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Abstract. We have applied two Monte Carlo optimization techniques, simulated
annealing and random cost, to the inversion of deformation data for fault and
magma chamber geometry. These techniques involve an element of randomness
that permits them to escape local minima and ultimately converge to the global
minimum of misfit space. We have tested the Monte Carlo algorithms on two
synthetic data sets. We have also compared them to one another in terms of
their efficiency and reliability. We have applied the bootstrap method to estimate
confidence intervals for the source parameters, including the correlations inherent
in the data. Additionally, we present methods that use the information from the
bootstrapping procedure to visualize the correlations between the different model
parameters. We have applied these techniques to GPS, tilt, and leveling data from
the March 1997 earthquake swarm off of the Izu Peninsula, Japan. Using the two
Monte Carlo algorithms, we have inferred two sources, a dike and a fault, that fit
the deformation data and the patterns of seismicity and that are consistent with

the regional stress field.

1. Introduction

The increasingly widespread use of space geodesy has re-
sulted in numerous, high-quality surface deformation data
sets. For example, a large continuous GPS network of
nearly 1000 stations covers most of Japan [Kato et al.,
1998], and a network of more than 250 stations is under
construction in the greater Los Angeles area [Bock et al.,
1997]. Many geologically active areas such as Kilauea vol-
cano and Long Valley caldera also have regional continu-
ous GPS networks [Owen et al., 2000; Dizon et al., 1997].
Survey mode GPS data spanning more than a decade exist
in many areas around the globe. Interferometric synthetic
aperture radar (INSAR) promises even more deformation
data with potentially worldwide spatial extent [Massonet
and Feigl, 1998]. These geodetic data can provide impor-
tant constraints on fault geometry and slip distribution.
For this reason, we have developed robust and nearly au-
tomatic methods for rigorously inverting surface deforma-
tion fields for source type and geometry.

Many past attempts to infer source geometry from de-
formation fields have used elasticity theory and a trial-
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and-error approach to find geologically plausible deforma-
tion models that fit the major features of the observed de-
formation field [e.g., Okada and Yamamoto, 1991; Owen
et al., 1995]. Other workers have systematically searched
through a large set of feasible models, comparing the pre-
dictions to the data and choosing the model that mini-
mizes the misfit [e.g., Ward and Barrientos 1986; Marshall
et al., 1991]. Derivative-based searching algorithms have
also been used; for example, Arnaddttir et al. [1992] used
a quasi-Newton method to invert for the fault plane of the
1989 Loma Prieta earthquake. Finally, we have applied
the inversion methods discussed below to the source ge-
ometry estimation problem. See, for example, Murray et
al. [1996], Jonsson et al. [1999], Freymueller et al. [1999],
or Aoki et al. [1999]. The aims of this paper are (1)
to evaluate, using synthetic data sets, a variety of inver-
sion methods for robustness and efficiency, (2) to develop
techniques for assigning meaningful uncertainties to the
estimated source parameters, and (3) to apply the inver-
sion methods to the deformation from the March 1997 Izu
Peninsula earthquake swarm. The study of the Izu swarm
is included here both for pedagogical reasons and as an
expansion on our previous work [Aoki et al., 1999].

2. Theory

2.1. Earth and Source Models

Estimating source geometry from geodetic data requires
a forward model of how the crust responds to various kinds
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of deformation sources. The most commonly used crustal
model is the homogeneous, isotropic, linear, elastic half-
space, which we adopt here. In spite of its limitations, the
elastic half-space model is widely used primarily because
of the simplicity of the expressions for the surface defor-
mation caused by uniform, rectangular dislocations [e.g.,
Okada, 1985] and point sources [Mogi, 1958]. Moreover,
until recently, most geodetic data were not of sufficiently
high quality to justify more complex crustal models.

2.2. Inversion as Optimization

The relationship between the deformation field and the
source geometry can be expressed by the following obser-
vation equation:

1

where d is the deformation data vector, m is the source ge-
ometry vector (e.g., for a dislocation, length, width, depth,
dip, strike, location, slip), and G is the function that re-
lates the two. The € term is a vector of observation errors.
For the source geometry estimation problem the data are
related nonlinearly to the source parameters. For this rea-
son, source estimation reduces to nonlinear optimization.
The optimal source model, , will minimize the misfit be-
tween observation and prediction. Therefore we system-
atically search the finite dimensional parameter space for
m, using G to predict the deformation field for a given m.

How to quantify the misfit is somewhat arbitrary. Here,
we follow common convention and use the weighted resid-
ual sum of squares, which can be normalized by the num-
ber of individual data, n, minus the number of estimated
model parameters, p. This forms the “mean square er-
ror” (MSE), expressed as:

d =G (m) +e¢,

Ty —1
MSEzﬂ,
n—p

)

wherer = d — G (m) and X is the presumably known data
covariance. Several statistical tests exist for evaluating the
significance of the MSE (e.g., the x? and F tests), but it
should be emphasized that the validity of these tests, as
well as the meaningfulness of the n — p normalization, de-
pends on Gaussian noise and a linear relationship between
model and data. Statistical tests on the MSE should there-
fore be regarded skeptically. The geodetic signal contains
unmodeled deformation components such as those arising
from elastic heterogeneity or anisotropy. This unmodeled
signal contributes to the misfit, so the best fitting model
for a particular data set may yield an MSE that is quite
high. The “optimality” of our estimated source model is
thus always conditional on the assumptions intrinsic to the
forward model.

2.3. Solving the Optimization Problem

Derivative-based algorithms, Levenberg-Marquardt or
the method of conjugate gradients, offer the most straight-
forward and efficient approach to solving this optimization
problem [Gill et al., 1981]. However, because these algo-
rithms depend on the gradient and higher-order derivatives
to guide them through misfit space, they can get trapped
in the first local minimum that they encounter and never
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Figure 1. (top) Misfit space depicted in three dimensions,
i.e., misfit as a function of two model parameters. Note
that the space contains multiple minima, which makes the
result of a derivative-based algorithm dependent on the
initial guess. (bottom) The misfit surface for the same
two model parameters when all the linear parameters are
set at their optimal values, in a least squares sense. The
effect is to flatten the misfit space, which degrades the
performance of Monte Carlo algorithms.

find or even approach the global minimum. Consequently,
these algorithms work well only when the initial guess is
near the global minimum. A priori information can often
provide a good initial guess. For example, when Arnadéttir
et al. [1992] used a quasi-Newton method to invert for the
fault plane of the 1989 Loma Prieta earthquake they had
a very good idea, from geologic and seismologic data, of
where to begin the inversion. Moreover, they found the
same model estimate when starting from several different
initial guesses.

Figure 1 illustrates the topologic complexity of misfit
space in three dimensions (misfit as a function of two pa-
rameters). Clearly, whether a derivative-based method (or
any method that always moves “downhill”) reaches the
global minimum depends on where it starts. Moreover,
we have found that particularly in cases with low signal-
to-noise ratios (SNR), the misfit space often contains nu-
merous local minima and lacks a deep, well-defined global
minimum. We can therefore only endorse derivative-based
methods as a solution to the geodetic inversion problem
in cases characterized by both a high SNR and good ge-
ologic insight into the probable type and location of the
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deformation source. Even in these cases, it is essential to
show that the optimization converges to the same mini-
mum from many different starting values.

Another way to solve the optimization problem involves
discretizing the misfit space and then searching exhaus-
tively through the resulting grid. Exhaustive searches
prove viable, however, only when the number of estimated
parameters stays small. The number of possible combi-
nations equals QP, where @ is the number of divisions in
the grid and p is the number of parameters. Adopting a
coarse grid does little to help the problem both because
of the exponential growth and because an overly coarse
grid might miss the part of the misfit space containing the
global minimum. Random searches prove more efficient
than exhaustive searches, but the increase in efficiency is
not sufficient to overcome the exponential nature of the
problem. For these reasons, neither exhaustive nor random
searching seems useful for anything but the most modest
source geometries and the simplest Earth models.

