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Geophysical observations have shown that transient slow
slip events, with average slip speeds v on the order of 10−8 to
10−7 m/s, occur in some subduction zones. These slip events
occur on the same faults but at greater depth than large
earthquakes (with slip speeds of order ∼ 1 m/s). We explore
the hypothesis that whether slip is slow or fast depends on the
competition between dilatancy, which decreases fault zone
pore pressure p, and thermal pressurization, which increases
p. Shear resistance to slip is assumed to follow an effective
stress law τ = f (σ− p) ≡ f σ̄. We present two-dimensional
quasi-dynamic simulations that include rate-state friction,
dilatancy, and heat and pore fluid flow normal to the fault.
We find that at lower background effective normal stress (σ̄),
slow slip events occur spontaneously, whereas at higher σ̄,
slip is inertially limited. At intermediate σ̄, dynamic events
are followed by quiescent periods, and then long durations
of repeating slow slip events. In these cases, accelerating
slow events ultimately nucleate dynamic rupture. Zero-width
shear zone approximations are adequate for slow slip events,
but substantially overestimate the pore pressure and temper-
ature changes during fast slip when dilatancy is included.

1 Introduction
In the past decade slow slip events (SSE) have been dis-

covered in many subduction zones around the world [1–3],
due to anomalous motions in arrays of Global Positioning
System (GPS) receivers. Subduction zones, where oceanic
plates dive into the mantle, are the sources of the world’s
largest earthquakes. It is believed that SSE occur on the
same faults as, but at greater depths than, mega-thrust earth-
quakes [1,2]. While the largest subduction zone earthquakes
involve slip of tens of meters, last for hundreds of seconds,
and have repeat times of centuries, SSE involve slip of cen-

timeters to decimeters, last from weeks to months, and com-
monly have repeat times of years. Typical slip rates are seven
or eight orders of magnitude less than those in regular earth-
quakes.

There is a great deal of interest in understanding the
physical processes that result in slow slip. The study of
SSE is also of practical importance: they occur adjacent to
the locked megathrust and incrementally increase the shear
stress in the zone where damaging quakes nucleate.

Dilatant strengthening has been proposed as a mecha-
nism for SSE [4–7]. Dilatancy, the tendency for pore space to
increase under shear, is intrinsic to compacted granular mate-
rials, including fault gouges. Rate-state frictional weakening
allows transient slip to nucleate. As the shear rate increases,
pores dilate, and restricted pore fluid flow makes the fault
zone increasingly undrained. This decreases pore pressure
p, increasing the effective normal stress σ̄≡ (σ− p), and so
increases the frictional resistance to further slip. The faster
the fault slips, the harder it is for fluid flow into the fault zone
to keep up with dilatancy; thus the stabilizing effect increases
with slip speed. However, if slip becomes fast enough, fric-
tional heat is generated faster than can be removed by con-
duction, leading to thermal pressurization. The greater ther-
mal expansivity of water relative to rock leads to an increase
in p and so a decrease in frictional resistance.

Segall and Rice [8] and Schmitt et al. [9] examined the
relative importance of thermal pressurization and rate-state
friction during earthquake nucleation in the absence of di-
latancy. Schmitt et al. [9] showed that thermal weakening
dominates rate and state dependent weakening at slip speeds
in excess of roughly 10−4 to 10−2 m/s, defined as vcrit; the
value depending on material properties, including the per-
meability of the surrounding rocks. In this paper we explore
the competition between dilatant strengthening and thermal



pressurization weakening. We previously suggested that di-
latant strengthening enables faults with a broad range of ther-
momechanical parameter values to host SSE [4]. We further
hypothesize that SSE occur when dilatancy limits slip speeds
to rates less than those for which thermal pressurization dom-
inates fault strength (approximately vcrit). In contrast, ther-
mal pressurization weakening dominates dilatant strengthen-
ing if slip speed exceeds approximately vcrit, resulting in dy-
namic (inertially limited) rupture.

