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Abstract. Quasi-static elastic dislocations in a homogeneous elastic half-space are commonly
used to model earthquake faulting processes. Recent studies of the 1989 Kalapana, Hawaii, and
Loma Prieta, California, earthquakes suggest that spatial variations in elastic properties are
necessary to reconcile geodetic and seismic results (Arnadottir et al., 1991; Eberhart-Phillips and
Stuart, 1992). In this paper, we use a moduli perturbation approach to investigate the effect of
lateral and vertical variations in elastic properties on the elastic fields produced by dislocations.
The method is simple, efficient, and in some cases leads to closed form solutions. The zero-
order solution is simply the solution for a homogeneous body. The first-order correction for
elastic heterogeneity is given by a volume integral involving the spatial variations in moduli, the
displacements due to a dislocation in a homogeneous half-space, and the half-space Green's
function. The same representation can be also used to obtain higher-order solutions. If there are
only piecewise constant variations in shear modulus, the volume integral can be reduced to a
surface integral (or line integral in two-dimensions). Comparisons with the analytical solutions
for a screw dislocation in a layered medium suggest that the perturbation solutions are valid for
nearly an order of magnitude variation in modulus. It is shown that a simple two-dimensional
model with both vertical and lateral variations in the elastic properties may explain a large part
of the discrepancy between seismic and geodetically inferred fault depths for the 1989 Kalapana,

Hawaii, earthquake.

Introduction

Following the pioneering work of Steketee [1958] and
Chinnery [1961], numerous workers have used elastic dislocation
theory to model earthquake faulting processes. More recently,
several investigators have used standard inverse techniques in
combination with elastic dislocations in a homogeneous,
isotropic, half-space to solve for the distribution of slip (or slip
rate) on a fault from crustal deformation data [e.g., Segall and
Harris, 1986; Ward and Barrientos, 1986; Du et al., 1992].
However, studies of two earthquakes that occurred in 1989, the
Kalapana earthquake on the south flank of Kilauea volcano and
the Loma Prieta earthquake in the Santa Cruz Mountains, have
suggested that there are significant shortcomings in homogeneous
elastic models [Arnadottir et al., 1991; Eberhart-Phillips and
Stuart, 1992). Geodetically derived fault models of the 1989
Loma Prieta earthquake presented by Lisowski et al. [1990] and
Marshall et al. [1991] are significantly different from the fault
plane inferred from aftershock locations. Eberhart-Phillips and
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Stuart [1992] suggested that material contrasts across the fault
could explain the discrepancy. Arnadottir et al. [1992] found that
accounting for the correlations in the leveling data resolved the
first-order discrepancy between the geodetic and seismic fault
models. Analysis of the full geodetic data set shows that while
there is not a significant discrepancy, the best fitting dislocation
surface is biased toward the hanging wall side of the aftershock
zone [Arnadottir and Segall, 1994]; this effect may be due to
material heterogeneity. In their study of the 1989 Kalapana
earthquake, Arnadottir et al. [1991] found that the fault depth
inferred from leveling data, assuming a dislocation in a
homogeneous half-space, was significantly shallower than that
inferred from seismic data. The correlations in the leveling data
were accounted for in this study. Finite element calculations
suggested that elastic heterogeneity could explain a significant
part, if not all, of the discrepancy [Amadottir et al., 1991]. We
conclude that the widely used homogeneous elastic half space
models may no longer be adequate to interpret the highly
accurate geodetic data that are presently being collected.

In this paper, we investigate the effect of inhomogeneities on
the elastic fields produced by a dislocation, and we develop an
efficient method to compute the slip Green's function in
inhomogeneous media for crustal deformation modeling. While
numerous solutions exist in the literature for dislocations in
special inhomogeneous media [e.g., Weeks et al., 1968; Rybicki,
1971; Barnett, 1972; Lee and Dundurs, 1973; Rybicki and
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Kasahara, 1977; Mahrer and Nur, 1979; Savage, 1987; Roth,
1990], general solutions are difficult to obtain. On the other
hand, one can use fully numerical methods, such as finite element
or boundary element, to solve these problems. The difficulty is,
of course, computational efficiency. It is relatively costly to
carry out a three-dimensional (3-D) finite element or boundary
element analysis, especially when the material properties vary
rapidly at short spatial wavelengths. In this study, we use a linear
moduli perturbation approach. The method is very general,
simple to evaluate, and in some cases leads to closed form
solutions.

