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Abstract—Simple models, like the well-known point source of dilation (Mogi’s source) in an elastic,

homogeneous and isotropic half-space, are widely used to interpret geodetic and gravity data in active

volcanic areas. This approach appears at odds with the real geology of volcanic regions, since the crust is

not a homogeneous medium and magma chambers are not spheres. In this paper, we evaluate several more

realistic source models that take into account the influence of self-gravitation effects, vertical

discontinuities in the Earth’s density and elastic parameters, and non-spherical source geometries. Our

results indicate that self-gravitation effects are second order over the distance and time scales normally

associated with volcano monitoring. For an elastic model appropriate to Long Valley caldera, we find only

minor differences between modeling the 1982–1999 caldera unrest using a point source in elastic,

homogeneous half-spaces, or in elasto-gravitational, layered half-spaces. A simple experiment of matching

deformation and gravity data from an ellipsoidal source using a spherical source shows that the standard

approach of fitting a center of dilation to gravity and uplift data only, excluding the horizontal

displacements, may yield estimates of the source parameters that are not reliable. The spherical source

successfully fits the uplift and gravity changes, overestimating the depth and density of the intrusion, but is

not able to fit the radial displacements.
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1. Introduction

Quite simple models are widely used to interpret geodetic and gravity data in

active volcanic areas. An example is the well-known point source of dilation (Mogi’s

source), used to approximate the behavior of a pressurized spherical magma

chamber, embedded in an elastic, homogeneous, and isotropic half-space (EGGERS,

1987; DVORAK and DZURISIN, 1997). Mogi’s source models successfully reproduce

displacement and gravity changes at many volcanoes during either uplift or

subsidence (MCKEE et al., 1989; BERRINO, 1994; BATTAGLIA et al., 1999). In

addition, some authors use the linear gravity/height correlation from the point source

model to study the physics of magma chambers (RYMER and WILLIAM-JONES, 2000)

or investigate the likelihood of volcanic eruptions (BERRINO et al., 1992; RYMER,
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1994). This approach appears at odds with the complex geology of volcanic regions,

since the crust is not a homogeneous medium and magma chambers are not spheres.

But what should a model include to obtain a better insight into the physics of

volcanoes? Some authors claim that elastic-gravitational models can be a far more

appropriate approximation to problems of volcanic load in the crust than the more

commonly used purely elastic models (e.g., RUNDLE, 1982; FERNÁNDEZ et al., 2001a,

2001b). Vertical discontinuities in the Earth’s density and elastic parameters can play

an important role when modeling gravity changes induced by deformation

(FERNÁNDEZ et al, 1997; BONAFEDE and MAZZANTI, 1998). We apply models

including one (or more) of the above features to the 1982–1999 period of unrest at

Long Valley caldera to evaluate: (a) if elasto-gravitational models are a more

appropriate approximation to problems of volcanic load in the crust than the purely

elastic models at the space and time scales associated with volcano monitoring; (b)

the importance of vertical discontinuities in the Earth’s density and elastic

parameters when modeling displacement and gravity changes induced by a point

source of dilation; (c) the bias introduced using a point source of dilation model to

reproduce geodetic and gravity data if the magma intrusion does not posses a

spherical symmetry.

Our results show that (a) self-gravitation effects due to coupling between elasticity

and gravity potential are second order over the distance and time scales normally

associated with volcano monitoring. (b) For an elastic model appropriate to Long

Valley caldera, we find only minor differences between modeling the intrusion using a

point source in a homogeneous or layered medium. (c) A simple experiment of

matching deformation and gravity data from an ellipsoidal source (YANG et al., 1988;

CLARK et al., 1986) using a spherical source suggests that the standard approach of

fitting a center of dilation to gravity and uplift data only, excluding the horizontal

displacements, can yield estimates of the source parameters that are not reliable. In

our experiment, the spherical source successfully fits the uplift and gravity changes,

inferring a deeper location (8.5 km instead of 6 km) and a larger density (4500 kg/m3

instead of the actual 2500 kg/m3) for the intrusion, but is not able to fit the radial

displacements.