This work examines the interactions of rate-state fric-
tion on the surfaces of elastic continua, dilatant strengthen-
ing, and thermal pressurization, all areas to which Jim Rice
has made seminal contributions. We mention only a few key
papers here. Rice [10] explained dilatant strengthening on
faults with slip-weakening friction. Work with A. Ruina on
stability of sliding on surfaces with rate and state dependent
friction [11] proved the existence of a critical nucleation di-
mension for unstable slip, denoted as h∗ here and defined in
(9). Finally, Rice [12] summarized the key features of ther-
mal pressurization, derived analytical results for weakening
with a constant friction coefficient, and showed that the ef-
fective fracture energy for this process is consistent with in-
dependently derived estimates from seismological observa-
tions. This present work in particular owes a considerable
debt to Jim’s guidance over the years.

2 Governing Equations
The fault has uniform thickness h centered on the plane

y = 0. Deformation is assumed to be plane strain in the x,y
plane (slip in the x-direction). Inelastic deformation within
the fault zone −h/2≤ y≤ h/2 is approximated by a friction
law in which the shear resistance is the product of a friction
coefficient and the effective normal stress σ− p(y= 0) acting
on the layer. Pore pressure p is evaluated on the centerline of
the shear zone, y = 0. Fault slip δ is the integral of the shear
strain across the layer. We employ the radiation damping ap-
proximation of elastodynamics [13] such that the momentum
balance on the fault is

τ0+
µ

2π(1−ν)

∫
∞

−∞

∂δ/∂ξ

ξ− x
dξ− f (v,θ)[σ− p(y= 0)] =

µ
2vs

v.

(1)
The difference between the elastic stress and the frictional
resistance is balanced by the stress change associated with
plane shear waves (with velocity vs) radiating from the fault.
The first term on the left is the shear stress acting on the
fault in the absence of slip, the second represents the elas-
tic stress due to gradients in slip δ, and the third term is
the frictional resistance. The friction coefficient is a func-
tion of sliding velocity v (integral of shear strain rate across
the shear zone) and state variable θ. This “quasi-dynamic”
formulation leads to a reasonable representation of dynamic
slip, although maximum slip speeds and propagation rates
are inaccurate [14].

All calculations here are in an elastic full-space. The
Hilbert transform in (1) is computed in the Fourier domain.
Slip rate, shear stress, and frictional state are computed in the

domain −W/2≤ x≤W/2, where W is the fault length. The
fault is loaded by the constant applied slip rates v∞ for W/2<
x < 2W and v = 10−4v∞ for −2W < x < −W/2. Assuming
initial conditions with zero slip, slip rates vanishingly small
relative to vs, and pore pressure in equilibrium with the far-
field value p∞, τ0 = f (v0,θ0)[σ− p∞], where v0,θ0 are initial
values.

To investigate the role of dilatancy and thermal pressur-
ization during fault slip, we consider coupled friction, dila-
tancy, heat, and pore fluid flow. Neglecting conduction par-
allel to the fault (the x-direction) and heat advection in the
pore fluid phase [15], and assuming spatially uniform ther-
mal properties, the heat equation is [12]

∂T
∂t

= cth
∂2T
∂y2 +

τγ̇

ρc
, (2)

where γ̇ is the shear strain rate, c is specific heat capacity,
and cth is thermal diffusivity. For cth ∼ 10−6 m2/s, a thermal
anomaly penetrates on the order of a few meters in the one
year cycle time for typical slow slip events. Because this
distance is much less than the tens of kilometer dimensions
of SSE, gradients in the along-fault direction are likely to be
extremely small relative to those in the across-fault direction.
Therefore, we can neglect conduction parallel to the fault.