First-order perturbation methods have already been used to
find the effect of irregular surface topography on surface
displacement fields [McTigue and Stein, 1984; Meertens and
Wahr, 1986; McTigue and Segall, 1988]. Gao [1991] recently
provided a systematic formulation of fracture analysis of
inhomogeneous materials via the moduli perturbation approach
and emphasized the calculations of the stress intensity factor at
the crack tip in an inhomogeneous elastic medium. Gao et al.
[1992] adopted the same moduli perturbation approach to
construct a first-order solution for microindentation of thin films,
and they found that the first-order perturbation solution is
accurate up to a modulus contrast of a factor of 2. Fan et al.
[1992] reformulated the moduli perturbation approach and
showed that the inhomogeneity problem is converted to a series
of inclusion problems using the eigenstrain concept. A similar
technique was also used by Walpole [1967] to treat an inclusion
in an anisotropic medium.

In the moduli perturbation procedure, a reference state, usually
a homogeneous medium, is chosen to obtain the zeroth-order
solution. It is shown that the first-order correction to the
displacements can be represented by a volume integral in terms
of the variations in moduli, the zeroth-order solution, and the
displacement Green's function in the reference state. The same
representation can be also used to iterate for higher-order
solutions. The volume integral can be reduced to a surface.
integral (line integral in two dimensions) if there are only
piecewise constant variations in shear modulus (layers, for
example). Although in theory the variations in elastic properties
should be small in order for the moduli perturbation method to
work, comparisons with analytical solutions for a screw
dislocation in a layered medium indicate that the perturbation
results are valid over a substantial range of variations in moduli.

General Formulation of Moduli
Perturbation Approach

We consider an elastic medium D bounded by a surface §
containing a subdomain (2 surrounded by a surface I" (Figure 1).
S, denotes the part of the surface S with the applied traction T},
and S, denotes the part of S with the prescribed displacement U ;.
The stress 0j; is given in terms of the displacement field u; as

0ij = Cijut Ur) (9]

where subscripts to the right of the comma denote differentiation
with respect to spatial coordinate, Cij is the fourth-order
elasticity tensor, and subscripts i j, k, and [ range over the
Cartesian coordinates x,y, z. Assuming the elastic body is in
equilibrium with body force f(x) and some given boundary
conditions, then the equations of equilibrium for the elastic
system read

Cijkt ugj + Urg Cir,j+ fi=0 ¥))
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Figure 1. Geometrical configuration of an elastic inhomo-
geneous medium. The elastic medium is bounded by a surface S
containing a subdomain £ with variable modulus surrounded by
asurface I'. S, denotes the part of S with the applied traction T;
and S, denotes the part of S with the prescribed displacement U,.
C{ is the fourth-order elasticity tensor for the domain D, and
CH + 8Cyu(x ) for the domain Q.

with boundary conditions

oin=T; on S 3)

u=U; on Su. @
The perturbation expansion is as follows. Let the moduli be a
function of position x such that Cjju(x ) consist of some uniform

part C,%Z) plus a spatially varying perturbation dCju(x ) as
Ci(x ) = C) + 8Ciadx ). ®)

The displacement is expanded in a series as

w(x) =40x) +40x) +u2(x) +or +40x) 4. O
Substituting (5) and (6) into the governing equations and

boundary conditions and collecting terms of like order, one
obtains the following system of equations,

Zeroth order:
Cu) +fi=0 (7a)
uQm=T; on S (7b)
u® =U on Su (7c)
First order:
Ci ul) +(8Ci wD),j=0 (8a)
CRu nj+86Cu u@n;=0  on S (8b)
uM=0 on S, (8¢c)
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Second order:

C ) +(8Cyunp),j=0 (92)
C u? nj+ 6Ciu u¥m;=0 on S, (9b)
u,-(z) =0 on S, (9¢c)
nth order:
Cl ul) + (6 Ciug™) =0 (10a)
C u nj+ 8Cu uiV ;=0 on S, (10b)
U™ =0 on S, (10c)

The zeroth-order problem is just the problem for a homogeneous
medium C,,u In the perturbation procedure, the zeroth-order
solution %% is assumed to be known and is taken as a reference
state for the perturbation. Note that for the first-order correction,
the second terms in (8a) and (8b) are known from the specified
variation in moduli and the solution to the zeroth-order problem.
The inhomogeneous term in (8a) enters the equilibrium equations
analogous to a known body force. Similarly, the inhomogeneous
term in the boundary condition enters as a known distributed
surface traction.