2. Coupling between Elastic and Gravitational Effects

The complete solution for gravity and deformation changes in volcanic regions

should include the coupled effects of gravity and displacement changes (FERNÁNDEZ

et al., 1997). To determine if these effects are important on space and time scales

associated with volcano monitoring, we perform a dimensional analysis of the fully

coupled elasticity and potential equations (see POLLITZ, 1997 for similar discussion in

the earthquake context). We approximate the Earth with an isotropic, elastic sphere.

The origin of the coordinate system is taken at the center of this sphere. Following
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the approach by LOVE (1911, p. 89), the density q0, the pressure p0 and the potential

V0 (with the corresponding gravitational acceleration –g0er ¼ rV0 define the initial

state of equilibrium

q0rV0 ¼ rp0: ð1Þ

After the intrusion of mass in a spherical magma body of initial radius a

(approximated by the superposition of a point source of dilation and a mass point

source at x ¼ xm, see Fig. 1), the Earth’s surface deforms by u ( uj j � a).
Perturbations in the density q, pressure p and potential V are defined by

q ¼ q0 �r � q0uð Þ
p ¼ p0 � u � rp0
V ¼ V0 þ Vp þ Vm

; ð2Þ

where Vp is the change in the Earth’s potential due to inflation of a massless cavity

and Vm is the potential due to the mass DM ¼ qmDV of the intrusion (qm and DV
are respectively the density and volume of the intrusion). The equilibrium equa-

tion is

r � s�rp þ qrV þ Fp þ Fm ¼ 0; ð3Þ

where s is the elastic stress tensor, Fp and Fm are the body force density

corresponding to a point source of dilation and a mass point source. Substituting

(a) (b)

Figure 1

Coordinate system and parameters for the scaling problem. The effect of a magma body intrusion is

approximated by two contributions: (a) a pressurized mass-less cavity; (b) a spherical mass intrusion with

no pressure change. Scaling parameters (Table 1): u — vertical displacement; q0 — crust density; l — shear

modulus; d — depth of the magma chamber; a — radius of the magma chamber; qm — magma intrusion

density; DP — pressure change; DV —volume change; rVp þrVm—changes in gravity, see (2).
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(2) in (3), we get the following equations describing the potentials Vp and Vm, and the

elastic deformation (RUNDLE, 1982)

r2Vp ¼ 4pGr � q0uð Þ; r2Vm ¼ �4pGqmd x� xmð Þ ð4Þ

r � s� g0 r q0u � erð Þ � err � q0uð Þ½ � þ q0 rVp þrVm
� �

þ Fp þ Fm ¼ 0: ð5Þ

The second and third term on the left-hand side of (5) depend on g0. The fourth

and fifth term on the left-hand side of (5) depend on G. The g0 dependent part scales

as g0q0u=d, where u and d are characteristic distance scales set respectively by the

vertical displacement and the depth of the magma chamber. From (4), rVp scales

as Gq0u. The scaling of rVm is given by the expression for the gravity change

associate to a mass point source, GqmDV =d2 (EGGERS, 1987). The elastic stress s
scales as lu=d .The shear modulus l is most commonly estimated from seismic wave

speeds. However, the dynamic modulus (ld) may exceed the quasi-static shear

modulus (ls). The ratio ld=ls depends on several factors including the porosity and

applied pressure p. For granite and tuff (CHENG and JOHNSTON, 1981), ld=ls � 0:1 at

low pressures (p � 0:1 GPa, depth � 3:5 km) and ld=ls � 1 when p � 0:2 GPa

(depth � 7:0 km).

