the elastic plate in which the two sides
move at constant velocity equal to half the plate rate. The
periodic back slip perturbs the steady velocity field,
producing time-dependent deformation associated with
locking and unlocking of the upper part of the fault.

[14] We formulate a solution equivalent to the Savage and
Prescott solution without application of the back-slip con-
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Figure 6. (a) Superposition used by Savage and Prescott [1978] to obtain the coupling model.
(b) Superposition used in this paper to obtain the coupling model. Regardless of the solution method,
periodic slip occurs on part of fault extending to depth D. Between D and H the fault creeps at constant

slip rate equal to the plate rate.

cept as illustrated in Figure 6b. We sum separate solutions
for cyclic motion on the fault down to depth D and steady
sliding from depth D to H. The cyclic motion is obtained by
summing an infinite number of Nur-Mavko earthquakes
(equations (1) and (2) or (3)) spaced at regular time intervals
of duration T and occurring at times —kT for k ranging from
0 to oo,

v(x, 1) = —f/fRZcp (t/te, T/tr)Fo(x,D,H),  (4)

where

[o°]

O, (t/tr, T /tr) =

t+kT\"!
kT/t ( ) ) (5)

Here s is the long-term slip rate, #z is the relaxation time of
the asthenosphere, ¢ is observation time, and T is recurrence
interval. The slip, Au, in equation (1) has been replaced by
sT.

[15] For practical application of equation (1), the infinite
sum over n is truncated and higher order terms are approx-
imated with steady slip on a buried dislocation in an elastic

! =0

half-space as shown by Savage [1990]. See Appendix A for
details. For small n, the infinite sum over & in equation (5)
can be done analytically.

[16] The solution for steady sliding can be thought of as
the sum of many single earthquake events with slip Au = 3T
in the limit as the time between events, 7, approaches zero.
The velocity due to creep from the surface to depth D, v,
is calculated using equations (4) and (5) by replacing k7/t
with T and 7/t with d7 and integrating over T

/OOC o (i + ’I’)nld’r. ©6)

This is the expression for the velocity at time 7 > 0 due to
creep at a constant rate, §, during the time interval = —oo
to t = 0. For the solution at time ¢ = 0, we must add in the
elastic component of the velocity,

Fo(x,D,H)
(n—1)!

F,(x,D,H)

— n—1
g d
(n—l ; e (1) T

. o ¢]

O.D _ S
VP ( _ 2 E
’“‘ :

n

+ i tan ™! (£>
T D/’
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Figure 7. Comparison of velocity and strain rates for no-creep model (D = H) and constant-creep model
with 7= 10tz, D = 0.5H, at various times, #/fz, throughout the cycle. The no-creep model displays higher
strain rates early in the cycle and lower strain rates later in the cycle.

The term on the far right side of equation (7) is the solution
for a uniform dislocation extending from the surface to
depth D in an elastic half-space. The integral in equation (7)
is the well-known gamma function which, for integer n, is
[Abromowitz and Stegun, 1970]

/3o e (1) tdr = (n—1). (8)
JO

Therefore the solution for the creeping fault simplifies to

o0

:%ZF,,(x,D,HH—%tan‘l (%) )

n=1

The solution for the velocities, v2", due to creep from depth
D to depth H is obtained from the superposition of creep at
rate § from the surface to depth H and creep at rate —s from
the surface to depth D,

() = o 20
o0

Ky Ky s X
= 5sgn(x) - ;Fn (x,D,H) — - tan ™! (B)

(10)
The final solution for the earthquake cycle, the sum of
equations (4) and (10), is equivalent to that given by Savage
and Prescott [1978]. We obtain strain rate by taking the
derivative of velocity with respect to the spatial coordinate, x.

[17] The original question we posed was whether inter-
seismic creep below the coseismic rupture can account for

the discrepancy in asthenosphere relaxation times inferred
by Segall [2002]. Segall showed that if there is no fault
creep, it is necessary to have lower relaxation time in
northern California than in southern California to explain
the high strain rates following the 1906 San Francisco
earthquake and the contemporary velocity field across the
Carrizo Plain. We thus compare strain rates from the no-
creep model with strain rates from the constant-creep
model. Figure 7 compares strain rates at the ground surface
near the fault calculated from the constant-creep [Savage
and Prescott, 1978] model (D = 0.5H) with the no-creep
model (D = H). For the sake of comparison we use the same
values of T/tp and t/tr as Segall [2002], where T is
earthquake repeat time and ¢ is time since the last quake.
Segall [2002] inferred a recurrence interval of about 300
years for the northern San Francisco Bay San Andreas fault
and asthenosphere relaxation time of about 30 years. As-
suming these values, the high strain rate observation at
about 10 years after the 1906 earthquake is at #/7 = 1/30. As
shown in Figure 7, assuming these cycle parameters, the
strain rate at #/7 = 1/30 is actually lower in the constant-
creep model than the no-creep model. Thus the constant-
creep model would actually require a relaxation time shorter
than 30 years to produce the observed high strain rates,
making the discrepancy between the southern California
and northern California asthenosphere relaxation times
larger.

[18] These results suggest that constant fault creep cannot
account for the discrepancy in asthenosphere relaxation
times along the San Andreas fault. Clearly, in order to fit
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the initial high strain rates without a short asthenosphere
relaxation time, it is necessary that the fault creep faster than
the plate rate. Indeed, rapid afterslip well above the plate
rate has been inferred from postseismic deformation fol-
lowing numerous large earthquakes [e.g., Burgmann et al.,
2002; Hsu et al., 2002]. The lower creeping part of the fault
experiences high shear stress immediately after coseismic
rupture due to coseismic stress loading and rapid relaxation
of the asthenosphere. Later in the cycle, the shear stresses
acting on the fault are lower as the asthenospheric flow
becomes less vigorous and the coseismic stress has relaxed.
Therefore, if we allow creep to be driven by shear stresses
acting on the fault, we would expect high slip rates early in
the cycle and low slip rates late in the cycle, as was found
by Li and Rice [1987]. Below we develop two models
which incorporate stress-driven, time-dependent creep, in-
cluding rapid afterslip.