We assume the y-dependence of the shear strain-rate can
be separated as

γ̇(x,y, t) =
v(x, t)

h
g(y), where

∫
g(y)dy = h. (3)

Here g(y) is a specified shaping function that describes how
strain rate is distributed across the shearing layer [16]. The
thickness of the shear zone can be neglected for times greater
than the characteristic conduction time across the layer, typ-
ically a few tens of seconds. This is a reasonable assumption
for slow slip events lasting days to years, but not for dynamic
ruptures with durations of tens to hundreds of seconds. In the
limit h→ 0, equation (2) reduces to a homogeneous diffusion
equation, with the frictional heat production appearing as a
boundary condition [12]:

∂T
∂t

= cth
∂2T
∂y2 ;

∂T
∂y

∣∣∣∣
y=0

=− τv
2cρcth

. (4)

Neglecting pore fluid flow parallel to the fault for the
same reason that heat flow in this direction is negligible,
changes in pore pressure are given by

∂p
∂t

=
1

ηβ

∂

∂y

(
κ

∂p
∂y

)
+Λ

∂T
∂t
− 1

β

∂φ

∂t
, (5)

where η is pore fluid viscosity, β is the compressibility of
the fluid and the pore space, κ is the permeability, φ is



the inelastic component of porosity, and Λ is the thermal
pressurization parameter, equal to the ratio of thermal ex-
pansivity to compressibility [12, 17]. The second term on
the right-hand side is thermal pressurization, the third dila-
tancy/compaction. Dilatancy acts as a fluid pressure sink,
whereas thermal pressurization acts as a pressure source.
For spatially uniform permeability, the transport term can be
written in terms of the hydraulic diffusivity chyd = κ/ηβ. As
for the heat equation, the effect of the shear zone thickness
can be neglected for times long compared to the characteris-
tic pore fluid diffusion time across the shear zone. Segall et
al. [4] show that, assuming that dilatancy (and compaction)
act only normal to the shear zone, hφ̇ = (1− φ)ḣ, where ḣ
is the change in thickness of the shearing layer. In the limit
h→ 0, and assuming uniform hydraulic properties, the pore
pressure diffusion equation reduces to [4]

∂p
∂t

= chyd
∂2 p
∂y2 +Λ

∂T
∂t

;
∂p
∂y

∣∣∣∣
y=0

=
hφ̇

2βchyd
. (6)

2.1 Constitutive Laws
Laboratory experiments show that the friction coeffi-

cient f depends on the instantaneous slip speed v and the
past sliding history, which can be characterized by one or
more internal state variables θ. We employ the regularized
form of the rate-state equations due to Rice et al. [18], with
a single state variable:

f (θ,v) = a arcsinh
[

v
2v0

exp
(

f0 +b ln(θv0/dc)

a

)]
. (7)

The material constants a and b, which determine the direct
velocity and state dependence, respectively, depend on am-
bient temperature (but are assumed constants here, see [19]
for explicit temperature dependence) and hence depth in the
earth; v0 is a normalizing constant; and f0 is the nominal
friction.

The frictional state is sometimes interpreted as the aver-
age asperity contact lifetime, and evolves over a characteris-
tic displacement dc. The proper mathematical description of
state evolution has not been resolved (and may not be fully
described by any simple analytical representation), although
two forms in wide use are the following [20]:

dθ

dt
= 1− θv

dc

dθ

dt
= −θv

dc
ln
(

θv
dc

)
. (8)

The first exhibits healing in stationary contact (v = 0) and
is thus referred to as the “aging” law. In the second form
state evolves only with slip (dθ/dt vanishes when v = 0),
and is thus referred to as the “slip” law. In both cases the
steady-state value of θ is dc/v. For sufficiently large v, the
steady-state friction varies with (a−b) ln(v/v0).

Rice and Ruina [11] showed that slip on the surfaces of
two elastic half-spaces pressed together, with effective nor-
mal stress σ̄ and with steady-state velocity weakening fric-
tion (a− b < 0), is stable/unstable if the dimensions of the
slipping zone are less/greater than a critical nucleation di-
mension

h∗ ≡ dcµ/(1−ν)

(σ− p∞)(b−a)
. (9)

Here deformation is plane strain, and µ and ν are the shear
modulus and Poisson’s ratio.