Using typical parameter values (see Table 1), we can show that the potentials Vp and

Vm have the same order of magnitude, but are negligible compared to the elastic term

rVp

rVm
� ud2

DV
� 1;

q0rVp

r � s �
Gq2

0 d2

l
� 10�5: ð6Þ

A similar scaling analysis for the relative importance of g0 and elastic terms gives

g0 r q0u � erð Þ � err � q0uð Þ½ �
r � s � q0g0d

l
� 10�2 ð7Þ

that indicates that g0 terms are negligible as well. Fp scales as

Fp �
Mprd x� xmð Þ
�� ��

DV
� kþ 2l

l
pa3DP

a
1

DV
� l

a
; ð8Þ

where Mprdðx� xmÞ is the body-force equivalent to a point source of dilation (AKI

and RICHARDS, 1980, p. 61), k and l are the elastic moduli, DP the pressure change of

Table 1

Value of scaling parameters. The volume change DV corresponding to a vertical displacement u is estimated

using a point source model (EGGERS, 1987)

d q0;qm u l DV a

m kg/m3 m Pa m3 M

103 3Æ103 1 3Æ109 106 103

104 3Æ103 1 3Æ1010 108 103
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the point source of dilation and d the Dirac’s delta function. Fm scales as (ZHONG and

ZUBER, 2000)

Fm ¼ �qmg0d x� xmð Þer � qmg0: ð9Þ

The ratio between the two body-forces gives

Fm

Fp
� q0g0a

l
� 10�2: ð10Þ

Fp is larger than Fm and the equilibrium equation (5) reduces to

r � sþ Fp ¼ 0: ð11Þ

In summary, we can see from (6), (7) and (10) that the coupling between gravity

and elasticity is negligible in the space scale associated with volcano monitoring.

Changes in the spherical magma body pressure push the deformation, while the

potential Vp (due to coupling between gravity and deformation) is of the same order

of magnitude as the potential Vm (due to mass intrusion). It is worth noting that in the

special case of a spherically symmetric source in a homogeneous medium, RUNDLE

(1978) and WALSH and RICE (1979) show that the change in gravity actually results

only from the mass of the intrusion. That is, the change in gravity due to coupling

between gravity and deformation cancel (jrVpj ¼ 0). We will further investigate in

the next section the coupling between elasticity and gravity.

3. Layered Earth Model

In the second step of our investigation into the interpretation of gravity and

deformation changes, we will compare estimates of the parameters (depth, volume,

mass, density) of the deformation source both for a homogeneous and layered half-

space model of Long Valley caldera, California (Fig. 2 and Fig. 3). The goal is to

evaluate the various deformation models including elasto-gravitational effects and

vertical discontinuities in the Earth’s density and elastic parameters (e.g., FERNÁN-

DEZ et al., 2001a). We also check the results of the dimensional analysis performed in

Section 2.

Over the past two decades, Long Valley caldera has shown persistent unrest

with recurring earthquake swarms, uplift of the resurgent dome by over 80 cm and

the onset of diffuse magmatic carbon dioxide emissions around the flanks of

Mammoth Mountain on the southwest margin of the caldera (BAILEY and HILL,

1990, SOREY et al., 1993; LANGBEIN et al., 1995). Several sources of deformation

have been identified in Long Valley caldera, although their geometry, depth and

volume are not yet well constrained. Surveys of two-color EDM and leveling

networks indicate that the principal sources of deformation are the intrusion of a

magma body beneath the resurgent dome, and right lateral strike-slip within the
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south moat of the caldera (LANGBEIN et al., 1995). In addition, there is evidence for

dike intrusion beneath the south moat (SAVAGE and COCKERHAM, 1984) and

Mammoth Mt. (HILL et al., 1990). The intrusion beneath the resurgent dome has

been confirmed by gravity measurements (BATTAGLIA et al., 1999). For the purpose

of this work, we will use uplift and residual gravity data collected in Long Valley

caldera between 1982 and 1999.

Figure 2

Map of Long Valley showing the location of the leveling and gravity benchmarks.
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The Earth model proposed for Long Valley caldera includes 5 layers, the fifth

being the mantle (see Table 2, Fig. 3). The thickness, density and seismic velocities

assigned to the four layers representing the crust have been estimated from published

works on regional gravity, seismic tomography and geology of Long Valley

(KISSLING et al., 1984; CARLE, 1988; DAWSON et al., 1990; PONKO and SANDERS,

1994; SACKETT et al., 1999). We use the numerical code developed by FERNÁNDEZ

et al. (1997) to compute gravity changes and deformation due to an isotropic point

source of dilation in a layered half-space. This code solves the fully coupled system of

elastic-gravitational equations. Gravity changes and deformation due to a spherical

intrusion in a homogeneous half-space are computed using the analytical point

source approximation (EGGERS, 1987).