Let G,i(x,x') be the elastic Green's function in a
homogeneous medium, giving the displacement in the x,
direction at point x when the unit point force is acting in the
direction x; at x'. Then the displacement due to distributed body

F(x) is given by un(x) =l Fi(x )Gmi(x ,x )dv(x ").
Identifying the second term in (8a) as ar‘n’ equivalent body force

and the second term in (8b) as an equivalent traction, we can
write the solution to the first-order problem as

forces

D(x) = [ (8Ci0(x") U (X)), GoiX, X )AV(X ")

- IS 6C,-,~k1(x ") u,(cg)(x ") 1j Gi(X, X )ds(x ") (11)

Application of the divergence theorem and chain rule allow
equation (11) to be reduced to a single volume integral in terms
of the variation in moduli, the zeroth-order solution, and the
displacement Green's function for the reference state

uD(x) = - lﬂ«scﬁk,(x Y uQ(") G f(X XY dv(x").  (12)

The domain of integration is (2, since SCW = 0 outside .
Similarly, for the second-order problem, the solution is obtained
as

uP(x) = - [ﬂsci,-u(x ) uhP(x") Gif(x XY dV(x").  (13)
In general, the nth-order solution is expressed in terms of the
proceeding lower-order solution as

W) = - [ﬂBC;,-u(x Y UK Gt fx,x ) dV(x").  (14)
We note that the first-order solution is similar to the Born
approximation in elastodynamics [Aki and Richards, 1980] and
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that higher-order solutions are equivalent to the higher-order
Born approximation [ Hudson and Heritage , 1981].

For an isotropic medium, the variation in moduli can be
written as

2#,()5V
(1-2va)(1-2v0)

OCyju = 0kt +£ ) (15)
Ho

where o and Vp are the shear modulus and Poisson's ratio for the
reference body respectively, Uq and vq are the shear modulus
and Poisson's ratio for the inhomogeneous region, év = vq - W,
W=Uq- o, and &; is the Kronecker delta. Therefore, for
variations only in Poisson's ratio, the volume integral in (14) is
with respect to the dilatational component of the source field,
which is often easier to evaluate. If there are only piecewise
constant variations in shear modulus (layers, for example), then
the volume integral of (14) can be reduced to a surface integral
(line integral in two dimensions) using the divergence theorem

us,">(x)=-§if V(X" Gi(x,x ") 1y ds(x") (16a)
Hojr
where

oV = ufih. (16b)

Here we have made use of the fact that from (7) - (10), G(Z l,) =
From (16) it is apparent that the correction at nth order is
proportional to (5/1/;10)". Therefore to guarantee the convergence
of the perturbation expansion, a reference state should be chosen
so that du/uo is less than 1.

It should be pointed out that other problems with known
solutions can be chosen as a reference state (not necessarily
homogeneous). However, a proper reference state should be
chosen so that the imposed perturbation does not change the
nature of the original problem. For example, the singularity at an
interface crack tip cannot be derived from a zero-order solution in
a homogeneous space [Gao, 1991]. The singularity at the
interface crack tip is a special characteristic of the original
problem which must appear in the zero-order solution.

To test the perturbation method, we consider an antiplane
problem with a vertical finite dislocation in a semi-infinite
layered medium in the next section.

A Screw Dislocation in a Two-Dimensional
Semi-Infinite Layered Medium

A Screw Dislocation in Substrate

Consider a two-dimensional (2-D) semi-infinite, elastic,
isotropic medium with a coordinate system chosen as in Figure
2a. The surface layer has a thickness of H with a shear modulus
of 1y, and the substrate has an infinite extension downward with a
shear modulus of t;. A finite vertical screw dislocation is located
from depth d to D in the lower layer. Since the model is
antiplane, the displacements are only in the x; direction and
depend only on x3 and x3. The displacement discontinuity across
the dislocation surface, i.e., the magnitude of the Burger's vector,
is b. This problem has been solved by Rybicki [1971] using an
image method, where the solution is in the form of an infinite
series. In the following, we will present a moduli perturbation
solution.
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Figure 2. (a) A finite screw dislocation at depths of d to D in a
layered semi-infinite medium. (b) Comparison of first-order
perturbation solution with that obtained by Rybicki [1971] using
an image method and with that for homogeneous medium for a
screw dislocation buried in the substrate.