Some laboratory studies indicate healing in stationary
contact [21,22], and so the aging law is more consistent with
available lab data when θ is far below steady state. However,
velocity stepping tests exhibit a symmetric response to step
increases and decreases in loading velocity. In addition, the
distance scale over which stress decays to steady state fol-
lowing a step velocity increase, when θ is far above steady
state, is nearly independent of the magnitude of the velocity
step. Both features are consistent with the slip law but not
the aging law [23, 24]. Because nucleation is most sensitive
to fault behavior near to and well above steady state [25], the
slip law appears to be the more relevant one for nucleation.

Linker and Dieterich [26] interpreted laboratory exper-
iments on frictional response to changes in normal stress as
resulting from a change in θ due to changes in normal stress.
These authors suggested that equations (8) be augmented to
include the term −αθ/b(σ− p)d(σ− p)/dt, where α is an
additional material constant. If α> 0, a fast increase in effec-
tive normal stress causes a decrease in θ and so the friction
coefficient; hence the instantaneous change in shear stress
is less than would be computed for a constant friction coef-
ficient. All the calculations for this study take α = 0. An
alternative formulation [27] posits that frictional resistance
is the product of a friction coefficient f (v,θ) and a second
state variable that evolves with slip toward the current effec-
tive normal stress. In this formulation instantaneous changes
in normal stress (at fixed v) result in no immediate change in
frictional resistance.

We use constitutive laws for the inelastic change in
porosity δφ, including both dilatancy and compaction, that
follow Segall et al. [28] and are motivated in part by ex-
periments of Marone et al. [29]. One form associates di-
latancy/compaction with changes in the average lifetime of
asperity contacts within the fault gouge [28]:

δφ = −ε ln
(

v0θ

dc

)
(10)

dφ

dt
= −ε

d
dt

ln
(

v0θ

dc

)
=− ε

θ

dθ

dt
, (11)

where dφ/dt is the rate of inelastic change in pore volume
and ε is an empirically derived constant of order 10−4 [29].
Above steady state, that is, for θ > dc/v, θ decreases (from
(8)) and the gouge dilates; below steady-state, θ increases
and the gouge compacts.



An alternative form posits a velocity-dependent steady-
state porosity, but does not directly associate dilatancy with
the frictional state variable [28]. The porosity, however,
seeks steady state with the same distance scale as friction,
dc, consistent with lab observations:

dφ

dt
= − v

dc
(φ−φss) (12)

φss = φ0 + ε ln
(

v
v0

)
. (13)

Experiments on fine quartz gouge confirm that the steady-
state porosity increases logarithmically with velocity step
[30] and lead to estimates of ε ranging from 0.5 to 3 ×10−4.

For the slip law, the two dilatancy laws are equivalent.
Combining (11) with the slip law (8),

dφ

dt
=

εv
dc

[
ln
(

θv0

dc

)
+ ln

(
v
v0

)]
= − v

dc

[
φ−φ0− ε ln

(
v
v0

)]
, (14)

which is equivalent to the combination of (12) and (13). The
second step follows from (10).

The first dilatancy constitutive law (11), which asso-
ciates dilatancy with state, is inconsistent with an evolution
law containing the Linker-Dieterich [26] normal stress term.
Consider (11) combined with (8) (here shown with the slip
law form, but the same behavior holds for the aging law):

∂φ

∂t
=− ε

θ

dθ

dt
= ε

[
v
dc

ln
(

θv
dc

)
− α

b(σ− p)
d p
dt

]
. (15)

As v increases, the slip-dependent state evolution causes the
porosity to increase. However, an increase in pore pres-
sure cannot sensibly lead to a decrease in porosity. Further-
more, the combination can lead to instability: if increased
pore pressure p leads to a decrease in porosity, compaction
tends to cause a further increase in p (by (5)). As (σ− p)
decreases, the effect is amplified, leading to instability. At
present it is unclear which of the two laws is invalid, but they
cannot both be correct. These constitutive equations have
been employed by [31], although apparently the choice of
parameters did not lead to instability.