2.2. Creep at Constant Resistive Shear Stress

[19] Perhaps the simplest model for stress-driven creep is
slip on the fault at constant (equivalently, zero) resistive
shear stress [e.g., Li and Rice, 1987]. An integral equation
for the slip distribution at any given time is obtained by
setting equal to zero the sum of the stresses acting on the
creeping part of the fault due to (1) slip on the creeping fault
and (2) repeated slip on the upper, interseismically locked
portion of the fault. Both contributions include the stressing
due to coupled asthenospheric flow. Consider a fault locked
to depth D and creeping from depth D to H. Let o(z, /) be
the “driving stress” at depth z and time ¢, set up by repeated
slip on the upper part of the fault. Let g(z, £, ¢ — #4;,) be the
stress acting on the creeping part of the fault at depth z and
time ¢ due to a point dislocation source on the creeping fault
with unit slip at time #y;, located at depth §. We assume the
slip pattern on the creeping fault is cyclic with period 7, thus
the point source solution is cyclic with period 7. The time
varying part of the deformation field is independent of the
value of the resistive stress, so we integrate the stresses on
the creeping fault over the length of the fault (from H to D)
and over an entire earthquake cycle (from —7 + ¢ to £), add
this to the driving stress and set the sum equal to zero

t D
/ / g(z.61 — DB, T)dEd T+ o(z,) =0, (1)
—T+t JH

where B is the Burger’s vector distribution of slip rate
(spatial gradient of the slip rate),

_ s
T 00T

There do not appear to be analytical solutions to equation
(11). We therefore find a numerical solution for the slip
distribution employing a boundary element method, using
the cycle solution previously derived. We discretize the
creeping fault into n patches of uniform slip and equal
length and discretize the earthquake cycle into m equal time
intervals, Az. The slip is calculated at times #; = iAt with
earthquake rupture occurring at time ¢,, = mAt. The slip on
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each patch at all times is related to the stresses on the
patches through the system of equations

Vm +E Vm—l Vm—Z Vm73 e Vl
Vl Vm +E Vm—l Vm72 e V2
Va Vi Vi +E Vit -+ Vs
V3 Vs Vi Vo +E -+ Va
mel meZ Vm73 Vm74 Vm +E (12)
S1 a1
52 02
53 03
sa | Tl ow | = 0.

Sm Om

The o; are n x 1 vectors containing the stresses in the ith
time interval on n patches induced by repeated coseismic
slip down to depth D. The s; are vectors containing the slip
on all n patches at the ith time interval,

1 1
S
s? o

(13)

S =

n
Si i

In this notation, subscripts denote time indices, while
superscripts denote spatial indices. The V; are n X n
matrices relating the viscoelastic contribution of the stresses
acting on the patches during the ith time interval to slip on
the patches, and £ is a matrix relating the instantaneous,
elastic contribution of the stresses due to slip on the
patches.

[20] The viscoelastic component of stresses on the center
of the jth fault patch due to unit slip on the kth patch
extending from depth D1, to D2, at time ¢; is

o0
Vilj.k) =5 3" @6/, T/7) W, (D20) = Wo(DL)], - (14)
n=1
where
W,(Dy) D —2Hn + z; D +2Hn +z;
o) = _
! (D—2Hn+z)"+2  (D+2Hn+z) 42
—D +2Hn + z; —D —2Hn +z;
(D +2Hn +z)* 422 (~D —2Hn+z)" 4+
(15)

(xj, z;) is the location of the center of the jth patch, ® is
defined in equation (5), and p is elastic shear modulus. The
stresses in equation (14) are obtained by differentiating the
velocities (equations (4) and (2)) with respect to the spatial
coordinate, x, to obtain strain rate, multiplying by shear
modulus, i, to convert to stress rate, and then integrating
over the duration of the time interval to obtain the stress
accumulated during the time interval. The stresses due to
repeated slip on the seismogenic part of the fault, o;, are
obtained in the same way.

[21] The elastic component of stresses simply come from
the solution for a screw dislocation in an elastic half-space.
The elastic stress on the center of the jth fault patch due to
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unit slip on the kth patch extending from depth D1, to D2,
is

. v z; + D2y zi — D2y
E(]7k) = ﬂ ( ! 2 > - ! 2 5
(D2 (5 Do)
2+ Dl z;— DIy 6
B 2 5 2, 5] (16)
(5 +DL) 47 (35— D) "+
Writing equation (12) in the form
Gs+o0,=0, (17)

we obtain the slip distribution by numerically inverting G

(18)

[22] Figure 8 is a plot of the cumulative interseismic slip
and slip rate at regularly spaced time intervals throughout an
earthquake cycle with 7' = 10¢z, and D = 0.5H. For unit
coseismic slip down to depth D, the coseismic slip tapers
from unity at depth D to zero at depth H (Figure 8a). During
the interseismic phase, slip on the creeping fault accumu-
lates as the asthenosphere relaxes from the coseismic stress
change and as interseismic strain accumulates in the litho-
sphere (Figures 8a and 8b). At the end of a complete cycle,
the slip on the creeping fault has slipped uniformly 1 unit.
As expected, the slip rate is high early in the cycle and low
late in the cycle (Figure 8c).