Following Muskhelishvilli [1953], a complex potential aXz)
can be used to represent the antiplane displacement and stress
components in a homogeneous body as

u =‘ll1m[w(z)] (17a)

013 =Re[®(2)] (17b)
where z =x2+ix3, and Re[F] and Im[F] denote the real and
imaginary parts of the complex quantity, and @'(z) is the
derivative of the complex potential @(z). For a screw dislocation
located at depth of d on the x3 axis in a homogeneous half-plane,
the complex potential axz) is given by
_ub . .
@(z) =— [In(z-id)-In(z+id)] (18)
2n

The solution for a screw dislocation in a finite interval [d, D] can
be obtained by adding a oppositely signed dislocation at depth D.
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The displacement Green's function for the homogeneous half-
plane is expressed as
Gu =—L—{Re[In(z+ 2)]-Re[In(z-2)]} (19)
2mu
The zeroth-order solution at the free surface (for simplicity, only
the expressions at the free surface are given in the text below; see
Appendix A for the full expressions) is given as

O _briant®2y . tan ¢2
u; —n[tan (d) tan (D)]. (20)

The first- and second-order corrections are

+oo ’ A 1
e 0= [ ot W Guleea 0, (3 M1y @)

Pz, 0) =-% [ " ofbes, B Gullxs, 0), 3 Bl s @2)

where & =y - lp, and o =, 111(03) After some mathematical
manipulations, the first- and second-order displacement
corrections at the free surface are obtained as

1) (l-y)b -1,.X2 -1,.X2 -1 X2 -1 X2
U, =—-_—Jtan (==) - tan (==) - tan  (—=) + tan  (——=—
vt L D G RTTe

23
_aA2
u,(2)=—(1 nb [tan™ £2) - tan”! (£2) - 2tan”! (£2)
an d D d+2H
(%)

+2tan™ (X2 + tan!(£2—) - tan (22,
D+2hf (d+4H) D+aH

where Y=/, The Shanks transformation can be used to
improve the estimate of the sum of a series [Bender and Orszag,
1978]. By applying a Shanks transformation to the second-order
solution, we can obtain an improved estimate of the surface
displacement as

U4 u-uOu

1 2
FORE

25)

u

which is accurate to third order. For simplicity, we refer to the
Shanks transformation of the second-order solution as a third-
order solution.

In Figure 2b, we compare the first-order perturbation solution
with Rybicki's solution and with the solution for a homogeneous
medium for ¥ =0.25, H = 2km, d = 3 km, D = 13 km, and right-
lateral slip of 2 m. It is shown that a softer surface layer
amplifies the surface displacement significantly and that the first-
order solution agrees well with Rybicki's solution. In the
following, we will make a detailed comparison between the
perturbation and Rybicki's solutions.

The errors between the first-order and Rybicki's solutions for
various values of ¥ are shown in Figure 3. The maximum error
decreases with decreasing shear modulus contrast from 8.7% for
¥=0.1to 0.5% for y=0.75. If we go to higher-order solutions,
then the error can be made arbitrarily small. In Figure 4 we
compare the errors between various orders of perturbation
solutions and Rybicki's image solution for a shear modulus
contrast of 4 times (7= 0.25). The maximum error is as much as
23% for no correction (zeroth-order solution) but decreases



DUET AL.: DISLOCATIONS IN INHOMOGENEOUS MEDIA

H=2 km, d=3 km, D=13 km, Right-lateral Slip=2 m

10
— y-=01
—_—— 025
et 0.50
5 . eLCLLTETIDI 0'75
—_
1S
e 0 B
o S
i e ]
8 0
=
=
-5 -
First Order Solutions
-10 v T v r r — T r T r
-30 -20 -10 0 i0 20 30

Distance Normal to Fault (km)

Figure 3. Percent error (= bRybicki-pl/maxiugrybickil) in first-
order perturbation solution as a function of distance normal to
fault.

rapidly to less than ~6% with a first-order correction and to less
than 2% with a second-order correction. The error is less than
0.2% for third order solution. The first-order correction is most
significant, and the errors for the first-order solutions are less
than 10% even for a factor of 10 contrast in shear modulus.

A Screw Dislocation in Surface Layer

As a further test of the perturbation approach, we consider a
finite screw dislocation within the surface layer. Assuming that
the dislocation reaches the surface, i.e., d = 0, 0 <D< H (see
Figure 2a for geometry), then the zeroth-order solution and first-

H=2 km, d=3 km, D=13 km, Right-lateral Slip=2 m

25

o Zero order
20 - i_:'i } —e— First order
15 - :i' '. Second order
l,:’ —— Third order
10 1 s Y =025

Error (%)

-25 T T v T T T
-30 -20 -10 0 10 20 30

Distance Normal to Fault (km)