To generalize these constitutive equations to distributed
shear zones, we first posit that the change in porosity inte-
grated across the shear zone per unit slip δ (per unit area of
fault) does not depend on shear zone thickness h:

d
dδ

∫ h/2

−h/2
φ(y, t) dy =

∫ h/2

−h/2

φ̇(y, t)
v

dy∼ 1. (16)

The work done on the shear zone by shear traction τ is τdδ; if
the fraction of that work that goes into inelastic pore dilation

is independent of h, then the integrated d
∫

φdy/dδ must be
independent of h. Equation (16) implies that φ̇(y, t) scales
with v/h.

We seek an expression for φ̇(y, t) that is consistent
with (12) in a thickness-averaged sense. Define thickness-
averaged properties by 〈·〉≡ h−1 ∫ · dy, and let hc be the shear
zone thickness in the experiments from which the coefficient
ε is estimated. The equation

φ̇(y, t) =− vhc

dch
[φ(y, t)−φss(y, t)] (17)

has the appropriate scaling (16) and reduces to (12) when
h = hc and φ and φss are thickness averaged.

We further require the thickness-averaged φss to be in-
dependent of h, which implies

∫ h/2

−h/2
φss(y, t) dy∼ h. (18)

The net porosity change, proportional to the change in
shear zone thickness, scales linearly with h. This is sup-
ported by experimental data of [32] (C. Marone, person.
comm.).

Since we do not consider strain localization (or delocal-
ization) here, it is reasonable to assume that the space and
time dependence of φss are separable. For example, writing
φss(y, t) = φ̂ss(t)g(y), where recall that

∫ h/2
−h/2 g(y) dy = h, sat-

isfies (18) and makes the change in porosity proportional to
the shear strain. The obvious extension of (13) is thus

〈φss〉= φ̂ss(t) = φ0 + ε log
v
v0
. (19)

If the intial condition φ(y,0) is also proportional to g(y),
then φ(y, t) = φ̂(t)g(y) for all time. Thus, from (17)

dφ(y, t)
dt

=− vhc

dch
g(y)[φ̂(t)− φ̂ss(t)] (20)

=−hc

dc
γ̇(y)[φ̂(t)− φ̂ss(t)]. (21)

Introducing the steady-state response (19),

dφ(y, t)
dt

=−v(t)hc

hdc
g(y)

[
φ̂(t)−φ0− ε ln

(
v(t)
v0

)]
(22)

dφ̂(t)
dt

=−v(t)hc

hdc

[
φ̂(t)−φ0− ε ln

(
v(t)
v0

)]
. (23)

In summary, this formulation predicts that the dilatancy ap-
proach to steady state scales with hdc/hc. For example, a
doubling of the shear zone thickness will double the effec-
tive dc for dilatancy and leave the value of ε the same.

Similarly, it is also reasonable that the critical slip dis-
tance for friction should scale with layer thickness, consis-
tent with laboratory data of [32]. dc for nominally bare sur-
faces is thought to be related to average asperity dimensions.



50 100 150 200 250 300
−13
−9
−5
−1 1 MPa

3 MPa

10 MPa

100 MPa

a/b = 0.9, W/h
*
 = 30

lo
g

1
0
 A

v
e
ra

g
e
 s

lip
 r

a
te

 [
m

/s
]

50 100 150 200 250 300
−3
−2
−1

0
1
2
3

Time [year]

m
a
x
 l
o
g

1
0
 ∆

T

Fig. 1. a) Spatially averaged slip speed as a function of time for
four different values of background effective stress: 1, 3, 10, and
100 MPa. Dashed line indicates v∞. In all cases a/b = 0.9 and
W/h∗ = 30. b) Maximum ∆T (◦C) on the fault as a function of time.

In particulate gouges, slip occurs between grains; therefore,
if the shear is distributed across a thicker zone, slip at the
grain scale is on average diminished. Thus, it takes more
macroscopic slip to bring a new set of asperities into con-
tact at the grain scale. Since laboratory data [29, 30] show
that the effective dc for dilatancy and friction are compara-
ble, we assume that both scale linearly with h, as in (23).
Thus, changing the thickness of the shearing layer has three
effects: it changes the slip required to achieve steady state
for both dilatancy and friction, and it also changes the source
term in the heat equation (equations (2) and (3)).