[23] Figure 9 compares the surface velocity and shear
strain rate at various times for the constant-stress model
with D = 0.5H and the no-creep model. The velocity and
shear strain rates are higher at early times in the no-creep
model because the coseismic rupture extends uniformly to
the bottom of the lithosphere while the coseismic slip is
tapered to the bottom in the constant-stress model. Coseis-
mic rupture in the no-creep model therefore induces larger
stresses on the top of the asthenosphere that are rapidly
relaxed early in the cycle. Later in the cycle the shear strain
rates and velocities are higher in the constant-stress model
because slip on the creeping part of the fault places the
deformation closer to the surface. While the ratio D/H was
chosen rather arbitrarily for this example, the pattern of
higher shear strain rates in the no-creep model early in the
cycle and lower rates later in the cycle holds regardless of
the choice of this ratio.

[24] As was the case in the previous constant-creep
model, the constant-stress model cannot account for the
discrepancy noted by Segal/l [2002] in the northern and
southern California asthenosphere relaxation times. As dis-
cussed above, if we assume the cycle parameters inferred by
Segall [2002], the high strain rate observation 10 years after
the 1906 earthquake is at time #/7 = 1/30. We see that the
constant-stress model predicts lower strain rate at time #/7 =
1/30 than the no-creep model. So as the case with the
constant-creep model, the constant-stress model would
require the northern California asthenosphere relaxation
time to be shorter than estimated by Segall [2002] using
the no-creep model. This again would make the discrepancy
between northern and southern California even larger.

[25] In section 2.3 we explore a model in which the
coseismic rupture extends part way through the elastic plate

s = —G_lod.

JOHNSON AND SEGALL: STRESS-DRIVEN CREEP

B10403

a. 0.5

0.6

0.7t

depth/H

0.8¢

0.9¢

0.2 0.4 0.6 0.8 1
(post- + co-seismic slip) / coseismic slip

0.9t t=T/10

To 0.2 04 06 0.8

cumulative postseismic slip / coseismic slip

To 04 08 12 16
slip rate / long-term slip rate

Figure 8. Cumulative interseismic slip distribution and
slip rates for constant-stress model at 10 uniformly spaced
time intervals. 7" = 10fz, D = 0.5H. (a) Cumulative
coseismic and postseismic/interseismic slip. (b) Cumulative
postseismic/interseismic slip. (c) Slip rate at each time
interval.

with rapid afterslip and interseismic creep in a linear viscous
fault zone.

2.3. Linear Viscous Shear Zone

[26] In order to include the effects of rapid postseismic
afterslip immediately below the coseismic rupture, we
model the creeping portion of the fault as a linear viscous
shear zone [e.g., Linker and Rice, 1997; Hearn et al., 2002;
Kenner and Segall, 2003]. The linear creep law is

. h
§=—a,

v (19)
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Figure 9. Comparison of velocity and strain rates for constant-stress model (with D = 0.5H) and

no-creep model (D = H). T = 10t; for both models.

where nrand 4 are the viscosity and width of the fault zone,
respectively, and § and o are again the slip rate and shear
stress, respectively, on the creeping part of the fault. Note in
this constitutive formulation, we assume a fault zone of finite
width which deforms in simple shear. We have chosen a
linear rheology for the fault zone so that we can superimpose
solutions to simulate the earthquake cycle. However, there is
reason to believe that the fault responds nonlinearly to stress
perturbations. For example, rate-and-state friction predicts
that slip rate depends exponentially on stress. Several studies
have modeled creep following large earthquakes using the
rate-and-state constitutive formulation [e.g., Linker and
Rice, 1997; Lapusta et al., 2000; Hearn et al., 2002].

[27] Ifwediscretize the problemexactly asinsection2.2,the
vector of incremental stresses acting on patches ofthe creeping
fault is Gs + o, where G is the matrix in equation (12),
o4 1s again the driving stress due to repeated slip on the
seismogenic part of the fault, and s is again the vector of
incremental slip on each patch during each time interval. The
slip rate in equation (19), however, is proportional to the total
stress acting on the patch during the time interval. So we
convert from incremental stress to total stress by transforming
(Gs + 0,) such that the ith row of the new matrix is the sum of
the first i rows of (Gs + o,)). That is, we construct the vector
L(Gs + 0,), where L is the lower triangular matrix

L, O 0 - 0
]nxn Inxn 0 e 0
1n><n Inxn In><n e 0
IVIXI'I Ii’lXI‘l IHXI‘I ]’lXﬂ

and 7, x , is the n X n identity matrix.

[28] Replacing o in equation (19) with L(Gs + o), the
discretized system of equations is

5= n (LGs + Log).

w (20)

To solve for §, we rearrange equation (20) as
1)
where & is the length of the time interval and [ is the

identity matrix. We then invert the system to obtain the slip
rate on each patch at every time interval

(Tl'zi] _ LG6t>S = Loy,

. -1

5= (%’1 - LG6t> Log. (22)
The accuracy of the solution improves with decreasing size
of &t. We have found that &z = 77100 is sufficiently small, as
smaller time steps do not significantly change the calculated
slip distribution.

[20] If the viscosity of the fault zone is zero, there is no
resistive shear stress and we expect to recover the constant-
stress solution. We can easily show that this is the case. For
n=0,

1

s=——(LG)'L
s 61( ) Loa

1
= —EG*L*'LGL,,
s = 76710}1.

[30] Figure 10 shows the cumulative slip and slip rate at
various times during an earthquake cycle with 7= 10t;, D =
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Figure 10. Cumulative slip distribution and slip rate at various times for viscous fault zone model with
n/h = 0.1 m,, T=10tg, D = 0.5H. Note that time intervals are not uniform.