In spite of their inefficiency, exhaustive and random
searches do not suffer from the local minimum problem.
Beginning in the 1940s, mathematicians sought algorithms
that combined the efficiency of a derivative-based method
with the robustness of a random search. The result was
the Monte Carlo class of algorithms. The common fea-
ture that all algorithms of this class share is an element of
randomness that permits an occasional uphill move, that
is, the algorithms will not always move from a candidate
model with higher misfit to a model with lower misfit.
This feature permits Monte Carlo algorithms to escape lo-
cal minima. Monte Carlo algorithms differ from “conven-
tional” random search methods in that the former retain
a directivity that engenders a high level of efficiency. The
two Monte Carlo algorithms explored in this paper are
simulated annealing [Metropolis et al., 1953] and the ran-
dom cost algorithm of Berg [1993]. Another class of Monte
Carlo algorithm includes the genetic algorithms [e.g., Yu
and Rundle, 1995]. These are considerably more difficult
to implement than either of the algorithms explored here.

2.3.1. Simulated annealing. In simulated anneal-
ing, the likelihood of choosing a higher misfit model over
a lower one depends not only on the misfit difference be-
tween the two but also on the state of the annealing pro-
cess at the time of the choice. The algorithm quantifies
this state dependence in terms of a temperature. At high
temperatures all source models have roughly equal chances
of getting picked, while at low temperatures the algorithm
favors low misfit models.

The specific annealing algorithm adopted here follows
from the work of Metropolis et al. [1953] and Creutz
[1984]. Called the “heat bath” algorithm, it proceeds as
follows. The initialization procedure consists of two steps:
(1) set bounds on the values for all the model parameters
(these bounds can come from geologic constraints or phys-
ical limitations) and (2) randomly pick an initial starting
model. Cycle through the individual model parameters,
my through m,. At each m;, compile a list of candidate
models by varying m; while holding parameters m;; fixed
at their current values. Next, calculate the misfit associ-
ated with each model, and form a probability distribution
according to
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Figure 2. Probability density functions for simulated an-
nealing at three different temperatures. (a) Misfit as a
function of a single model parameter (all the other param-
eters are held fixed). (b) Corresponding probability den-
sity function at high temperature. The density function
is quite flat; lower misfit models are only slightly more
favored than higher misfit models. (¢ and d) probabil-
ity density function evolution as the annealing progresses
from medium to low temperature. At low temperatures,
the parameter value that minimizes the misfit becomes
overwhelmingly probable.

_MiﬂE;
Pk~ € ;

3)
where T refers to the current temperature and MSE}, refers
to the MSE of the model corresponding to the kth permis-
sible value of the ith parameter. To update the value for
the ¢th model parameter, randomly sample from the dis-
tribution. Continue updating until all the parameters have
been cycled through, then lower the temperature according
to a “cooling schedule” and repeat until some termination
criterion obtains. Usually, that criterion is some preset
number of model updates or some time period. Alterna-
tively, a “freezing” criterion can be used where the algo-
rithm stops if the current model has remained unchanged
for some specified number of iterations.

Figure 2 illustrates the effect of temperature on the
probability distribution. At high temperatures the dis-
tribution is very flat. At this stage of the annealing, the
algorithm essentially functions as a random search. As
the temperature cools, low misfits are preferred, but the
random sampling ensures that they are not required. Oc-
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casional uphill moves occur; local minima are visited and
exited. In the final stages of annealing, when the tem-
perature is very low, the probabilities associated with low
misfits become very high, making uphill moves extremely
unlikely.

The most significant complication to the simulated an-
nealing algorithm is the cooling schedule, i.e., how the tem-
perature changes as the annealing progresses. This plays
a crucial role in the success or failure of the optimization.
Rothmann [1985] defined a critical temperature at which
the bulk of the annealing should, for maximum efficiency,
occur. In brief, at the critical temperature the system
remains cool enough to favor low misfits but still high
enough to escape local minima. Basu and Frazer [1990]
developed a method to quickly find the critical tempera-
ture that greatly improved on Rothmann’s trial and error
approach. This method runs the annealing algorithm at
a number of different fixed temperatures and defines the
critical temperature as the temperature at which the algo-
rithm retains a high degree of directivity yet can still easily
escape local minima. At temperatures much higher than
the critical temperature, the algorithm behaves very much
like a random search, while at temperatures much lower
than the critical temperature it behaves like (an inefficient
implementation of) a derivative-based algorithm.

We have found that for the geodetic inversion problem it
is generally not necessary to calculate the critical temper-
ature using the algorithm described by Basu and Frazer
[1990]. Instead, using extensive trials, we have derived a
fast method of forming a cooling schedule that works well
for the geodetic inversion problem: calculate the average
MSE for 100 randomly selected models. The approximate
critical temperature T, can be found from

log;o Te = logyo(MSE) — 2.5. (4)

The first term on the right side of (4) provides a natural
scale for the misfit function, while the second term is de-
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Figure 3. A comparison of robustly determined critical
temperature (star) to the rule of thumb approach (vertical
line). Note the good agreement between the two methods
for finding the critical temperature.
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rived empirically. For several test cases, Figure 3 compares
our approximations of the critical temperature to those
obtained from the rigorous method of Basu and Frazer
[1990]. Once a good approximation of the critical tem-
perature has been found, a cooling schedule can be easily
generated. Like Basu and Frazer [1990], we recommend
that the bulk of the annealing time be spent at or near the
T.. Specifically, the cooling schedule should begin 1 order
of magnitude higher than T, and end 1 order of magni-
tude lower. The number of iterations spent at a particular
temperature should decay rapidly with distance from 7.
We have found that a Gaussian distribution centered at T,
works well.

2.3.2. Random cost. Random cost is an alternative
Monte Carlo approach for nonlinear optimization problems
with many local minima in a broad misfit space [Beryg,
1993]. It uses a simple stochastic process to enforce a ran-
dom walk in misfit space, which enables it to overcome lo-
cal increases in misfit to find the global minimum. It pref-
erentially samples minima (or maxima) while thoroughly
sampling the misfit space. Our tests indicate that it is
significantly less efficient than simulated annealing, but it
is much easier to implement because it does not require a
specific cooling schedule.

The random cost approach begins by generating a set
of trial models that span a region about an arbitrary a
priori model. The method for generating the trial model
set is not unique. As described in section 3 we follow
Berg [1993] by defining a geometric grid in parameter space
centered on the a priori model. A geometric grid provides a
convenient means to simultaneously sample the parameter
space both broadly away from the a priori model (i.e.,
thorough sampling) and densely near the a priori model
(i.e., high accuracy).

In the discussion that follows, the “cost” function is the
MSE misfit. The misfit difference, A, is determined for
each trial model, such that A is the difference between
the misfit of the trial model and the misfit of the a priori
model. A is negative for trial models with an MSE smaller
than the a priori model and positive for trial models with
higher MSE. For simplicity, we ignore complications that
arise when the trial model MSE equals the misfit of the
a priori model (see Berg [1993] for discussion). Let f~
equal the average of all the negative A (i.e., better trial
models) and ft equal the average of all the positive A
(i.e., worse trial models). If the a priori model is not at a
misfit extremum, the random cost method chooses a new
a priori model from the existing trial models based on a
probability function determined from f~ and f*. Let two
probabilities p~ and p* (p~ + p* = 1) be defined by

p fT=p"f", (5)
which yields
_ Tt
p = W (6)

Let r be a random number chosen from a uniform distri-
bution between 0 and 1. If » < p~, a new a priori model is
randomly selected from the set of trial models with nega-
tive A; otherwise, it is selected from the set of trial models
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with positive A. A new set of trial models is generated
about the new a priori model, and the process is repeated
until a Jocal minimum (or maximum) is encountered, that
is, until no better (or worse) trial models are found. This
model is recorded and then the process can be restarted
at another randomly chosen a priori model.

When the a priori model is near a misfit minimum, neg-
ative misfit differences will, on average, have smaller mag-
nitude than the positive cost differences (f~ < fT). From
(6) this implies that p~ will be greater than p*, so there
is a greater probability that the next a priori model will
be chosen from the set with negative cost differences and
therefore be closer to the cost minimum. As the a priori
models get closer to the misfit minimum, the probability
increases that an even better a priori model will be cho-
sen for the next iteration. Thus the random cost method
preferentially samples the local minima. However, there
always remains a finite probability that a poorer fitting
a priori model will be chosen, enabling the random cost
method to overcome local increases in the misfit function
in order to locate the global minimum.