The numerical experiments are carried out considering separately (i) the effects on

gravity changes and uplift due to a pressurized magma chamber cavity with no mass

change and (ii) the effects of mass intrusion only with no magma chamber

overpressure. Note that individually (i) and (ii) do not possess a geologic equivalent,

because the geologically meaningful solution is given by the superposition of (i) and

(ii). Furthermore, to study the effect of the density and elastic moduli stratification,

we consider three different cases (see Fig. 3): (a) homogeneous medium (Model 0); (b)

density stratification in an elastically homogeneous medium (Model 1); (c) an

elastically inhomogeneous medium (Model 2). The results of the numerical

Figure 3

The layered model proposed to study gravity and deformation changes in Long Valley caldera (see

Table 2). Model 0 represents a homogeneous medium with average values of the parameters; Model 1 is

elastically homogeneous, but with density stratification; Model 2 is elastically inhomogeneous.
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computation for the homogeneous medium are compared with the analytical results.

For every one of the seven (six numerical and one analytical) experiments, we find the

solution that best fits the gravity and deformation data from Long Valley caldera

using a least squares algorithm. To compare the results, we use two quantitative

indicators:

v2 ¼ rT R�1r; R2 ¼ 1� rT R�1r

uT R�1u
; ð12Þ

where r is the difference between the observed and predicted displacements, and R the

data covariance matrix, u is the observed displacements. v2 is a measure of the error

in fitting the experimental data with a model (the smaller v2 the better the fit), while
R2 is a measure of the ability of the model to explain the data. If R2 ¼ 1, the model is

able to explain all variations in the observed data, if R2 ¼ 0, the model cannot

explain the observed data.

For a pressurized mass-less cavity, the fit of the computed uplift to the Long

Valley data differs significantly for the three different structural models (Fig. 4a,

Table 3). The only noticeable difference is the slightly deeper source (9.4 km instead

of 8.8 km, a 7% increase) obtained for the elastically inhomogeneous medium

(Model 2). This can be explained by the greater compliance of the shallower layers

above the source, compared with the homogeneous case (Model 0). The numerical

results for the uplift in the elastically homogeneous medium (Model 0 and Model 1)

are identical to the analytical point source solution. This confirms the conclusion

derived from the dimensional analysis that the effect of the elasto-gravitational

coupling on the displacement is negligible. The gravity change results (Fig. 4b)

indicate that the contribution from the potential /p is negligible for all practical

Table 2

Layered model of Long Valley caldera (see Fig 3b). Crosssection modified after SACKETT et al., (1999),

density model after CARLE (1988), velocity model after KISSLING et al., (1984), depth of the Moho after

DAWSON et al., (1990)

Layers Crosssection Thickness

km

Depth

Km

Density

Model

103 kg/m3

Velocity

model

103 m/s

kd

GPa

ld

GPa

VS VP

1 Caldera fill 3 3 2.35 3.1 5.4 23.4 22.6

bishop tuff

2 Basement 2 5 2.70 3.3 5.7 28.9 29.4

3 Solidified magma

chamber

10 15 2.55 3.5 6.1 32.4 31.2

4 Basement 30 45 2.70 3.8 6.7 43.2 39.0

5 Mantle 3.30 4.9 8.4 74.4 79.2

0 Homogeneous

model

45 2.64 37.3
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purposes. The numerical results for the elastically homogeneous media (Model 0 and

Model 1) show a maximum difference between the surface gravity and the free-air

effect of less than 0.2 lGal (Fig. 4b). This is consistent with the numerical results of

RUNDLE (1978) and the analytical results of WALSH and RICE (1979) that the change

in gravity observed for a massless, spherically symmetrical, dilatational source in a

homogeneous medium is equal to the free-air effect only, or jrVpj ¼ 0. The

contribution jrVpj is practically negligible (about 1 lGal) in the inhomogeneous

Figure 4

Pressurized massless cavity. (a) Match between experimental and modeled uplift. The plot shows no major

differences between modeling the intrusion using a point source in a homogeneous or layered medium (see