0.5H, and n/h = 0.01m,/h, where v, is viscosity of half-
space. Because the deeper part of the shear zone does not
rupture coseismically, there is rapid afterslip in the early part
of the cycle below the coseismic rupture which acts to relax
the coseismic stresses. We again compare this model with
the no-creep model to evaluate the possibility that this
mechanism may account for the apparent northern-southern
California viscosity discrepancy. Figure 11 compares sur-
face velocities and strain rates for the no-creep model (D =
H) and the viscous fault zone model. The shear strain rates
at the fault trace are higher throughout the cycle in the
viscous fault zone model. The higher strain rates early in the
cycle are due to the rapid afterslip at the top of the creeping
zone. Late in the cycle the strain rates are higher in the
viscous-creep model because slip on the fault brings the
deformation closer to the surface.

[31] These results suggest that the viscous-creep model
may account for the discrepancy noted by Segall [2002] in
the northern and southern California asthenosphere relaxa-
tion times. As discussed above, if we assume the cycle
parameters inferred by Segall [2002], the high strain rate
observation at about 10 years after the 1906 earthquake is at
time #/T = 1/30. We see that the viscous-creep model
predicts higher strain rate at time #7 = 1/30 than the no-
creep model. Thus the viscous-creep model may fit the
triangulation data with a higher asthenosphere viscosity
than inferred by Segall [2002].

3. Analysis of San Francisco Bay and Carrizo
Plain Data Using Viscous Fault Zone Model

[32] We now apply the viscous-creep model to deforma-
tion data along the San Andreas fault. We are partly

motivated by the previous study of Kenner and Segall
[2003] to simultaneously model the postseismic triangula-
tion data and interseismic GPS data using the viscous-creep
boundary element model. Kenner and Segall [2003] showed
that the post-1906 strain rate transient is reproduced with
postseismic slip within a discrete vertical shear zone under-
lying the coseismic rupture. They fit the data with a
creeping fault in an elastic lithosphere overlying a visco-
elastic half-space with a 200 year relaxation time, suggest-
ing the low relaxation time inferred by Segall [2002] is not
necessary to explain the data. Kenner and Segall [2003]
subtracted the interseismic strain rate from the triangulation
data and modeled only the postseismic transient signal. The
interseismic rate was removed with a buried Savage-Bur-
ford dislocation model (Figure 3a) assuming an interseismic
slip rate determined from GPS data. It is, of course, more
natural to analyze the interseismic and postseismic data with
a consistent model. Here, we are able to analyze the total
transient signal because the model developed in section 2.3
explicitly includes interseismic strain accumulation.

3.1. The 1906 Postseismic and Carrizo Plain
Interseismic Data

[33] We begin by modeling the 1906 postseismic data
shown in Figure 2¢ and the Carrizo Plain GPS velocities
shown in Figure 1. The San Andreas fault is approximated
as an infinitely long vertical strike-slip fault locked during
the interseismic period down to 10 km depth and creeping
in a viscous shear zone below 10 km. The 10 km locking
depth was chosen based on slip inversions for large earth-
quakes in California [e.g., Murray et al., 1993; Mathews
and Segall, 1993; Jonsson et al., 2002]. In these estimates
of coseismic slip, most of the slip is concentrated above
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Comparison of velocity and strain rate at various times throughout the earthquake cycle with

T'= 10tz and D = 0.5H for constant-creep and viscous-creep models. The fault zone viscosity is 1= 0.11,.

10 km depth. In order to address the question of whether the
geodetic data in northern and southern California can be
explained with the same lithosphere/asthenosphere rheology,
we assume the same elastic thickness, half-space and fault
zone viscosity, and locking depth for the northern and
southern sections of the San Andreas fault. We invert the
data with a priori bounds on parameters similar to Segall
[2002]. All estimated and assumed parameters as well as the
a priori bounds are listed in Table 1. Lower bounds on
recurrence times, 7, come from the historical record of past
earthquakes (1906 San Francisco earthquake in San Fran-
cisco Bay, 1857 Fort Tejon earthquake in Carrizo Plain).
The upper bounds on recurrence times are set such that
coseismic slip is not excessively large. The bounds on the
northern San Andreas fault slip rate are based loosely on the
northern California Working Group on California Earth-
quake Probabilities (WGCEP) [1999], and the conservative
bounds on Carrizo Plain slip rates are based on estimates of
geologic rates determined by Sieh and Jahns [1984].

Table 1. A Priori Bounds for Carrizo Plain

[34] The a priori constraints on the model parameters are
enforced through a Bayesian formulation of the inverse
problem. The boundary element solution outlined above
gives a nonlinear functional relationship between the vector
of model parameters, m, and the vector of data, d,

d = g(m). (23)

The a posteriori probability density function of the model
parameters, o, given the constraint by the data is
o(m|d = g(m)) = kpy (m)pp(g(m)), (24)

where k is a constant, p,, is the a priori probability density
function for the model parameters, and pp, is the probability
density function of the model parameters given only the
information from the data [Mosegaard and Tarantola, 2002].