Figure 4. Percent error (= bRybicki-Upl/max|urybickil) in various
order perturbation solutions as a function of distance normal to
fault.
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order and second-order surface displacement corrections are
given as

u® = Bran (2 (26)
T X2
ul(l) =.@b_ [tan’l(x—z) + tan'](—L)] 1))
o D-2H D+2H
2
@ _ 19D 1, X2 sl X2
u?@ = tan + tan” (—=—)
! an [ (D+2H) (D-2H)
(28)

_ -1, X2 ~ -1, X2
an (D+4H) fan (D-4H) ]

Figure 5 shows the comparison of surface displacements
between first-order perturbation and Rybicki solutions for a shear
modulus ratio of 0.25. The thickness of the surface layer is 5 km
and the vertical screw dislocation lies at depths of 0 - 4 km and
has a right-lateral slip of 2 m. The plot shows that the surface
strain is more concentrated due to the presence of the softer
surface layer and that the first-order perturbation solution agrees
well with that of Rybicki [1971].

Figure 6 shows the error between first-order and Rybicki's
solutions for various values of . The maximum error decreases
with decreasing shear modulus contrast from ~25% for ¥ = 0.1 to
~1% for y=0.75. Higher-order solutions make the error much
smaller. In Figure 7 we compare the error between various
orders of perturbation solutions and Rybicki's image solution for
a fixed shear modulus contrast of 4 (y = 0.25). It is shown that
the error is as much as 50% with no correction (zeroth-order
solution) and decreases rapidly to ~13.5% with a first-order
correction and to ~4% with a second-order correction. Thus
these results confirm the conclusion of preceding section that the
first-order correction is the most significant. The errors for the
first-order solutions are less than 14% for a factor of 4 contrast in
shear modulus if the screw dislocation is situated in the surface
layer.

H=5 km, d=0, D=4 km, Right-lateral Slip=2 m

1.25
wsssege-ss  Homogeneous

1st Order
Rybicki (1971)
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Surface Displacement (m)
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T T T T T
-30 -20 -10 0 10 20 30

Distance Normal to Fault (km)

Figure 5. Surface displacements due to a dislocation in surface
layer as a function of distance normal to fault for first-order
perturbation and Rybicki solutions and that for homogeneous
medium.
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Figure 6. Percent error (= URybicki-Upl/max|urybickil) in first-
order perturbation solution as a function of distance normal to
fault.

Edge Dislocations in 2-D Semi-infinite
Inhomogeneous Media

In this section, we consider an edge dislocation in 2-D semi -
infinite inhomo-geneous media. We assume that there are only
piecewise constant variations in shear modulus, and only first-
order perturbation solutions will be presented using (16). The
displacement Green's functions for the semi-infinite homo-
geneous medium corresponding to a point force have been given
by Maruyama [1966] (see Appendix B). The expressions for
stresses due to an edge dislocation in a homogeneous semi-
infinite medium have been given by Head [1953] (Appendix C).

H=5 km, d=0 km, D=4 km, Right-lateral Slip=2 m

60

Zero order
——=— First order

Second order
= Third order

Y=025

—_—
S
8
=
=
20
40
-60 v T T T T T T v T
-30 -20 -10 0 10 20 30

Distance Normal to Fault (km)

Figure 7. Percent error (= URybicki-#pl/max|urybickil) in various
order perturbation solutions as a function of distance normal to

fault.
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The displacements in a homogeneous half-space due to an edge
dislocation can be derived from Mura [1968] (Appendix D). The
integral in (16a) is numerically evaluated using Romberg's
integration method [Press et al., 1986].

A Vertical Edge Dislocation in a Semi-infinite
Horizontally Layered Medium

As an example, we first consider a vertical edge dislocation in
a horizontally layered medium (Figure 8b insert). The parameter
Y again denotes the ratio of the shear modulus for surface layer,
My, over the shear modulus for the substrate, y,. The thickness of
the surface layer is 5 km, and the top of the vertical edge

(a)

Homogeneous
Y =075

0.00 o~

-0.10 -

-0.20

Horizontal Displacement (m)

'030 L] 1 L) L} v L] v
-30 -20 -10 0 10 20 30

Horizontal Distance (km)

0.4

Homogeneous
—r— Y =075
05

Vertical Displacement (m)

-30 -20 -10 0 10 20 30
Horizontal Distance (km)

Figure 8. First-order surface (a) horizontal and (b) vertical
displacements due to a vertical edge dislocation in a horizontally
layered semi-infinite medium as a function of horizontal distance
for y= {/it,= 0.25, 0.5, and 0.75. The thickness of the surface
layer is 5 km, and the top of the vertical edge dislocation is
located at 9 km depth and has a length of 10 km. The amount of
slip is prescribed as 2 m.
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dislocation is located at 9-km depth and has a length of 10 km.
The amount of reverse slip is prescribed as 2 m. The horizontal
and vertical displacements at the free surface for y= 0.75, 0.5,
and 0.25 are shown in Figures 8a and 8b, respectively. It is
shown that the vertical and horizontal displacements are
amplified due to the softer surface layer. When the distance from
the dislocation source increases, the influence of the soft surface
layer decreases, and the first-order solution merges with the
solution for a homogeneous half-plane as expected. The effect of
layering is more pronounced for a more compliant surface layer.