From the symmetry of (5) and (6), it should be noted
that maximum misfits will also be preferentially sampled,
that is, the algorithm preferentially visits extrema, not
just minima. Since we are seldom interested in the model
that fits the data worst, we simply discard those models
corresponding to maxima in misfit space.

Ideally, when not at a minimum or maximum, f* and
f~ (and thus p~ and p* in (5) and (6)) should be roughly
equal, giving equal likelihood that either better or worse
new a priori models would be chosen. This enforces a
random walk in misfit space, enabling it to be thoroughly
sampled. Thus the random cost method is most effective
for studying broad (i.e., nearly flat) cost functions with
many local minima or maxima. Because the geometric
grid of trial models cannot possibly sample the entire cost
space, there is no guarantee that the global minimum will
be the first minimum detected. Therefore the above pro-
cess needs to be repeated, beginning with other randomly
chosen a priori models, to ensure that all local minima
(including the global minimum) are properly sampled.

3. Using Monte Carlo Optimization

Given infinite time, Monte Carlo optimization methods
will always find the global minimum of the misfit space.
Our experience with these algorithms is that over finite
time, however, they sometimes fail. The reason for the
occasional failures stems from the intrinsic randomness of
these algorithms. The main way to address the algorithm
failure problem is to let the algorithms run for a long time.
Of course, what constitutes “a long time” remains an open
question. Our experience has been that for either algo-
rithm 50,000 to 100,000 evaluations of the misfit function
are almost always sufficient.

The update step in both simulated annealing and ran-
dom cost requires picking from a list of models, each one
corresponding to a particular permissible state of the pa-
rameter in question. Deciding how to define the permissi-
ble states for model parameters is arbitrary, though plau-
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sible upper and lower limits often exist. The simplest list
of permissible parameter values consists of a regular, lin-
ear spacing between the lower and upper limits. We prefer
a geometric grid similar to that proposed by Berg [1993]:
For a parameter at value mg, the list of permissible val-
ues contains mg + 2794, for integer values of ¢ up to the
grid precision, ). A equals half the interval between the
lower and upper parameter limits. There may be fewer
permissible values if mg + 279A yields results lying out-
side the bounds on the parameter in question. Note that
in contrast to a linear spacing scheme, the range of values
from which an update can be chosen depends on the pa-
rameter value prior to the update. This feature permits
a more thorough search of parameter space by combin-
ing broad coverage and high precision. Moreover, we have
found that letting @ = 4, which entails at maximum eight
choices at each update, works very well for both simulated
annealing and random cost. To achieve a similar robust-
ness with a linear spacing requires a fine enough grid that
the maximum number of choices at each update becomes
an order of magnitude greater.

Most deformation models have at least one and perhaps
several parameters that are linearly related to the defor-
mation field, e.g., the “slip,” “opening,” or “potency” pa-
rameters. Thus, for a given set of the remaining nonlinear
parameters it is possible to solve, using conventional least
squares, for the optimal values of the linear parameters.
This leads to an optimization strategy that involves pro-
jecting the linear parameters out of the misfit space. We
can rewrite equation (1) as

d =sG(m) +e, (7)
where s is the slip or opening, and simply solve for the
optimal s given some geometric model m. This strat-
egy permits the optimization algorithm to operate only
on the nonlinear parameters, implicitly solving for the lin-
ear parameters at each iteration. The obvious advantage
to this approach is that it reduces the dimension of the
misfit space, which should increase optimization efficiency.
Nonetheless, we recommend against using this approach
for the following reasons: (1) Absurd parameter values
from unconstrained least squares estimation can compen-
sate for an otherwise deficient set of nonlinear model pa-
rameters. For example, dislocation model m, might fit
that data as well as model my, but only if m, has 100 m
of slip. (2) Projecting the linear parameters out of the op-
timization problem flattens the misfit space (see Figure 1),
which will degrade the performance of any directed search
algorithm. (3) Least squares is not without computational
cost. Our experience has been that when the Monte Carlo
algorithms operate on all the parameters, linear param-
eters included, it is no less efficient than separate linear
inversion. Further, in the test cases, the Monte Carlo algo-
rithms more consistently converge to the global minimum
when they are permitted to operate over all the parame-
ters. It should be noted that in some cases, separating the
linear and nonlinear parameters is called for, e.g., simulta-
neous inversion for source geometry and spatially variable
slip.
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Figure 4. The observed displacement field for the simulated earthquake represented by test case
1 are depicted in white; the displacements from the model are depicted in black. (At this scale,
observation and prediction are difficult to distinguish.) Displacements are relative to the far-field
station marked with a star. The actual dislocation surface is depicted by the solid line, while
the model dislocation is depicted by the dashed lined. Correlated noise, indicated by the error
ellipses, has been added to the displacement vectors.

4. Experiments With Synthetic Data
4.1. Test Cases

To test the robustness and efficiency of the optimization
methods described in sections 2 and 3 we present two sce-
narios based on synthetic data. These two represent the
end-members from a variety of scenarios that span a wide
range of SNRs. We simulated the surface displacements
from two earthquakes using elastic dislocations with uni-
form slip. We added correlated noise to the displacements
based on an actual scaled GPS data covariance matrix,
which contained typical, if not high, amounts of noise. The
station distribution was taken from a real geodetic network
in northern California. Figure 4 and Figure 5 depict the
surface projections of the model faults and the correspond-
ing displacements with error ellipses. All displacements
are given relative to the coordinate system origin, which
lies near the upper right corner and is indicated by a star.
Table 1 and Table 2 give the specific model parameters for
the two test cases.

The first test model (Figure 4) represents a relatively
easy inversion problem: the synthetic displacements are

very large, corresponding to those from a M7 earthquake.
The high SNR of this case leads to a very deep min-
imum in misfit space, which should be quickly found
by any optimization algorithm. Moreover, the displace-
ment field lends itself to straightforward geological inter-
pretation, which permits reasonable a priori estimate of
the underlying deformation source. Several “downhill”
algorithms were tested: constrained and unconstrained
Levenberg-Marquardt least squares and a Nelder-Mead
simplex method. The constrained Levenberg-Marquardt
method was able to recover the original model; the other
two algorithms converged to local minima. Both simulated
annealing and random cost found the global minimum very
rapidly, often converging in fewer than 5000 calls to the
misfit function (somewhat less than a minute of computer
time on a 300 MHz Pentium II processor). Because of the
added noise, the minimum in the misfit function does not
precisely correspond to the actual model. Nonetheless, as
Figure 4 illustrates, the recovered model mimics the actual
model almost perfectly. Is it necessary to use Monte Carlo
algorithms on “easy” inversion problems characterized by
high SNR and plentiful prior geological information? Per-
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Figure 5. The observed displacement field for the simulated earthquake represented by test case
2 are depicted in white; the displacements from the model are depicted in black. Displacements
are relative to the far-field station marked with a star. The actual dislocation surface is depicted
by the solid line, while the model dislocation is depicted by the dashed line. Correlated noise,
indicated by the error ellipses, has been added to the displacement vectors.

haps not, but the important point is that with a Monte
Carlo algorithm, no prior model is required. If a source
estimate from a Monte Carlo inversion agrees with geo-
logic observation, this is an independent confirmation of
the result.