[35] To find the a posteriori distribution, we use a Monte
Carlo-Metropolis method [e.g., Mosegaard and Tarantola,

Parameter Symbol Minimum Maximum
Elastic thickness H 10 100
Half-space relaxation time, years r none 500
Bay area San Andreas fault recurrence interval, years T, 100 500
Carrizo Plain San Andreas fault recurrence interval, years T, 150 600
Bay area San Andreas fault slip rate, mm/yr S, 19 27
Carrizo Plain San Andreas fault slip rate, mm/yr S, 31 42
Fault zone viscosity per unit width, Pa s/m Mr none none
Locking depth, km D 10 10 (fixed)
Time since 1906 earthquake, years t, 93 93 (fixed)
Time since 1857 earthquake, years 1 136 136 (fixed)
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Table 2. Carrizo Plain Inversion Results

Parameter A Priori Bounds 95% Confidence Most Probable
H, km 10-100 44-100 60

tg, years none 24-622 24 (1.1 x 10")
T,, years 100—-500 208-458 275

T,, years 150-600 316-539 350

S, mm/yr 19-27 19.7-27 27

Sy, mm/yr 31-42 31.8-41.6 36.5

s Pa s/m none (0.5-8.2) x 107 0.5 x 107

2002]. We assume box functions for the a priori distribu-
tions, pym), on slip rate and recurrence time. That is, the
distributions are constant within the bounds listed in Table 1
and zero outside the bounds. We assume uniform a priori
distributions for the other parameters. To sample the a
posteriori distribution, o, we initiate a random walk through
the model space that samples the a priori distribution. The
random walk is a so-called Markov Chain random walk in
which the probability of visiting the model m;, given that
the current model is m;, depends only on m; and not on
previously visited models. The model m;, with & unknowns,
is generated randomly from m; as follows:

d
m; = m; + Z Oy i€, (25)
k=1

where 7 is a (—1, 1) uniform random deviate, e, is the unit
vector along the kth axis in parameter space, and «; scales
the step size along coordinate directions and is determined
empirically as discussed below. To sample the a posteriori
distribution, this random walk is directed with a so-called
Metropolis step. The random walk does not automatically
move from m; to m;. The walk moves to the next model
with probability

| Pp (g(m.i)))

Py= min( oo (g (m) (26)

If the model m; is not accepted, a new random step is
generated from m,.

[36] We have found if oy is too large the randomly
generated models are accepted at a low rate and the
algorithm is inefficient. If oy is too small, the random walk
may get trapped in a local minimum and not adequately
explore the high probability regions of the parameter space.
Thus we vary o until the algorithm appears to be running
efficiently. When this is the case, the algorithm accepts
about 25-50% of the random models.

[37] The results of the inversion are summarized in
Table 2 and Figure 12, and the fit to the data is shown in
Figure 13. The viscosities of the fault zone and astheno-
sphere are each resolved to within about an order of
magnitude. The fault zone viscosity per unit width, 0.5—
8.2 x 10" Pa s/m (95% confidence interval), is at least an
order of magnitude lower than the asthenosphere viscosity,
0.1-2.9 x 10*° Pa s. The elastic thickness ranges from 44 to
100 km. The slip rates are not well resolved. The probability
distribution of the slip rates is quite broad across the entire a
priori interval. The recurrence times are somewhat better
resolved. The northern Bay San Andreas recurrence interval
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is in the range 200—470 years and the Carrizo Plain
recurrence interval is in the range 330—550 years.

[38] We see in Figure 13 that all the data are fit within the
20 error bars. So we have indeed verified that it is not
necessary with this model to have a lower relaxation time in
northern California than in southern California as concluded
by Segall [2002] using the no-creep model.

[39] For comparison, we show the results assuming a
15 km locking depth in Figure 14. The deeper locking depth
in this case reduces the elastic thickness and increases the
estimate of recurrence time on the northern Bay San
Andreas fault. Although not shown here, the 15 km locking
depth model fits the data as well as the 10 km locking depth
model.

3.2. The 1906 Postseismic and San Francisco Bay
Interseismic Data

[40] In section 3.1 our estimates of the Bay Area San
Andreas fault slip rate and recurrence time were based
entirely on the post-1906 strain rate data. We did not use
the GPS data across the northern Bay which provides
spatial coverage of the contemporary velocity field and
includes the effects of the Hayward-Rodgers Creek and

25 50 75 100 600

H (km)

0200 400 0 05 1 15

= (years 1
0 095 19 285 n; (Pas) x10
(x 10%° Pa's)

8

—

150 250 350 450 550 20 22 24 26
Ts (years) s, (mm/yr)

00 200 300 400 500
T, (years)

32 34 36 38 40 42
s, (mm/yr)

Figure 12. Probability distribution of parameters for
Carrizo Plain/1906 inversion. Locking depth is 10 km. H
is elastic thickness, 7 is relaxation time of asthenosphere, 7
is fault zone viscosity, 7, is northern Bay San Andreas fault
recurrence time, §,, is northern Bay San Andreas fault slip
rate, T, is southern San Andreas fault (Carrizo) recurrence
time, and §, is southern San Andreas fault slip rate. Solid
lines show 95% confidence intervals. Hatched lines show a
priori bounds.
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Figure 13. (a) Fit to post 1906 strain rate data using

viscous-creep model. All models generated in Monte Carlo
sampling are plotted. Error bars are 20. (b) Fit to Carrizo
Plain data using viscous-creep model. All models generated
in Monte Carlo sampling are plotted. Error bars are 20.

Concord-Green Valley faults. Now we perform a joint
analysis of the post-1906 strain rate data and the San
Francisco Bay GPS data. The San Andreas fault and Hay-
ward fault are again approximated as infinitely long vertical
strike-slip faults in an elastic layer over viscoelastic half-
space. The San Andreas fault and Hayward fault are
assumed to be locked interseismically down to 10 km depth
and creep below 10 km in a viscous shear zone. We assume
the same fault zone viscosity for the Hayward and San
Andreas faults. To reduce the number of unknown fault
parameters, we choose not to model viscous creep or
viscoelastic coupling of the Concord-Green Valley fault.
As by Segall [2002], we model the Concord-Green Valley
fault kinematically as a dislocation buried at 10 km depth
(Savage-Burford model, Figure 3a).