A Horizontal Edge Dislocation in a Semi-infinite
Medium With a Vertical Boundary

As a second example, we consider a horizontal edge
dislocation in a semi-infinite medium with a vertical boundary
(Figure 9 insert). The distance between the left tip of the edge
dislocation and the layer interface is 1.5 km. The dislocation is
located at a depth of 9 km and has a length of 8 km with the
center at y = 0. Figures 9a and 9b show the horizontal and
vertical displacements, respectively, for ¥ = 0.25 and the amount
of slip of 2 m. The horizontal displacements are reduced
significantly due to the presence of the stiffer material. As
expected, the stiffer material reduces vertical displacements
significantly on the left (y < 0). On the other hand, the peak
uplift on the right side (y > 0) is slightly amplified. This
amplification reduces rapidly to zero, and the solution merges
with that for a homogeneous half-plane as the observation point
moves away from the material boundary.

Dislocation Models for the 1989 Kalapana Earthquake

One of the unresolved issues from the initial studies of the
M6.1 1989 Kalapana, Hawaii, earthquake is the discrepancy
between the geodetically inferred location of the fault plane and
that inferred from seismic data. Arnadottir et al. [1991] analyzed
vertical displacements determined by repeated leveling. They
found that the data could be well fit by a flat-lying dislocation
with uniform slip at a depth of 4 + 1 km (Figure 10). However,
the focal depth of the earthquake determined from a local short
period network is 9 km, 5 kin deeper than imaged by the geodetic
inversion. Arnadottir et al. [1991] noted that shallow basalt
flows have low seismic velocities [Klein, 1981], and they
suggested that a compliant surface layer overlaying stiffer rocks
would bias the geodetically determined depth. Using a finite
element method, they found that a compliant surface layer
concentrates deformation, causing the dislocation modeled in a
homogeneous half-space to be shallower than it really is. They
suggested that the effect of a shallow compliant zone could
explain part of the discrepancy between the geodetic and seismic
depths. There are also significant lateral variations in elastic
properties on Kilauea. The core of the east rift zone, thought to
be composed a dense solidified dike 'swarm, exhibits high
densities and velocities [Hill and Zucca, 1987] and is likely to be
less compliant than the flank next to it.

The first-order perturbation solution showing the effect of a
compliant surface layer on the vertical displacement is illustrated
in Figure 11. The thickness of the compliant surface layer (see
Figure 11 insert for geometrical configuration of the problem) is
5 km. The fault is located at the hypocentral depth of 9 km with
a length of 8 km. Both seismic and geodetic studies indicate that
the fault plane is subhorizontal. Amadottir et al. [1991] take the
ratio of the shear modulus of the surface compliant layer to that
of the stiffer substrate to be 0.34 based on seismic velocity and

(a)

03

Horizontal Displacement (m)

------ Homogeneous
1st Order
0.0 T T T ! y
-30 -20 -10 0 10 20 80
Horizontal Distance (km)
(b) 0.4

Vertical Displacement (m)

¥
\“'I ------ Homogensous
1st Order
-0.4 v T T T d T N ' i ; ’
-30 20 -10 0 10 20 %0
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Figure 9. First-order surface (a) horizontal and (b) vertical
displacements due to a horizontal edge dislocation in a vertically
layered semi-infinite medium as a function of horizontal distance
for y=HU/1,=0.25. The horizontal edge dislocation is located at
a depth of 9 km and has a length of 8 km. The amount of slip is
prescribed as 2 m. The distance from the layer interface to the
left tip of the horizontal edge dislocation is 1.5 km.

density models [Hill and Zucca, 1987; Klein, 1981]. Poisson's
ratio is taken to be everywhere 0.25. The amount of the
horizontal slip is specified as 2 m. The effect of the compliant
layer is to increase the amplitude and slightly decrease the half-
width of the vertical displacements. In a homogeneous body the
half-width of the subsidence is controlled by the fault depth.
Thus the effect of the compliant surface layer is to make the
dislocation appear shallower than it really is.