Table 1. Test Case 12

The second test case (Figure 5) represents a much
smaller earthquake, ~ M6, with corresponding surface dis-
placements on the threshold of what can be easily detected
and modeled. The small SNR makes for a topographically
subdued misfit space with many minima of approximately

Inversion Bounds Inversion Method Confidence Intervals

Parameter True Value Lower Upper SA RC HY Lower Upper
Length, km 60 20 100 58.0 59.8 59.7 59.5 60.9
Width, km 12 5 15 114 10.7 11.8 11.2 12.6
Depth to top, km 1 0 5 1.2 1.3 1.1 0.8 1.2
Dip, deg 70 50 120 71.2 72.2 70.3 68.9 71.2
Strike, deg 315 270 360 315.1  315.7 314.8 314.6 315.7
East offset, km -20 -50 0 -20.8 -20.4 -20.0 -20.1 -19.5
North offset, km -40 -50 0 -39.5  -40.0 -40.0 -40.6 -39.8
Strike slip, m 2 -5 5 2.1 2.2 2.0 1.92 2.11
Dip slip, m 0.2 -5 5 0.21 0.22 0.2 0.19 0.21
Moment® 10'® N m 4.34 N/A N/A 4.18 423  4.24 N/A N/A

2N/A, not applicable; SA, simulated annealing; RC, random cost; HY, hybrid.
bMoment is not a model parameter; it is included for convenience.
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Table 2. Test Case 22
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Inversion Bounds

Inversion Method Confidence Intervals

Parameter True Value Lower Upper SA RC HY Lower Upper
Length, km 12 1 15 13.1 13.8 134 8.9 14.6
Width, km 7 1 15 5.2 5.0 5.7 44 9.8
Depth to top, km 0.5 0 5 0.85 0.09 0.75 0.0 14
Dip, deg 45 5 175 44.8 50.0 43.8 38.9 153.3
Strike, deg 315 180 360 309 311.2 3119 302 335.4
East offset, km -30 -50 0 -31.5  -30.3 -31.0 -33.8 -28.2
North offset, km -30 -50 0 -30.8 -30.9 -30.7 -33.8 -29.1
Strike slip, m 0 -2 2 0.07 0.12 0.01 -0.61 0.18
Dip slip, m 0.75 -2 2 0.87 0.84 0.78 -1.0 1.0
Moment® 10'° N m 0.19 N/A N/A 0.178 0.178  0.180 N/A N/A

aN/A, not applicable; SA, simulated annealing; RC, random cost; HY, hybrid.
b>Moment is not a model parameter; it is included for convenience.

equal depth. All of the “downhill” algorithms we tested
(the same three as above) failed to converge on the global
minimum even when seeded with good initial guesses. The
Monte Carlo algorithms usually converged on the global
minimum, though occasionally they were fooled by the
conjugate plane, which predicts surface displacements that
fit the data nearly as well as the true fault plane. The les-
son here is to allow the Monte Carlo algorithms ample time
to explore the misfit space, particularly when the SNR is
small. However, if the algorithms consistently fail to con-
verge on the same answer, that is, if this misfit space is very
flat over a large range of parameter values, then the prob-
lem may lie not in the algorithms, but rather in the data
themselves. The uncertainty analysis methods discussed
in section 5 are particularly useful for distinguishing such
cases.

4.2. Discussion

We find that the random cost and simulated anneal-
ing algorithms work well for finding the vicinity of global
minima in misfit space. For efficiently reaching the exact
minimum we recommend a hybrid approach to this op-
timization problem: First, use a Monte Carlo algorithm
and let it converge on a model, which is then passed to a
derivative-based algorithm as an a priori starting guess.

Comparisons between the two Monte Carlo algorithms
show several differences in operational efficiency. Random
cost is the easier of the two algorithms to use, with no
metaparameters to set. Simulated annealing requires an
appropriate cooling schedule to operate properly, so this
algorithm involves either a fair amount of user experience
or a subalgorithm to calculate a cooling schedule. Once
an appropriate cooling schedule has been found, simulated
annealing generally runs much more quickly than random
cost, though finding the appropriate cooling schedule can
more than offset this increased efficiency. For this reason,
we favor simulated annealing when essentially the same
optimization problem needs to be run many times, as, for
example, in the bootstrap discussed in section 5.3. Ran-
dom cost seems to perform substantially better in cases
with low SNR than it does in cases of high SNR. The
reason for this probably stems from the nature of the ran-
dom cost algorithm, which preferentially samples extrema.

Misfit spaces characterized by high SNR tend to have few
extrema; hence the strength of the random cost algorithm
is not realized.

Figure 6 presents the results of several trials we ran to
compare the efficiency of the two algorithms. In these syn-
thetic cases, simulated annealing consistently, and some-

Simulated Annealing Random Cost
SNR=44
50 50
40 40
30 30
*
20 20
10 10
0 — 0
0 50 100 150 200 250 0 50 100 150 200 250
SNR = 660
70 70
60 60
50 50
40 40
*
30 30
20 20
10 10
0 0
[ 100 200 300 400 500 0 2000 4000 6000
SNR =975
80 80
70 70
60 60
50 50
#* 40 40
30 30
20 20
10 10
0 0
0 100 200 300 400 500 0 10000 20000 30000

Misfit Misfit

Figure 6. Histograms depicting the results of 100 tri-
als on three different test cases. The two algorithms were
permitted to run until a set number of calls to the misfit
function was reached. The histograms show the distribu-
tion of the misfits corresponding to the optimal model for
each of the 100 trials. Note the horizontal scale change in
the bottom two panels from the left to the right column.
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times dramatically, outperforms random cost. We suspect
that this behavior may be an artifact of the synthetic na-
ture of the misfit space. In the absence of noise, the for-
ward model predicts the synthetic data perfectly. We sus-
pect that this leads to an artifically smooth misfit space
that biases the comparison between the two algorithms
against random cost. In spite of its relative inefficiency,
the random cost algorithm did ultimately converge to the
global minimum for each of the trial cases. Therefore we
emphasize that for maximum robustness, both algorithms
ought to be used for all inversion problems. Because the
two algorithms function so differently, they provide good
independent cross-checks of one another.

5. Confidence Intervals
5.1. Uncertainty in Nonlinear Models

Assessing the uncertainties, or confidence intervals, as-
sociated with the estimated source parameters remains an
important problem, since without information about un-
certainties, evaluating the practical significance of an in-
version result becomes difficult. We would like to know
not only the uncertainty of the individual parameters but
also which parameters correlate with one another, and to
what degree.

In the analysis of confidence intervals and standard er-
rors that follows, one important point bears remember-
ing: We are estimating parameters and their uncertainties
given a particular model of the the Earth, e.g., a homo-
geneous elastic half-space. In the test cases, the synthetic
data come from the very model subsequently used for in-
version. For these cases, therefore, parameter misestima-
tion stems only from the contaminating effect of noise in
the data. In reality, noise accounts for only part of the
difference between parameter estimates and their actual
values. Unmodeled complexities, such as material hetero-
geneities, comprise the rest of the difference. The distinc-
tion between uncertainties about source model parame-
ters and uncertainties about the model itself must be kept
clear.

Ellipsoidal confidence regions result only from linear
cases where noise follows a Gaussian probability distri-
bution. In general, confidence regions will be much more
complex and much harder to assess. This is even true for
individual confidence intervals, or standard errors. Mis-
fit will not be a parabolic function of parameter value, so
confidence intervals will not be symmetric. The +o nota-
tion becomes obsolete in favor of ig; Indeed, even this
notation does not capture the most general case where the
confidence intervals are not continuous (see, for example,
Figure 10).

5.2. The Bootstrap on Correlated Data

To estimate the individual confidence intervals associ-
ated with the inverted model parameters, we employ the
bootstrap method [Arnadéttir et al., 1992; Efron and Tib-
shirani, 1993], which works as follows. Start with a set of
noisy data d and some function of the data, f, that returns
one or more values. Clearly, f (d) will depend not just on
the signal within d but also on the noise, so a confidence
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Figure 7. Empirical comparison of bootstrap values for
correlations and uncertainties to analytic estimates. A
three parameter linear model was used to generate syn-
thetic data, to which correlated noise was added. The
confidence intervals (regions) from linear inversion are de-
picted as solid lines; the intervals (regions) inferred from
the bootstrap are as dashed lines. The thick solid lines
indicate the actual parameter values.

interval must bracket the result of f(d). The bootstrap
builds confidence intervals by randomly resampling from
the data, with replacement (i.e., a particular datum can
be resampled more than once, others not at all) and then
reevaluating f (d*), where d* is the resampled set. The
values of f for a large number of resamples (B > 1000) are
then sorted from lowest to highest. To find, for example,
the 95% confidence interval, simply discard the top and
bottom 2.5% of the sorted, bootstrap resampled values of
£(d).