2.2 Dimensional Analysis
To clarify the role of thermal pressurization relative to

dilatant strengthening, we explore a non-dimensionalization
of the governing equations. Take non-dimensional time,
pore pressure, stress, and temperature to be t̃ = tv∞/dc, p̃ =
p/(σ− p∞), τ̃ = τ/ f0(σ− p∞), T̃ = ΛT/(σ− p∞). State is
non-dimensionalized in the same way as time, and ṽ = v/v∞.
As in [4], this leads to non-dimensional parameters related to
friction and elasticity: a/b < 1, f0/b ' 30, and W/h∗, and
non-dimensional radiation damping parameter µv∞/2b(σ−
p∞)vs� 1 .

In the finite-width case, we take ỹ = y/h, whereas in the
zero-width case there is no natural length scale and so we
take ỹ =

√
y2v∞/chyddc. With this scaling and dilatancy law

(11), Segall et al [4] found three additional non-dimensional
parameters: cth/chyd, ET , and Ep, where the thermal and di-
latancy “efficiencies” arise through the boundary conditions
and

ET =
f0Λ

2ρcp

√
chyddcv∞

c2
th

, Ep =
ε

2β(σ− p∞)

√
h2v∞

chyddc
.

(24)
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Fig. 2. a) Spatially averaged slip speed as a function of time for
four different values of W/h∗ at fixed σ̄ = 3 MPa and a/b = 0.9.
Dashed line indicates v∞. b) Maximum ∆T (◦C) on the fault.

In the finite-width case, and normalizing φ̂ and φ̂ss by ε,
the transport equations yield the following non-dimensional
parameters: cth/chyd, dc/h, chyddc/v∞h2, f0Λ/ρc, and
εhc/hβ(σ− p∞). Of particular interest for understanding the
tendency for slow versus fast slip is the ratio of the dilatancy
to shear heating source terms. In the finite-width case this
ratio is

ερcp

f0Λβ(σ− p∞)

(
hc

dc

)
. (25)

Dilatant strengthening is favored at low nominal effec-
tive stresses σ̄, consistent with seismological observations in
some areas where SSE occur [4] . In contrast, high σ̄ favors
thermal pressurization and fast slip.

3 Results: Zero Thickness and Uniform Properties
We begin by exploring solutions with spatially uniform

properties in the limit of negligible shear zone thickness. For
the sake of simplicity we fix the following parameters: a/b=
0.9, f0/b = 33.33, cth/chyd = 1.0, and ET = 3.0× 10−5. In
the first set of numerical experiments we systematically vary
the background effective stress σ− p∞ for fixed W/h∗. Note
that Ep, h∗, and the non-dimensional radiation damping pa-
rameter are all functions of effective stress; in particular, for
fixed ratio W/h∗, low effective stress corresponds to large
fault length W .

Summary results are shown in Figure 1 for W/h∗ = 30.
All computations are for grid dimension along the fault that
satisfy ∆x≤ Ld/15, where Ld ≡ (1−a/b)h∗ [25]. For a/b =
0.9 this means ∆x ≤ h∗/150. For σ− p∞ ≥ 3 MPa the fault
exhibits inertially limited slip with spatially averaged (over
domain −W/2 ≤ x ≤W/2) slip speeds of 0.1 m/s or more
(maximum slip speeds are considerably higher), while for
σ− p∞ = 1 MPa the system exhibits only stable transient slip
events with average slip rates somewhat in excess of 10−8



m/s. The behavior at 3 MPa shows fast slip, followed by
a decade of stable sliding, before transient events develop.
These can last for decades before the next dynamic event
occurs. At 10 MPa, there are only a few stable transients
prior to dynamic instability, and at 100 MPa the system for
the most part exhibits only dynamic events.
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Fig. 3. Space-time evolution of slip-rate for σeff = 3 MPa, and
W/h∗ = 30. The color scale is log10(v). The vertical axis of the
main and right plots is solver step; in the right box, time (yr) is plotted
as a function of solver step. The solver takes small time steps during
fast slip and larger time steps when slip is stable.