To account for both vertical and lateral variations in stiffness,
we superpose a layered model and a model with a stiff vertical
strip representing the rift axis (Figure 12). The width of the stiff
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Figure 10. (a) Map of level line surveyed before and after the 1989 Kalapana, Hawaii earthquake. The location
of the main shock epicenter is shown by a star, the aftershock zone by the shaded region, and the surface
projection of the dislocation in a homogeneous medium that best fits the leveling data by the solid rectangle
[Amadottir et al., 1991]. The dashed rectangle indicates the location of the cross section shown in Figure 10b.
(b) Aftershocks of the 1989 Kalapana earthquake projected onto a vertical plane A - A'. The aftershocks cover a
period from June 24, 1989 to September 1, 1989. The location of dislocation surface estimated from the
inversion of geodetic data assuming a uniform half-space is shown by the solid line. Largest square is
mainshock. (c) Coseismic elevation changes associated with the 1989 Kalapana earthquake (solid dots), as a
function of distance along the leveling route. Calculated elevation changes predicted by a fault in a homogeneous
half-space at a depth of 9 km dipping 4° NW are shown by the dashed curve. The prediction for a fault at 4 km
depth, which best fits the leveling data, is shown as a solid curve. Data are after Arnadottir et al. [1991].

strip is 8 km, and the distance between right boundary of the strip
to the left tip of the horizontal fault is 5.5 km. The fault is, as in
the previous case, located at a depth of 9 km, with a length of 8
km and slip magnitude of 2 m. The vertical surface displacement
for the inhomogeneous model is shown in Figure 13. For

comparison, we also plot the vertical displacements due to faults
at 5 km and 9 km depth in a homogeneous half-plane. The
magnitude of the peak subsidence is scaled to be the same in the
different models, since we do not know a priori the magnitude of
the fault slip. Due to the inherently three-dimensional nature of
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Figure 10. (continued)

the 1989 earthquake we cannot invert the data using a two-
dimensional model. Rather, we use the two-dimensional results
as a guide to the effects of elastic heterogeneity. In this sense,
the vertical displacement profile produced by a fault at 9 km
depth represents the expectation from the seismic data and that at
5 km in a homogeneous medium represents the geodetic model of
Amadottir et al. [1991].

We find that the effect of lateral heterogeneity is to narrow the
zone of subsidence north of the dislocation (Figure 13). The net

H=5 km, d=9 km, Dip=0, Length=8 km, and Slip=2 m

Y=034

Vertical Displacement (m)

Homogeneous
st Order

-0.4

T
-10 0 10 20 3C

Horizontal Distance (km)

L]
-30 -20

Figure 11. First-order surface vertical displacements due to a
horizontal edge dislocation in a horizontally layered semi-infinite
medium as a function of horizontal distance for y= {/1, = 0.34.
The thickness of the compliant surface layer is 5 km. Dislocation
is located at the depth of 9 km with a length of 8 km and slip of 2
m.

effect is to cause the dislocation to appear shallower than it really
is. On the basis of the results shown in Figure 13 it appears that
the current model explains about half of the discrepancy between
the seismic and geodetic depth estimates. The inclusion of both
vertical and horizontal variations in the elastic properties explains
a larger part of the discrepancy than does layering alone. Note
from Figure 10 that beyond a distance of 48 km the level line
runs along the coastline, perpendicular to the inferred slip
direction. Data from this part of the level line thus cannot be
modeled with a two-dimensional calculation. A more complete
comparison of the model and the data will be possible with three-
dimensional Green's functions.

Conclusions

We have investigated dislocations in inhomogeneous media
using a moduli perturbation approach. A general formulation of
the moduli perturbation procedure is presented, and a few
solutions for anti- and in-plane problems in 2-D semi-infinite
inhomogeneous media are obtained. It is found that first-order
correction to the displacements can be represented by a volume
integral in terms of the variations in moduli, the zero-order
solution, and the displacement Green's function for the reference
state. The same representation can be used to iterate for higher-
order solutions. The volume integral can be reduced to a surface
integral (or line integral in 2-D) if there are only piecewise
constant variations in shear modulus. Comparisons with the
available analytical solutions have indicated that the first-order
perturbation solutions are valid over a wide range of variations in
moduli. A simple two-dimensional model with the inclusion of
both vertical and horizontal variations in the elastic properties
can explain part of the discrepancy between seismic and
geodetically inferred fault depths for the 1989 Kalapana, Hawaii,
earthquake.