Implemented in this way, the bootstrap assumes that
all the data are equally weighted and that they are un-
correlated with one another. Geodetic data, however, are
almost always unequally weighted and significantly corre-
lated. These facts complicate the application of the boot-
strap algorithm to the source estimation problem.

Beginning with a data vector d and its matrix covari-
ance X4, how do we find a resampled data vector d* that
has appropriately resampled covariance matrix %%? One
approach that does not work is to form a resampling oper-
ator J, which is an identity matrix of the same dimension
as X3 with its rows resampled with replacement, and to
apply it to the data and its covariance forming d* = Jd
and ¥4 = JX4JT. Using this approach will produce, in
general, a rank deficient 3%. It is easy to see why this
is so: Twice resampled data points become completely
correlated, which creates repeated rows in £%. To cir-
cumvent this problem, we resample the weighted residu-
als rather than the data themselves. The optimization
methods described above find the model that (effectively)
minimizes the squared weighted residual norm, |[Wr||?,

wherer = d — G(m) and W = Z;%. For bootstrap-
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Figure 8. Actual versus expected behavior of bootstrap confidence intervals. If we choose 95%
confidence (o = 0.05), we expect the true parameter value to fall outside the confidence interval
~ 1 time in 20. The solid line depicts this expectation over a range of o values, while the crosses
indicate the behavior observed in our numerical tests. For this problem the bootstrap seems to
slightly overpredict confidence intervals, probably because of unresolved algorithm failures.

ping purposes we employ the optimization methods in ex-
actly the same way, except that we now strive to mini-
mize the squared norm of the resampled weighted resid-
ual, |[JWr||2. We have tested this method extensively on
linear problems with correlated Gaussian noise and find
excellent agreement between the bootstrapped uncertain-
ties and those predicted by linear propagation of errors
(see Figure 7).

We expect the actual parameter values to fall outside
the 95% confidence intervals ~ 1 time in 20. To ensure
that the bootstrap was performing consistently with this
expectation, we conducted a simple test: We added 50
different noise vectors, each derived from the same covari-
ance matrix, to the displacement data vector for test case
1. We then obtained bootstrap confidence intervals (using
a quasi-Newton bootstrap, with B = 2000) based on each
of the 50 new noisy data vectors. In effect, we estimated
the confidence intervals for 450 (9 x 50) parameters to see
how often they fell outside their confidence intervals. Fig-
ure 8 plots the number of times (as a percent of the total)
that a parameter fell outside its bootstrap confidence in-
terval against the expectation based on «, where (1-a)%
defines the confidence interval. The “correct” answer is
plotted as the diagonal line; that is, if the bootstrap is
performing as designed, we would expect the crosses to
plot on this line. Note that bootstrap seems to overesti-
mate confidence intervals slightly (e.g., when « = 0.05, we
expect the true model parameter to fall outside its interval
5% of the time; in fact, the percentage is closer to 2.5%).
Raising the number of resamples, B, did not eliminate the
disagreement.

There are several possible explanations for the overesti-
mation of the bootstrap confidence intervals. First, the
implicit assumption in using a quasi-Newton algorithm
to find the minimum in the misfit space of the resam-
pled data is that the prior model inverted from the ac-
tual data is close to (i.e., in the same minimum as) the
optimal model under the resample. To the extent that
this assumption is incorrect, the confidence intervals will
be biased toward being too large since the quasi-Newton
algorithm will converge to a suboptimal model in the re-
sampled misfit space. Another possible explanation for
this overestimation is that this relatively small data set is
not sufficient to completely illuminate the tails of the pos-
terior probability distribution. That is, the expectation
that we can specify precise 95% confidence intervals is not
reasonable given the data strength of this case.

5.3. Using the Bootstrap

Geodetic data often consist of vector quantities, e.g.,
displacement vectors. The theory behind the bootstrap
requires that resampling mimic actual data collection, so
vector quantities should be resampled as whole vectors
rather than by their individual components. To take the
GPS example, the components of the residual vector will
come in triples, e.g., east, north and up, corresponding to
one particular receiver. These triples should not be sepa-
rated but rather would be resampled as units.

Each bootstrap resample of the data creates a new p-
dimensional misfit space. In general, the new space has a
different set of minima (and a different global minimum)
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from the cost space of the original data. Hence each boot-
strap resample poses a new nonlinear optimization prob-
lem. Unfortunately, the Monte Carlo optimization meth-
ods discussed here cannot be considered as functions. That
is, they do not necessarily return a unique answer for a
given set of arguments. Because these algorithms contain
an element of randomness and because they operate over
finite timescales, there is no guarantee of convergence to
the same minimum at every execution. In principle, they
will always find the global minimum of misfit space, but in
practice, this is often not the case. For these reasons, great
care must be taken when applying the bootstrap to model
parameters estimated with nonfunctional algorithms. We
would like bootstrap confidence intervals for the estimated
parameters that reflect the limitations of the data, not the
limitations of the estimation algorithm.

We propose two alternate methods of applying the boot-
strap to the results of Monte Carlo optimization. The first
method applies when the signal-to-noise ratio appears very
high, >100, which probably indicates that the misfit space
has a large, well-defined global minimum. Under these cir-
cumstances a bootstrap resample will probably not change
the gross shape of cost space, changing instead only the
precise location of the global minimum. For this reason,
a derivative-based method, with the best model from the
original optimization as an initial guess, should find the
new global minimum easily. Derivative-based algorithms
are functional, so the bootstrap confidence intervals found
with them should not be biased by algorithm failures. We
have applied this bootstrapping method to test case 1 and
have found that for each resample, B = 2000, a Levenberg-
Marquardt algorithm converged to the new minimum in a
very small number of iterations. The danger in using this
method lies in its dependency on a starting guess. Should
the resampled cost space contain a global minimum quite
different from the original minimum, a derivative-based
method may never find it.

The alternative method to applying the bootstrap is to
perform a full Monte Carlo optimization at each resam-
ple. In general, this method provides much greater ro-
bustness but at the expense of drastically increased com-
putational time. Circumventing the nonfunctional nature
of Monte Carlo algorithms and preserving the data de-
pendence of the bootstrap confidence interval estimates
requires a lengthy and detailed bootstrapping process. Be-
gin as normal by forming a resampled data vector. Next,
perform a Monte Carlo optimization (preferably a hybrid)
and save the best model and its misfit (evaluated using
the bootstrap resample). Also save the resampled data
vector. After B resamplings, review the resulting B misfit
values looking for any that look abnormally high. These
probably represent algorithm failures. Rerun the Monte
Carlo optimization on all the resamples that failed to con-
verge (i.e., those that had abnormally high misfits), using
the same resampled data vector. This amounts to giving
the Monte Carlo algorithm more time to find the global
minimum for a particular resample. Repeat this procedure
until satisfied that a global minimum has been reached at
each resampling.
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The bootstrap can also estimate, at least in a qualita-
tive way, the correlations between parameters. A boot-
strapping run produces B estimates (based on B data re-
samplings) for each model parameter. For each parameter
pair, form a scatter plot of all the bootstrap estimates.
The resulting shapes provide an excellent way of visualiz-
ing the correlation between the parameter pairs. Unlike
the linear case, there is no unique way of defining a 95%
confidence region. Nonetheless, plots of this kind can set
the individual confidence intervals into the proper context
and help prevent the acceptance of unreasonable models.