Table 3). (b) The plot shows the difference (residual gravity) between the surface gravity change (gs) and

the free-air effect (gFA). The residual gravity corresponds to contributions to gravity changes from the

elastic-gravitational coupling and density stratification. The maximum change (1 lGal) is about 3% of the

residual gravity due to mass intrusion, well below the typical errors of 10 lGal for a relative gravity survey.
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medium (Model 3, Fig. 4b) as well. Note that for a massless intrusion all the gravity

changes (except the free-air effect) are well below the typical errors of 10 lGal (e.g.,

BATTAGLIA et al., 1999).

The results for the case study of a point mass intrusion with no pressure change

are very similar. The maximum displacement induced by the mass intrusion is

around 3 mm (Fig. 5a), or about 1% of the uplift due to cavity pressurization,

indicating that the contribution to the uplift from rVp is practically negligible. The

fit of the computed gravity changes to the Long Valley data (Fig. 5b, Table 3) do

not show a significant difference between the three cases proposed. The estimated

mass in the inhomogeneous medium (Model 2) is slightly larger (0.48 	 1012 kg

instead of 0.45 	 1012 kg, a 7% increase) and deeper (9.2 km instead of 8.8 km, a

5% increase) than that inferred for the elastically homogeneous medium (Model 0

and Model 1). The estimated density in the inhomogeneous medium (Model 2) is

7% higher (3000 kg/m3 versus 2800 kg/m3) than that for the elastically homoge-

neous medium (Model 0 and Model 1).

4. Source Geometry

A very common approach to infer the deformation source parameters (depth,

volume, mass, density) is to match gravity and uplift data to the predictions of an

isotropic center of dilation (e.g., MOGI, 1958; EGGERS, 1987; MCKEE et al., 1989;

BERRINO, 1994; BATTAGLIA et al., 1999; FERNÁNDEZ et al., 2000; RYMER and

WILLIAM-JONES, 2000). A major shortcoming of this technique is that we may fit the

wrong model to the data, because different source models produce very similar

vertical deformations (DIETERICH and DECKER, 1975). This may yield estimates of

the density and depth of the intrusion that are not reliable. Consider, for example,

modeling data generated from an ellipsoidal source (YANG et al., 1988; CLARK et al.,

1986), assuming incorrectly a spherical symmetry for the source. The parameters of

the actual ellipsoidal source are depth = 6 km, volume change = 0.2 km3, mass

change ¼ 0:5	 1012 kg and density = 2500 kg/m3. The spherical source fits the

uplift data well (see Fig. 6a) but predicts a deeper location for the intrusion (8.5 km

Table 3

Results from numerical experiment

Pressurized cavity Mass intrusion

Depth

km

Volume

km3
v2 R2 Depth

Km

Mass

1012 kg

v2 R2

Point source (analytical) 8.8 0.16 57 0.99 8.8 0.45 37 0.66

Model 0 (homogeneous) 8.8 0.16 57 0.99 8.8 0.45 37 0.66

Model 1 8.8 0.16 57 0.99 8.8 0.45 37 0.66

Model 2 (inhomogeneous) 9.4 0.16 31 1.00 9.2 0.48 37 0.65
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instead of 6 km). The spherical model also requires a larger mass (0.9 instead of

0:5	 1012 kg) to obtain the same gravity signal (Fig. 6b). The estimated volume

increase is close to the correct value (0.2 km3), because the spherical source is more

efficient in causing vertical deformation. The spherical model fit appears reasonable

and is able to explain about 99% of the uplift and gravity data. It is only when we

compare the actual and computed radial displacements (Fig. 6c) that we realize that

the spherical model is not appropriate. Using the parameters of the spherical source

to estimate the intrusion density, we infer a value of 4500 kg/m3 instead of the actual

2500 kg/m3. Note that a straight line can successfully fit the ellipsoidal data gravity/

height correlation as well (Fig. 6d). The linear correlation between gravity and height

Figure 5

Spherical mass intrusion with no pressure change. (a) Uplift due to the mass intrusion. The maximum

uplift (3 mm) is about 1% of the uplift due to cavity pressurization. (b) Match between experimental and

modeled residual gravity. Again, the plot shows no major differences between modeling the intrusion using

a point source in a homogeneous or layered medium (see Table 3).
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changes is considered to be a special characteristic of spherically symmetric magma

bodies (EGGERS, 1987). In this case, the inferred density is 3670 kg/m3 instead of the

actual 2500 kg/m3.