[41] We further assume that we can ignore mechanical
interaction between the three faults. That is, we assume the
stress perturbations generated by a fault do not greatly
influence creep below the seismogenic zone on the neigh-
boring faults. Interaction would effect the timing of earth-
quakes; however, this is fixed in the cycle models under
consideration. While we could include stress interactions
among neighboring faults using the boundary element
method, it would require much more computation time
since we would have to compute the time over which the
pattern of cyclic motion on all the faults repeats and
integrate the stresses over this group recurrence time. The
group recurrence time could be much longer than the
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recurrence times on individual faults. To test the assumption
that we can ignore stress interaction between faults, we
calculated the shear stress at depth as a function of distance
from the fault. Figure 15 shows stresses at 20 km depth due
to slip on the San Andreas fault using the constant-creep
model with D = 10 and H = 40. The stresses on the
Hayward fault and Concord-Green Valley fault are more
than one order of magnitude smaller than the stresses
immediately next to the San Andreas fault. Thus the creep
on each fault will be dictated primarily by the local
perturbed stresses generated by the fault itself. This process
of stress interaction following large earthquakes was inves-
tigated in detail by Kenner and Segall [1999], among
others.

[42] As in the previous analysis, we invert this data with a
priori bounds on parameters as listed in Table 3 using the
Bayesian formulation of the inverse problem (equation
(24)). The lower bounds on elastic thickness and locking
depth are the same as in the previous inversion. Lower
bounds on Tsar, 1z, and Ty come from the historical record.
The upper bounds on Tsar and Tj are set such that
coseismic slip is not excessively large. The bounds on slip
rates are based loosely on the WGCEP [1999] study. The
inversion results are summarized in Table 4, the posterior
distributions are summarized in Figures 16 and 17, and the
fit to the data is shown in Figure 18.

[43] Comparing the result of this inversion (Table 4) with
the results from the previous inversion (Table 2), we see that
the estimates of H, fg, 1); and Tsap are similar, though the
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Figure 14. Same as Figure 12 with 15 km locking depth.
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SAF HF GVF Table 4. Inversion Results - Northern Bay
07—
€ Parameter A Priori 95% Confidence Most Probable
= observation depth
P=p1k | CETRCRCERETELEEEtEt CRCELELETEITEPIICILEY TERLEREITE H, km 10100 23-65 45
g tg, years none 45-630 180 (9.0 x 10")
C40 ", Pa s/m none (0.8-6.2) x 10'8 1.5 x 10'8
0 Tsar years 100-500 188-315 250
Ty, years 225-700 469-700 700
ty, years 225-690 229-422 229
017 1 Soun mmiyr 19-27 20.6-26.7 24.0
$p, mm/yr 7-13 9.9-13.0 12.8
§ps mmlyr 2-8 8.0-8.0 8.0

0.33f

0.67
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Figure 15. San Andreas induced cumulative shear stress
change as a function of position at 20 km depth at 5
regularly spaced time intervals. H = 40,D = 10, T = 2t.
Except immediately after the earthquake, the shear stress on
the Hayward and Concord-Green Valley faults is more than
an order of magnitude smaller than the stresses near the San
Andreas fault. This result is the basis for ignoring the
interaction of stresses on the three faults. SAF, San Andreas
fault; HF, Hayward fault; GVF, Concord-Green Valley fault.

distribution on elastic thickness is shifted lower in this
inversion. The 95% confidence interval on the San Andreas
fault slip rate is again quite broad, but the distribution is
skewed toward the upper end with a most probable slip rate
of about 24 mm/yr. The Hayward slip rate of 10—13 mm/yr
is well resolved within the a priori bounds. The recurrence
times are also well resolved within the a priori bounds. The
San Andreas recurrence time is in the range 188—315 years,
and the Hayward recurrence time is in the range 469—
700 years.

[44] For comparison, we show the results assuming a
15 km locking depth in Figure 17. The deeper locking depth
in this case mainly influences the estimate of recurrence
time on the San Andreas fault, pushing the recurrence time
higher by about 100 years. Although not shown here, the

Table 3. A Priori Bounds for Northern Bay

Parameter Symbol Minimum Maximum

Elastic thickness H 10 100
Locking depth, km D 10 100
Half-space relaxation time, years IR none 500
Fault zone viscosity per unit width My none none
SAF recurrence interval, years TSAF 100 500
Hayward recurrence interval, years Ty 225 700
Time since last Hayward earthquake, years 7 225 690
SAF slip rate, mm/yr Ssar 19 27

Hayward slip rate, mm/yr Sy 7 13

Green Valley slip rate, mm/yr Sy 2 8

15 km locking depth model fits the data as well as the 10 km
locking depth model (Figure 18).