5.4. Bootstrap Applied to Test Cases

We have applied both bootstrapping methods to the pre-
viously described test cases. Test case 1 has a very high
signal-to-noise ratio (~ 660), so we used the derivative-
based bootstrapping method described above. Tables 1
and 2 show the confidence intervals obtained using the
bootstrap. Notice that in each case, the bootstrap con-
fidence interval brackets the actual value (from the hy-
brid algorithm). Figure 9 depicts a matrix of scatter plots
that show the correlations between the various model pa-
rameters. The bottom row of Figure 9 shows histograms
for each of the individual model parameters, with verti-
cal lines marking the bootstrap confidence intervals. Re-
call that only Gaussian noise was added to the synthetic
displacement data for both test cases. Nonetheless, the
nonlinearity of the problem means that the model param-
eters are not normally distributed. The histograms re-
flect this fact, particularly for length and east offset, both
of which show marked asymmetry. Moreover, the scatter
plots depict complicated shapes that only vaguely resem-
ble ellipses. However, compared to the results from test
case 2 presented below, both the histograms and the scat-
ter plots reflect a relatively simple probability distribution
for the model parameters. In our experience, this is typical
for cases with a high SNR.

Figure 10 depicts a scatter plot matrix for the bootstrap
performed on test case 2, which has a low SNR (~ 5).
For this reason, we used Monte Carlo estimation for each
resample. Two features appear most striking: The two-
dimensional scatter plots do not form even vaguely ellip-
tical shapes, and the shapes they do form are discontin-
uous. This suggests the presence of at least two almost
equally deep minima in misfit space, corresponding to the
actual fault plane and its conjugate. The one-dimensional
confidence interval plots also reflect this bimodal distri-
bution, most clearly in the dip and the east and north
offsets. None of the model parameters in this test case are
well constrained, particularly when compared to the re-
sults from the first case. However, careful examination of
the histograms shows that the actual parameter value lies
beneath the distribution peak for each unimodal distribu-
tion. Moreover, for the bimodal distributions the actual
value lies below the peak of the larger mode. In this sense,
the bootstrap not only reveals how well the model param-
eters are resolved but also offers a qualitative distribution
of the parameter values.



CERVELLI ET AL.: ESTIMATING SOURCE PARAMETERS FROM DEFORMATION DATA

11,228

.m,ﬁ.m& p@p@E@H@Q U99M19( SUOIIR[AIIOD MOYS SMO.

“S[BAIOJUI 9OUSPYUOD [ENPIAIPUL 04GH 91 1908IG MOI Jse] Y} Ul UMOYS SOUI] [EDILISA YT,

1 107[10 oY, "sIojourered [opouL 81} JO UOTINGLIISIP

rroue)sod ® o) spo1dop Mol wo330q SYJ, ' 9s8d 1501 10§ j0[d I19)180S OUBLIBAOD Y 6 aanSq

(w) sa (w) ss (W) ypoN (w) yseg (o) S () dia (wx) ydeq (W) uIPIM (wy) yibuaT
GzZo 20 € 4 3 8€- ob- v 8l- 0z- 2z- 9le vie Zle S9- oL~ Gl- I 0 Gl oL S G99 09 SS ETY
0 0 0 0 0 0 0 0 0 o
=}
00G 000t 000! 0002 000} 000} 0004 0001 0002 W
&
000} 0002 0002 000Y 0002 0002 0002 0002 0oo¥ ﬂ
2o Z0 810
8L
I
vz (w) ss
v
220 20 8L'0 6T 14
34 W
o- ﬁ or- (W) yuoN
6€- 6¢-
220 zo 810 L4 4 6€- op- i
goc- goe eRAd
oz- * oz- ] oz- (W) 158
561" . §61- T T M) Ise3
61- 61- 61-
2o A 81’0 x4 4 6€- oy~ - 64 0z
vie 145 145 vie
gbie . ayie Syle gvie A
sle ’ sie sie sie o) S
G'GlE G'Gle G'Gle G'GLE
220 A 810 ST 4 6E- oy~ - 61- 0z- Gle vie
L . ZL- t45 2L . L
o / oz~ oL oz~ .‘ o (.) dig
89- 89- 89- 89- 89-
220 20 810 Gz 4 6€- ov- 3 61- 0z- Gie 1433 89- 0L~ 2L
50 50 ) S0 ) S0 50 50
, ramt | o | b ' e T (wy) ydeqg
-3 gL [ gl [ -3}
o 20 810 G z 6¢e- o~ W 61- 0z gie vie 89- 0L~ 2L gl 3 g0
04 oL oL ol 413 o} ol
z / 2 zl 2 “ 2 l\ 2 _/ z (W) yipian
143 143 143 043 Vi i 43 14
44 20 810 x4 Z 6€- ov- W 61- oz- sie vie 89- 0L 2L- gl 3 S0 143 k43 ol
65 e 65 . 65 . 65 . 65 o 65 ) 65 . 65
09 W 09 ‘F 09 \m‘\ 09 % 09 .l* 09 % 09 @ % (wy) ybus
19 iy 19 . 19 19 k- 19 R 19 o 19 = 19
29 29 29 29 29 29 29 29
(w) sa (w) ss (wy) yuoN (wy) 3se3 (o) S () 9@ (w) ydeq (W) YPIM



11,229

CERVELLI ET AL.: ESTIMATING SOURCE PARAMETERS FROM DEFORMATION DATA

“STBAIOUT 9OUIPYUOD [BNPIAIPUL &/ GE S 1¥0BIQ MOI ISB] 8] Ul UMOYS SOUI| [@dILI9A BT,
‘sared 1oj0ourered UsOMIDQ SUOIIR[ALIOD MOYS SMOI I9([}0 8Y ], ‘SIojewreled [opow Y[} JO UOIINGLIISIP
rotpysod € o) s101dep MOl W010q Sy, ‘g 9S82 189} Ic] j0[d I197)eds 8dURLIRAOD Y QT °anSijq

(w) sa (w) ss (W) yHonN (wy) 3se3 (o) S (o) dig (w) wdaq (W) wpIM (wx) ybue
3 0 b= I 0 i 0z ov- 09- 0z oe- oy~ 00 00z 0 0 00t~ 002 14 4 0 (/74 oL 0 1 ol S HH
0 0 0 0 [¢] 0 0 1] 0
S,
00z 00z 00z 0S 0oz 002 00z ool 0s w
o)
ooy ooy 0ot ooy ooy oo¥ 00z 0oL &
(w) ss
50 0 G0 -
[ oy~
s . g (W) yuoN
<l -
P og- e S og-
3 0 - g0 0 G0 - op-
=] ve e ve- ve-
L ze- .ﬁw ze- 2
o¢- #. o¢- oe- (w) 3se3
8z Y 8z- 8z-
9z 9z- 9z-
I 0 b g0 0 S0 |- 0g-  Ge-  0Ob- og- Se-
002 002 002 00z
05z 05z 05z 0sz () s
- 0og
- .&Jcom . o 00¢ e 00g
0ge — 0se = 0se - 0se
2 0 b g0 0 GO0 I- 0g-  Ge- 0O o€~ GE- 0oe 00z
o] 051 R o5k | g 0s4- . | 051 | 051-
© oo oos- | 00}~ 001 001 (,) dig
M, 0G- 0G- h/. 05 0G-
3 0 - i 0e-  Ge-  Op- 0oz 0g- 00L-  0GlL-
¢ 504 3 lmnw I b m\ «W 3
z z _ z z e (wy) wdaqg
€ € € € € €
3 0 - §g0 0 GG - 0e-  GE  0Ob- oe- Ge- 00e 00z 05- 004~ € 14 3
f M ,m.m s y .W S i |s w s N. & | S it d §
o a [F 7 oL oo |7 ot = o o (w4) WpIAA
St Si St St St
1 0g- Se- Ov- og- s 00e 00z 05~ 00L-  OSL- st oL s
9 9 9 9 9 9
8 8 8 8 e 8
o |& ¢ o o |: o [g 2 o S lor (W) ybuen
2 % F 74 z 4 = | E e
v | & [ IR ) [20: v . - |
(W) yuoN (w) 1se3 (c) s (,)dig (W) WIpIAA




11,230

139°00°E

35"10°'N

35°00°N

34°50°'N

139°00°E

CERVELLI ET AL.: ESTIMATING SOURCE PARAMETERS FROM DEFORMATION DATA

139"10°E

35°10°N

35°00°N

34°50°'N

139°10'E

Figure 11. Observed and predicted deformation from the March 1997 Izu Peninsula (see inset
for location of Izu Peninsula) earthquake swarm. Black vectors depict GPS and tilt measurements
(tilt stations have three-character IDs); white vectors are model predictions. Error ellipses are
20. The two planes are the surface projections of the shear source (solid) and the dike (dashed).
The focal mechanism is from the largest event in the swarm, M5.3.