Also shown in Figure 1 is the maximum temperature ex-
cursion. Between dynamic events the temperature change is
small (< 1◦C) with very modest increases during model slow
slip events. Not surprisingly, dynamic events are associated
with strong temperature spikes of order hundreds of degrees.
At 100 MPa the temperature spikes exceed 1000◦C (and
might be larger in a fully dynamic solution since radiation-
damping underestimates v); we discuss this in more detail
below. At 1 MPa the temperature changes are sufficiently
small that isothermal calculations [4] are appropriate. The
gradual increase in T is due to the system coming to long-
term thermal steady state.

We next examine the behavior for fixed effective stress
of 3 MPa and variable W/h∗ (Fig. 2). As expected, suffi-
ciently short slip zones (e.g., W/h∗ ≤ 20) exhibit repeating
SSE, whereas for W/h∗ = 30 there are dynamic events as in
Figure 1.

The space-time evolution of slip rate for the 3 MPa case
is examined in Figure 3. Following a dynamic event that rup-
tures the entire fault, there is a long period of stable sliding
(see also Figure 1) in which the slipping area propagates into
the effectively locked region. After roughly ten years slow
slip events initiate; with increasing time these events propa-
gate further into the effectively locked region. As the length

of the slipping zone increases, the maximum slip rate also
increases, becoming of the order of 10−5 m/s. Eventually,
one of the slow slip events nucleates a dynamic event.
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Fig. 4. a) Slip rate (m/s), b) slip (m), c) fault zone pore pressure
(MPa), d) shear stress (MPa), and e) log(vθ/dc) as a function of
along-fault distance during a slow-slip cycle. σeff = 3 MPa, W/h∗=
30. Curves represent snapshots in time, not equally spaced, grading
from blue to red.

The behavior during a slow slip cycle is shown in Fig-
ure 4. As has been observed in isothermal calculations
[4], slow slip events are preceded by up-dip propagation
of slip driven by the constant velocity boundary condition
(Figure 4b). In the example here this phase lasts for ap-
proximately one year. Slip is stabilized by slight (order
0.1 MPa) reductions in pore pressure near the rupture tips
caused by dilatancy (Figure 4c). This phase is associated
with stress accumulation (Figure 4d) rather than release, and
slip brings the fault close to steady-state frictional conditions
(Figure 4e). At some point slip begins to accelerate near
x/h∗ ∼ 7, propagating first up-dip and then bilaterally. Max-



imum slip speeds reach approximately 10−5 m/s; this faster
phase lasts for slightly more than a day in this simulation.
The faster phase is also stabilized by dilatancy-induced de-
creases in pore pressure of order 0.6 MPa near the rupture
tips, and is accompanied by modest stress drops of order 0.05
MPa (Figure 4d). The model slow slip events are associated
with slight increases in fault temperature; however, these do
not exceed 0.1◦C (Fig. 1).
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Fig. 5. a) Slip rate (m/s), b) slip (m), c) temperature change (◦C),
and d) shear stress (MPa) as a function of along-fault distance.
σeff = 3 MPa, W/h∗ = 30. Curves represent snapshots in time,
not equally spaced, grading from blue to red.

As can be seen from Figure 3, slow slip events continue
for some time, penetrating increasingly farther into the ef-
fectively locked zone. The transition from slow slip to a
dynamic event is shown in Figures 5, which starts with a
slow slip event that propagates from right to left, followed
by bilateral propagation at rates well below 10−5 m/s. Prop-
agation during this period is stabilized by dilatancy-induced

pore pressure reduction and consequent increase in shear re-
sistance (Figure 5d). Further acceleration in the central re-
gion, near x = 0, causes an increase in temperature (Fig-
ure 5c), the onset of thermal pressurization, and a marked
stress drop (Figure 5d). At this point the slip speeds have
reached radiation damping limits and the rupture propagates
bilaterally. The shear strength begins dropping dramatically
at slip speeds of approximately 10−5 m/s, which we can con-
sider a critical slip speed for thermal pressurization to domi-
nate the fault strength, as in [9].
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tion of distance normal to the fault; zero-width fault approximation.
Background effective stress is 10 MPa. Curves represent different
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initially leads to a decrease in pore pressure, followed by thermally
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Figure 6 shows profiles of temperature and pore pres-
sure as a function of distance perpendicular to the fault as
a rupture front propagates past. This calculation is for a