4. Discussion

[45] Table 5 summarizes the results from this and other
studies. The values for H, #, and . come from the Carrizo
Plain/post-1906 inversion and the values for Tsar and Sgap
are taken from the second inversion which included the
northern Bay area GPS data. The ranges of estimates of
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7 8 910111213
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Figure 16. Probability distribution of parameters for
northern San Francisco Bay data. Locking depth is 10 km.
H is elastic thickness, 75 is relaxation time of asthenosphere,
"ris fault zone viscosity, Tsar is northern Bay San Andreas
fault recurrence time, 7} is Hayward fault recurrence time,
t;; is time since last Hayward fault earthquake, $Sgap is
northern Bay San Andreas fault slip rate, s, is Hayward
fault slip rate, and 555 is Concord-Green Valley fault slip
rate. Solid lines show 95% confidence intervals. Hatched
lines show a priori bounds.
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Figure 17. Same as Figure 16 with 15 km locking depth.

elastic thickness and relaxation time are notably larger in
this study than in the Segall [2002] study using the no-creep
model. This difference can be accounted for by the rela-
tively low viscosity of the shear zone in the viscous-creep
model. With creep in the viscous shear zone, the data are fit
with a thicker elastic plate and longer half-space relaxation
time than without the shear zone. There are no independent
estimates of fault zone viscosity, but the estimate in this
study is in good agreement with the estimate of Kenner and
Segall [2003]. While this is expected given that the same
data were used in both studies, it is encouraging that our
viscous-creep cycle model, which incorporates postseismic
and interseismic strain accumulation, predicts similar fault
zone viscosity as the purely postseismic model of Kenner
and Segall [2003]. The slip rate estimates from this study
are in reasonable agreement with Prescott et al. [2001]
estimates using the simpler Savage-Burford buried disloca-
tion model but were fairly tightly constrained by a priori
information.

[46] We can compare coseismic slip estimates from our
model with field measurements of coseismic slip from
recent large earthquakes. Figure 19 shows the probability
distribution of coseismic slip for Carrizo Plain and San
Francisco Bay San Andreas fault as well as the Hayward
fault. The range of slip, 4.75—7.25 m, for the northern Bay
San Andreas fault is larger than surface measurements
typically in the range 2.5-4.5 m following the 1906
earthquake [Lawson, 1908] and is in better agreement with
the Thatcher et al. [1997] estimate of coseismic slip from
geodetic data ranging from 2.7 to 8.6 m. The Carrizo Plain
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coseismic slip estimate of 10.5-17.5 m is in good agree-
ment with 11.0 + 2.5 m of displacement that occurred across
that fault in the 1857 earthquake in the Carrizo Plain
according to Grant and Sieh [1994]. The coseismic slip
on the Hayward fault is substantially greater than 2 m
inferred for the 1868 earthquake by Yu and Segall [1996]
which ruptured south of the geodetic profile used in this
study. This discrepancy almost certainly arises because the
rupture length is on the order of 60 km, which is far too
short to be described by our two-dimensional model.

[47] If we assume a rupture length for our modeled
earthquake events, we can calculate earthquake magnitudes
and compare with empirical scaling relationships between
magnitude and surface rupture length. Wells and
Coppersmith [1994] suggest magnitude, M,,, and rupture
length, L, are related as

M, = (1.16 +0.07) log(L) + (5.08 £ 0.10). (27)
Using this relationship, earthquakes on the northern or
southern section of the San Andreas fault with a rupture
length in the range 300—450 km would have a magnitude in
the range M, = 7.7-8.4. Assuming these rupture
lengths, rupture depth of 10 km, and our estimates of
coseismic slip (Figure 19), we get a range of M,, = 7.7-8.0
for the northern section of the San Andreas and M,, = 8.0—
8.2 for the southern section, in good agreement with the
empirical values. For the Hayward fault, with a rupture
length in the range 40—60 km, the scaling relationship

a. post-1906 strain rates
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Figure 18. (a) Fit to post-1906 strain rate data using
viscous-creep model. All models generated in Monte Carlo
sampling are plotted. (b) Fit to northern Bay GPS data using
viscous-creep model. All models generated in Monte Carlo
sampling are plotted. Error bars are 20.

16 of 19



B10403

Table 5. Summary of Results From Various Studies
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This Paper Segall [2002] Kenner and Prescott et al.

Parameter (95% Interval) (90% Interval) Segall [2003] [2001] (95% Interval)
H, km 44-100 10-21 not resolved
1, years 24-622 25-47 200 (assumed)
15 Pa s/m (0.5-8.2) x 10" (3.15-6.3) x 107
Tsar (northern Bay), years 188-315 130-368
Ty, years 469—-700 231-429
ty, years 229-422 225-348
$sar (northern Bay), mm/yr 20.6—-26.7 19-27 17-24.6
Sp, mm/yr 9.9-13 7-13 5.1-15.5
G5 mm/yr 8.0 54-8.0 4-12.4

gives magnitudes in the range M,, = 6.7—7.4. Again, using
these same rupture lengths, rupture depth of 10 km, and
our estimates of coseismic slip, our model magnitude for
the Hayward fault is in the range M,, = 7.2—7.4. Thus,
while the modeled Hayward slip events are larger than the
observed 1868 event, the predicted magnitudes lie within
the range of expected magnitude based on the empirical
scaling relationship.

[48] Knudsen et al. [2002] have summarized paleoseismic
estimates of timing of past earthquakes on the San Andreas
fault north of San Francisco Bay. The penultimate event
may have occurred 266—366 years before 1906, and an
event prior to the penultimate may have occurred about 600
years before the 1906 event, suggesting a characteristic
repeat time of about 300 years. This is at the upper end of
our estimate of repeat time on the San Andreas fault. Grant
and Sieh [1994] dated the penultimate event on the Carrizo
Plain segment at about 350—450 years before the 1857
earthquake. A recurrence time of 350—450 years is within
the 95% confidence interval of our estimate.

[499] We note here that we have not used any prior
information from geology on the recurrence times of earth-
quakes. However, studies are emerging which provide good
paleoseismic constraints on recurrence times. These studies
construct probability density functions for the timing of past
earthquakes with chronological modeling that incorporates
historical and stratigraphic information and various dating
techniques. Paleoseismic probability density functions of
the dates of past earthquakes are available for the southern
Hayward fault [Lienkaemper et al., 2002], Frazier Moun-
tain, near the Garlock fault [Lindvall et al., 2002], and
Pallett Creek and Wrightwood sites at the southern end of
the 1857 rupture [Fumal et al., 2002; Biasi et al., 2002].
Using these tighter constraints on recurrence times as prior
information would likely improve our ability to resolve
parameters. In future work we will use such geologic data as
prior information.