6. Application to the March 1997
Earthquake Swarm off Izu Peninsula,
Japan

6.1. Introduction

Aoki et al. [1999] used the simulated annealing algo-
rithm to estimate the source geometry for the 1997 Izu
Peninsula earthquake swarm, which they interpreted as
arising from a dike intrusion and a strike-slip fault. After
estimating the source geometry they solved for the spa-
tial and temporal evolution of slip and opening on these
structures. Here, we extend the geometry estimation part
of their work, applying both random cost and simulated
annealing to the problem. We compare the two algorithms
to one another for efficiency and ease of use and address
the efficacy of hybrid methods. Further, we correct an er-
ror in the forward calculation of the misfit function that

led to a biased estimate of the source geometry of Aoki et
al. [1999]. Our preferred model, discussed in detail be-
low, differs from the model of Aoki et al. [1999] as follows:
Our model fault dips more shallowly and lies farther to
the east, and our model dike has a taller aspect ratio, less
area, and more opening.

6.2. Geological Background

The Izu Peninsula, located in central Japan (Figure 11),
has been the source of numerous seismic swarms, with one
occurring almost every year since 1978. A swarm in 1989
led to a submarine eruption [Okada and Yamamoto, 1991].
This study targets the swarm that began on March 2, 1997,
and continued for ~ 10 days. The onset of activity oc-
curred at 1500 (UTC) near the coastline and the center of
activity moved seaward at around 2300 (UTC). The earth-
quake focal depths are concentrated in the upper 10 km
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Figure 12. A depiction of the preferred model in 3-D perspective. The plane shown in cross
section represents the dike, the plane shown nearly head on is the shear source. Catalog seismicity
is also plotted. The view is parallel to the strike of the dike (roughly toward the northwest). Note

good agreement between the dip of the dike and

of the crust (Figure 12). Seismic activity subsided after
March 9, 1997.

Almost all of the earthquakes have P axes oriented
NW-SE, which is consistent with the regional tectonic
stress pattern [Ukawa, 1991]. This swarm was consider-
ably more energetic than previous swarms, with 25 earth-
quakes larger than M4 and 4 larger than M5 [Earthquake
Research Institute, 1997]. The largest earthquake M5.3
occurred at 0351 (UTC) on March 4. The hypocentral
distribution of the events is shown in Figure 12.

Significant crustal deformation was also associated with
the swarm (Figure 11). Permanent Global Positioning
System (GPS) observations show ~ 120 mm of NE-SW
extension between Hatsushima island and the Izu Penin-
sula (Figure 11). Repeated leveling reveals a maximum
uplift of 30 mm along the east coast of the Izu Peninsula

the seismicity.

(Figure 13). Continuously recording borehole tiltmeters
showed significant tilts, reaching a maximum of 13 urad
NW tilt at the station nearest the swarm, KWN (Fig-
ure 11). Many researchers have suggested a volcanic origin
for the swarm activity off the Izu Peninsula. For example,
Okada and Yamamoto [1991] have shown that the deforma-
tion associated with the 1989 event resulted from a com-
bination of an intruding dike and the coseismic offset from
the swarm’s largest earthquake, M5.3. Generally, swarm
activity off the Izu Peninsula lasts from 2 to 10 days. This
activity is characterized by a sudden burst of seismicity
followed by a gradual decrease. Although Okada and Ya-
mamoto [1991] were able to satisfactorily fit the crustal
deformation from the 1989 event using forward model-
ing, the detailed processes operative during the swarms
are still not well understood. Recently, however, the num-
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Figure 13. Observed and predicted vertical deformation from the March 1997 Izu Peninsula
earthquake swarm. Circles connected by a line depict observed height changes from leveling
measurements. The remaining circles depict model prediction. Error bars are 2. (left) Main
leveling line; (right) spur (see Figure 11). Note that because of correlations in the leveling data,

it is effectively the derivative of the profile that is

fit by the inversion.
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ber and density of permanent geodetic stations, including
GPS and borehole strain and tilt, have increased tremen-
dously in Japan [e.g., Kato et al., 1998], so that we now
can model the crustal deformation with higher resolution
[e.g., Aok et al., 1999]. Here we estimate the geometry of
the sources active during the March 1997 seismic swarm
using the methods discussed previously.

6.3. Data

The available geodetic data consist of GPS, leveling, and
tilt measurements (see Figure 11 for station locations). In
the eastern part of the Izu Peninsula, 12 permanent GPS
stations are operated by the Geographical Survey Insti-
tute of Japan (GSI) and one station is operated by the
National Institute of Earth Science and Disaster Preven-
tion of Japan (NIED). Site coordinates were estimated
once a day. Displacements were estimated by taking 5-
day weighted averages of the station positions centered on
February 23, 1997, and March 22, 1997, dates chosen to
bracket the active deformation period. The formal uncer-
tainties were scaled by the repeatability about the mean
over the two 5-day periods, when little or no deformation
is presumed to have occurred. The repeatability is ~ 3-
4 mm for the horizontal components and around 10 mm
for the vertical components. Although GPS time series
can contain temporally correlated errors, which have been
modeled as either random walk or flicker noise Zhang et
al., 1997; Mao et al., 1999], this effect is safely neglected
since the time interval is so short. For this data set the
contribution from colored noise is at most submillimeter.

Leveling surveys were also conducted by GSI in Octo-
ber 1996 and March 1997 (Figure 13). The only activ-
ity that occurred during this interval was the March 1997
swarm, to which we attribute all measured height changes.
The covariance of the leveling data is calculated following
Arnadéttir et al. [1992], and scaled according to the cir-
cuit misclosure in the surveys by o = 1.20 mm/ vkm. The
error in the tilt data is reasonably approximated by Gaus-
sian random walk [Wyatt et al., 1988].

We analyzed the power spectrum from a long run of tilt
data not affected by swarm events and concluded that the
tilt errors could be adequately modeled by a sum of white
noise with oy = 0.01 prad and a random walk process
with scale orw = 3 prad/,/yT, so that the variance in the
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tilt error is

(8)
Using a value for time of ¢t = 0.077 years (28 days) and the
values for the other terms given above, (8) yields a value of

Ototal Of 0.83 urad. The two components of the tilt vector
were assumed to be independent.

2 _ 2 2
Ototal = O + O'RW\/E

6.4. Model

We first attempted to model the deformation with a
single dike source, represented by a uniform opening dis-
location. We placed very broad bounds on the parameter
values (Table 3), since we had little a priori information
about the deformation source(s). The results of two inver-
sion runs, one for simulated annealing (model a), the other
for random cost (model b), are given in Table 3. Note that
the source parameter estimates differ significantly between
the two algorithms. However, both source parameter esti-
mates, if used as a priori values for a derivative based algo-
rithm, lead to the same final model (model c) in Table 3.
This reinforces our conclusion from the tests on synthetic
data that Monte Carlo algorithms operate most effectively
when combined with a derivative based algorithm. We re-
peatedly ran both algorithms to explore the misfit space
thoroughly. A strong global minimum, corresponding to
model ¢ in Table 3, dominates the misfit space, though
several weaker local minima also appear. Before finding
the vicinity of the global minimum, the random cost al-
gorithm required a factor of ~ 3 more calls to the misfit
function than simulated annealing. This is in keeping with
our observation from the synthetic data that the random
cost algorithm performs comparatively poorly when the
misfit space is dominated by a large global minimum.