Although finite or boundary element methods can handle
problems with inhomogeneities, the present perturbation
approach has its advantages of simplicity, efficiency, and in some
cases analytical forms of the results. The main limitation of the
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(11t+H3)

2

Figure 12. Superposition of a layered model and a stiffer vertical strip model to account for both vertical and

horizontal variations of the material properties.

Here, wi/u2=0.34, and wy/us=0.3. Thus

[ +2)2)] pp = 0.67, [(ta+13)2)/ 2 = 1.84, and [(Uo+s)2)/ pp = 2.17. The width of the stiff vertical strip is 8
km; the distance from right boundary of the stiff strip to the left tip of the horizontal fault is 5.5 km. The fault is

at 9 km depth and has a length of 8 km and slip of 2 m.

perturbation method is that the variations in moduli should be
modest so that Cjjy, is small compared to C,(}}), for the first-order
solution to be accurate to the desired degree. While in theory one
always can go to higher-order solutions for a better accuracy,
only first-order solutions are easily obtainable for most practical
problems. Perturbation solutions for dislocations in 3-D
inhomogeneous media will be presented in a companion paper.
The solutions will eventually be included in geodetic inversion
algorithms for improved determination of fault geometry and
spatially varying slip.

Appendix A: Perturbation Solutions for a glcrew
Dislocation in a Layered Semi-infinite Me ’\um

A Screw Dislocation Buried in Substrate (d> H)
u®(xz, x3) =L [tan (X2 - tan™! (Z2)] (A1)
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The solutions for a finite screw dislocation from d to D can be
obtained by superposing a negative dislocation at depth D.

Appendix B: Displacement Green's Function
for a Half-Plane

The displacement Green's functions for a half-plane corres-
ponding to point forces have been given by Maruyama [1966], or
they can be derived from Airy stress functions given by Melan
[1932]. Using the familiar relationship between elastic constants
in plane stress and plane strain, Melan's plane stress results can
be transformed to the corresponding plane strain solution. For a
force per unit length F " perpendicular to the free surface located
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Figure 13. Comparison of vertical displacements due to faults at
5 km and 9 km depth in a homogeneous elastic half-plane with
those due to a fault at 9 km depth in a inhomogeneous half-plane
with both vertical and lateral variations in shear modulus shown
in Figure 12.

at (x = §, y = &), the appropriate Airy stress function ¢l is

LR 0-8)6+8) 1 Ex(Ew)  (12v), .
¢ T { 2 2(1"V) [ '12 ' 9 X g)ln ’2]}
B1)
where
2= (-g) +(5-E)
¢ = (x+§)2 +(y-§)2 ®2)

6; = tan™'[(y -E)M(x-0)]
6, = tan™[(y -EM(x +0)]

The Airy stress function for a force F'' parallel to the free
surface, ¢ is

WP on(B8) 1 Cx(-8) (1-2v) In 2L
¢ ”{(xéT) 5 T2(1-v)[ 2 2 \yﬁ)n&]}
(B3)

The displacement Green's function can be obtained in a
straightforward manner using Mura's [1968] table. Since the
displacement Green's functions were given in a different
coordinate system in terms of the Lamé constant A and shear
modulus g by Maruyama [1966], for the sake of convenience to
the readers, we below give the expressions in the coordinate
system used in this paper in terms of the shear modulus and
Poisson's ratio.
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Appendix C: Stresses due to an Inclined Edge
Dislocation in a Half-Plane

The stress field due to an edge dislocation in a plane strain
semi-infinite medium has been given by Head [1953]. However,
there is a misprint in his equation (13) for 0. when the Burger's
vector is perpendicular to free surface. The corrected expressions
will be given below.

For an inclined edge dislocation located at (x =§,y = &)
making an angle o with the x axis (Figure C1), we have the x-
and y-components of the Burger's vector b to be by =b cos @, and
by =b sin «, respectively. The expressions for stresses according
to Head [1953] are (with correction for his equation (13)):
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Figure C1. Geometrical configuration of an edge dislocation in
a half-plane.
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Appendix D: Displacements due to an Edge
Dislocation in a Homogeneous Half-Plane

Displacements due to an edge dislocation in a homogeneous
half-plane can be derived from Mura [1968]. We are particularly
interested in the displacements at free surface giving below (see
Figure C1 for geometry):

o= Lib, tan(5) + 22220 ®1)
T 1+6

=~ L, tan'(5) + 22220 ®2)
T 1+6

where 6 = (y-£Y .
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