5. Conclusions

[s0] We have developed boundary element models of
postseismic and interseismic creep on the downward exten-
sion of coseismic rupture on strike-slip faults. Unlike the
kinematic constant-creep coupling model of Savage and
Prescott [1978], creep in the boundary element models is
driven by shear stresses acting on the fault. Creep is driven
by coseismic stress changes on the fault, rapid postseismic
relaxation of the viscous asthenosphere, and steady inter-
seismic loading by far-field motion of the plates.

[s1] We developed two stress-driven creep models. In the
constant-stress model the fault creeps at a constant (or zero)
resistive shear stress. In the viscous-creep model the fault
creeps in a linear viscous shear zone. In both stress-driven
models, uniform coseismic slip is imposed down to the
locking depth, D at regular intervals. The models produce
different patterns of coseismic and interseismic slip. In the
constant-stress model the entire depth of the fault is rup-
tured coseismically. From depth D to the bottom of the
elastic plate, the slip tapers from the maximum at the top to
zero on the bottom. During the interseismic period the deep
part of the fault creeps to catch up with the amount of
coseismic slip on the seismogenic part of the fault. At the
end of the cycle the slip is uniform along the entire depth of
the fault. In the viscous-creep model the lower part of the
fault does not rupture coseismically. Instead, there is rapid
postseismic afterslip immediately below the coseismic rup-

San Francisco SAF

4 5 6 7 8
Hayward fault

9

345678091

Carrizo Plain SAF

9 11 13 15 17 19
meters

Figure 19. Posterior probability distributions of coseismic
slip. Vertical lines are 95% confidence intervals.
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ture as well as interseismic creep below depth D in response
to relaxation of the viscous half-space and interseismic
loading.

[52] We performed Bayesian inversions of triangulation
and GPS data across the San Andreas fault using a priori
information for slip rates and recurrence times. We demon-
strated that it is not necessary to introduce different Earth
rheology in northern and southern California in order to fit
the northern Bay post-1906 strain rate data and the Carrizo
Plain GPS data as suggested by Segall [2002] using the
standard Savage-Prescott no-creep model. The high strain
rates following the 1906 earthquake are reproduced in this
model with creep in a viscous shear zone with viscosity per
unit fault zone width that is at least an order of magnitude
lower than the asthenosphere viscosity. If one takes the
position that the crustal structure and rheology are likely to
be similar in northern and southern California, our results
imply that it is necessary to reject the simplest viscoelastic
coupling model in favor of one that includes postseismic
creep. Furthermore, we estimated slip rates and recurrence
intervals on the Bay area faults that are consistent with
estimates by Segall [2002] and Prescott et al. [2001] using
simpler dislocation and no-creep coupling models.

[s3] It is quite encouraging that despite the relative
complexity of this model, the data are able to resolve many
of the parameter values. This is particularly true for the
rheological parameters. A lower bound of about 40 km is
placed on the elastic thickness of the lithosphere and the
asthenosphere and fault zone viscosities are both resolved to
within an order of magnitude. The asthenosphere viscosity
is on the order of 10'® Pa s (relaxation time of 30 years) and
the fault zone viscosity per unit width is on the order of 10"
Pa s/m. The 95% confidence bounds on fault slip rates on
the Carrizo Plain and northern San Francisco Bay sections
of the San Andreas fault are not significantly smaller than
the a priori bounds assumed from geological studies.
However, the recurrence times on the Carrizo Plain and
northern Bay San Andreas and Hayward faults are resolved
to within about 100, 200, and 300 years, respectively.

Appendix A: Approximation for Infinite Sum

[54] Savage [1990] demonstrated that the velocity field
produced at the ground surface in the viscoelastic coupling
model can be duplicated with prescribed slip on vertical
dislocations in an elastic half-space. This result is by virtue
of the method of images used to derive the viscoelastic
coupling solution. The solution for the surface displace-
ments due to a dislocation in an elastic half-space extending
from depth D; to D, is

v (x) :% [tan’l %) —tan”! %)]

When comparing the form of equation (A1) with equation
(3), it becomes clear that equations (1)—(4) represent a sum
of dislocations extending from depth D — 2nH to D + 2nH
with slip rate on each dislocation that is a function of time.
Furthermore, Savage [1990] showed that the slip is
approximately steady and equal to the plate rate for
dislocations below about 7H. Therefore equation (4) can
be truncated after only a few terms with higher order terms

(A1)
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approximated with steady slip on a buried dislocation in an
elastic half-space.

[55] In the boundary element solution, the patches do not
extend through the entire lithosphere, so we have to modify
the Savage approximation. The solution for a fault with
cyclic motion extending from depth D, to D, in an elastic
layer over viscoelastic half-space is given by equations (4)
and (5) with F), replaced with

X
Fy(x,D2,H) = Fy(x,D1,H) = tan”' (m)

—tan! o x
2nH + D2

— -1 7)(:
tan (an—m)
X
tan ' [—X ). (A2
+an (an+01> (A2)

It follows that the equivalent half-space solution is the sum
of dislocations extending from depths 2nH — D, to 2nH —
D, and from 2nH + D, to 2nH + D,. As before, equation (4)
can be truncated after a few terms with higher order terms
approximated by steady slip on a sum of dislocations sliding
at the plate rate in an elastic half-space. Note that it is more
efficient to calculate this sum than the double sum given in
equations (4) and (5).
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