The NW-SE trending dike represented by model ¢ in
Table 3 is consistent with the regional tectonic stress field
[Ukawa, 1991]. The single dike model fits northeast exten-
sion in the GPS data but does not explain the southeast
directed motion at GPS sites along the east coast of the
Izu Peninsula, north of the seismic swarm (Figure 11).
These dike parallel motions are not predicted by any dike-
like source. The MSE associated with model ¢ was ~ 11.
Permitting both shear and opening on a single dislocation
lowered the misfit significantly (MSE 5.6), but we rejected
this model outright for its physical implausiblility. Dikes

Table 3. Source Parameters for the March 1997 Izu Peninsula Earthquake Swarm for Dike Only

Inversion Bounds Models

Parameter Lower Upper a b c
Length, km 0.01 25 7.63 9.21 7.06
Width, km 0.01 15 6.91 4.22 6.87
Depth to top, km 0 5 0.16 0.74 0.21
Dip, deg 45 135 89.5 90.4 90.0
Strike, deg 240 350 300 298 302
East offset, km 2 15 5.44 6.79 5.44
North offset, km -30 -10 -23.0 -22.3 -22.9
Opening, m 0 5 0.34 0.52 0.38
MSE 14.1 16.3 11.2
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Table 4. Source Parameters for the March 1997 Izu Peninsula Earthquake Swarm for Dike and Fault
Inversion Bounds Models

Parameter Lower Upper a b
Dike
Length, km 0.01 25 8.65 3.17
Width, km 0.01 15 0.744 9.67
Depth to top, km 0 5 0.992 0.80
Dip, deg 45 135 73.2 62.6
Strike, deg 240 350 298 208
East offset, km 2 15 6.26 7.94
North offset, km -30 -10 -22.0 -19.7
Opening, m 0 5 1.90 0.60
Fault
Length, km 1 15 6.57 5.53
Width, km 0.01 15 1.40 3.30
Depth to top, km 0 6 4.99 0.29
Dip, deg 0 180 50 62
Strike, deg 310 25 353 349
East offset, km 0 15 5.5 2.92
North offset, km -30 -15 -21.6 -21.6
Strike Slip, m -1.5 1.5 -1.50 -0.49
MSE 2.8 4.1

are expected to intrude normal to the least compressive
stress and are unlikely to exhibit substantial shear dis-
placement.

To capture the presumably independent shearing mo-
tion associated with the swarm earthquakes, we increased
the complexity of the model and included a second disloca-
tion in the inversion. As above, we set very broad bounds
on the parameter values (Table 4). Introducing eight new
dimensions to the misfit space eliminated the single strong
global minimum in favor of severai different weak minima
each having approximately the same depth (MSE < 5). In
terms of algorithm efficiency, random cost was the clear
winner in this case. Simulated annealing took about twice
as many calls to the misfit function for consistent conver-
gence to one of the low-valued minima. We found that
by perturbing the critical temperature slightly from the
nominal value provided by our shortcut method, we could
improve the effectiveness of the algorithm. Indeed, in our
implementation of the simulated annealing algorithm the
default behavior is to make the shortcut guess but then
to run the algorithm three times at three different critical
temperatures that bracket the nominal value. Random
cost reliably found low-valued minima, often with surpris-
ingly few calls to the misfit function (< 10,000). Again,
this is consistent with our experience from the test cases,
which indicated that random cost performs well in misfit
spaces characterized by multiple minima.

Using hybrid versions of both algorithms, we assembled
a list of ~ 20 source models all having low misfit (MSE
< 5). We then examined each of the models, judging
them for consistency with the earthquake locations and
mechanisms, physical and geological plausibility, and the
degree and nature of the misfit. We do not use the MSE
alone as the sole criterion for choosing a source model for

two main reasons: First, the feasible region of the mis-
fit space is defined very simplistically: we impose upper
and lower bounds on the value of each parameter but im-
pose no constraint equations that interrelate parameters
with one another (e.g., excluding models that have stress
changes that exceed a certain value). This is analogous to
the army imposing on its recruits height limits of 150-200
cm and weight limits of 60-140 kg. Under such a plan,
soldiers who were 155 cm tall, but weighed 135 kg would
be deemed battleworthy. Likewise, models may be per-
missible, in that none of their parameters fall outside the
bounds but at the same time be rejectable for other rea-
sons. Second, not all the available data are accounted for
in the misfit function. There are qualitative geologic con-
cerns that would be very hard to include, but there are
also quantitative measurements like the size and location
of earthquakes that are not modeled.

Our preferred source model for the earthquake swarm is
listed as model b in Table 4. There is very good agreement
between the location and orientation of the dike source
and the seismicity (Figures 11 and 12). The shear source
agrees fairly well with the focal mechanism of the largest
earthquake, though there is a discrepancy in dip direction.
However, the shear source does lie in a region of seismicity
separate from the main cloud that presumably arose from
the dike intrusion. The deformation data are fit well by
this model, with no evidence of any systematic misfit (Fig-
ures 11 and 13). Though the plot of leveling data (Figure
13) appears to indicate systematic overfit, this is a plot-
ting artifact. Because of the correlations associated with
leveling, it is essentially the first derivative of the data that
is fit.

We also list another model, model a in Table 4, which
we believe represents the minimum in misfit space for this
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problem. Despite its low misfit (MSE = 2.9), we rejected
this model for a number of reasons. First, the model shows
very poor agreement with both the location and orien-
tation of the swarm seismicity. Second, the model dike
reaches the surface, but there was no evidence of a sub-
marine eruption. Third, the dimensions of the model dike
are very small for such a large amount of opening. (This
suggests that a constraint on the dike overpressure might
screen for unrealistic models). Fourth, the moment of the
shear source (M, = 5.8) seems quite high.

To estimate uncertainties on the model parameters, we
performed a bootstrap analysis as described above. We
performed 2000 resamples and used a hybrided simulated
annealing algorithm at each iteration to find the minimum
of the resampled misfit space. To enhance algorithm per-
formance, we first used the rigorous method of Basu and
Frazer [1990] to estimate the critical temperature. The re-
sults are depicted in Figure 14 and Figure 15. The model
parameters are quite poorly constrained by the data set,
which is not surprising given that nearly all of the data
were measured on only one side of the earthquake swarm.
In addition to the obvious trade-offs between the area of
the deformation sources and their opening/slip, there are
several others worth noting: Both the fault and the dike
show significant trade-off between their spatial coordinates
and their orientation. This suggests additional source com-
plexity; for example, perhaps the dike propagated as dis-
tinct segments or shearing occurred on several different
planes. Alternatively, this could reflect limitations in the
data, given their uneven distribution.

7. Conclusions

We have applied Monte Carlo optimization methods to
the problem of estimating source parameters from defor-
mation data. The misfit space that characterizes this opti-
mization problem often contains multiple minima, making
the use of derivative-based methods impractical. We have
tested two very different Monte Carlo algorithms: simu-
lated annealing and random cost. Our testing on synthetic
data sets indicates that both of these algorithms can solve
the global optimization problem of source parameter esti-
mation. The simulated annealing algorithm is more com-
plicated to implement than the random cost algorithm,
though our test cases indicate that the former algorithm is
more robust than the latter. We have presented a method
for rapidly approximating the critical temperature, which
is an important metaparameter for simulated annealing.

We have used the bootstrap method of approximating
the a posteriori covariance of the estimated source param-
eters. Earlier implementations of the bootstrap did not
account for correlated data. We have developed a resam-
pling technique that properly handles correlation, which
we have empirically verified with tests on linear problems
where the a posteriori covariance is known analytically.
Understanding the implications of the a posteriori covari-
ance of the estimated source parameter can be very dif-
ficult; because of the nonlinearity of the problem the a
posteriori covariance is not a matrix, nor does it describe
a hyperellipsoid. We present a visualization method that
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provides both a qualitative representation of the correla-
tions among the estimated source parameters and a depic-
tion of approximate two-dimensional confidence regions.

Finally, using the optimization methods described above,
we have analyzed deformation data resulting from an earth-
quake swarm off of the Izu Peninsula, Japan. This analysis
led to an interpretation of the earthquake swarm as a dike
intrusion and associated shear on a nearby fault. The de-
formation data, consisting of GPS observations, leveling
measurements, and readings from borehole tiltmeters, are
fit well by these source models. Moreover, the source lo-
cations agree with both the earthquake hypocenters and
the purported regional stress field. To find estimates of
the confidence intervals for the source model parameters,
we used the bootstrap, the results of which are depicted
by Figures 14 and 15.
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