Figure 6

Bias due to incorrectly assessing the source shape. Actual ellipsoidal source (YANG et al., 1988; CLARK

et al., 1986): depth = 6 km, volume = 0.2 km3, mass ¼ 0:5	 1012 kg, density = 2500 kg/m3. (a) (b) and

(c) Fitting a spherical source (solid line) to a data set created using an ellipsoidal source (error bars).

Uncertainties for the synthetic data set are 6 cm for uplift, 20 lGal for the residual gravity and 6 mm for

the radial displacement. Inferred spherical source: depth ¼ 8.5 km, volume ¼ 0.2 km3, mass ¼
0:9	 1012 kg, density ¼ 4500 kg/m3. (d) A straight line fits the ellipsoidal data gravity/height cor-

relation (R2 ¼ 0:94). The linear correlation between gravity and height changes is considered to be a special

characteristic of spherically symmetric magma bodies (EGGERS, 1987). In this case, the inferred density is

3670 kg/m3 and Dg=Du ¼ 206
 4 lGal/m.
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5. Summary and Conclusions

Combined geodesy and gravity measurements allow us to infer the density of

intrusive bodies, and better constrain deformation sources in volcanic areas. In this

work, we investigate three factors that can help in obtaining a more realistic picture

of the intrusive body: (a) coupling between elastic and gravitational effects, (b) a

layered Earth model, with one or more layers with differing densities and elastic

properties and (c) non-spherical source geometries.

The first two factors investigated in this work do not affect the estimate of the

source parameters significantly. Coupling between elastic and gravitational effects

(self-gravitation) is second order over the time and distance scales normally

associated with volcano monitoring. For a Maxwell material and at times long

compared to the relaxation time, the stresses will relax to the point where the source

terms are no longer balanced by the divergence of the stresses in the equilibrium

equations. In this limit the self-gravitational effects cannot be ignored. We find no

major differences between modeling the intrusion using a point source in a

homogeneous or layered medium for an elastic model appropriate to Long Valley

caldera.

Our results indicate that the critical step in the interpretation of the field data is

the choice of the source model used to inverting geodetic and gravity data to infer

the actual deformation source parameters. A simple experiment of matching

deformation and gravity data from an ellipsoidal source using a spherical source

shows that the standard approach of fitting a Mogi’s source to gravity and uplift

data only, excluding the horizontal displacements, can yield estimates of the source

parameters that are not reliable. In our experiment, the spherical source fits the

uplift and gravity data well (Figs. 6a and 6b), estimates correctly the volume

increase (0.2 km3), but predicts a deeper location (8.5 km instead of 6 km), a

larger mass (0.9 instead of 0:5	 1012 kg) and a larger density (4500 kg/m3 instead

of the actual 2500 kg/m3) for the intrusion. Only by comparing the actual and the

modeled radial displacements (Fig. 6c), we can demonstrate that the spherical

model is not appropriate. It is important to note that a center of dilation can bias

the results, overestimating the depth, mass and density of the intrusion. To obtain

a reliable estimate of the depth and density of the intrusion, inversion of geodetic

and gravity data should (a) not assume that the source possesses a spherical

symmetry and (b) include not only the uplift and residual gravity, but the

horizontal deformation as well (DIETERICH and DECKER, 1975). The ellipsoidal

model can be used to invert geodetic and gravity data without assuming any

particular orientation or symmetry, but the modeling requirements can be

substantially more complicated than those for the Mogi’s source (e.g., TIAMPO

et al., 2000).
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