background effective stress of 10 MPa and the zero-width
approximation. Initially, dilatancy causes a reduction in pore
pressure and a consequent increase in effective stress. After
some amount of slip, frictional heating causes the tempera-
ture to increase, and thermal pressurization overwhelms di-
latancy, causing an increase in pore pressure. The boundary
condition on pore pressure (equation 6) states that for pos-
itive dφ/dt the gradient is positive, and so pore pressure is
a local minimum on the fault. This can lead to a significant
local maximum in pore pressure off the fault. There is in-
deed nothing in the mathematical formulation that prevents
the pore pressure from exceeding the fault-normal compres-
sive stress, as is seen in Figure 6.

For a nominal effective stress of 100 MPa, the temper-
ature rise and the off-fault pore pressure maximum become
even more acute. As the rupture front passes, dilatancy ini-
tially causes an extreme reduction in pore pressure, even be-
coming negative. The large pressure decline causes the ef-
fective stress to rise substantially, leading to extreme tran-
sient heating; in this case the temperature transiently exceeds
1500◦C. The extreme temperature rise off the fault leads to
off-fault pore pressures that exceed the fault normal stress by
a factor of almost two. The extreme behavior occurs within
100 microns of the fault, which is comparable to the thick-
ness of principal shear zones on faults [12]. The character-
istic diffusion time across the shear zone is negligible com-
pared to the duration of slip for SSE; however, this is not the
case for dynamic events. Thus, one must account for the fi-
nite width of the shear zone during dynamic events [33], as
discussed in the following section.

Otherwise identical calculations (σeff = 3 MPa) with-
out dilatancy (ε = 0) lead to temperatures that never exceed
250◦C and pore pressures that approach the fault-normal
stress but decrease monotonically away from the fault. Rice
[12] provides an analytical result for the maximum tem-
perature change for constant coefficient of friction and no
dilatancy: Tmax − Tamb = (1 +

√
chyd/cth)(σ− p0)/Λ. In

these calculations chyd = cth and Λ = 0.8 MPa/◦C, leading
to Tmax−Tamb = 250◦C, as observed numerically.

Dilatant pore volume expansion is expected to evolve
on slip scales short compared to the evolution of T and p. In
this case and in the undrained and adiabatic limits for a finite-
thickness shear zone the effect of dilatancy is to decrease the
initial pressure by −δφ/β [12]. More generally, −δφ/β is an
upper bound on the pore pressure drop. This is not the case,
however, for a zero-width shear zone, for which the diffusive
fields can become unbounded for sufficiently fast processes.
In Appendix B we examine the solution to the coupled tem-
perature and pore pressure equations for constant slip speed
v and coefficient of friction, including the effect of dilatancy.
We find that the dilatancy induced pore fluid suctions can sig-
nificantly exceed−δφ/β. Furthermore, the influence of these
pore suctions on the fault temperature is not simply found by
modifying the initial pressure to account for the dilatant suc-
tion. In short, the limitations of the h→ 0 model are more
severe when including the effects of dilatancy.
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4 Results: Finite Thickness and Uniform Properties
In this section we consider calculations with finite-

thickness shear zones. Figure 7 shows average slip speed and
maximum temperature rise for a range of shear zone thick-
nesses. The first thing to notice is that the the system behav-
ior for the h = 1mm case and the zero-width approximation
of the same thickness is very similar, except that the maxi-
mum temperature change during dynamic slip events is much
reduced, as expected. Recall that h appears in the boundary
condition (6) in the zero-width approximation.

In these calculations the characteristic slip distance for
both friction and dilatancy scale with shear layer thickness.
As the layer thickness increases, the effective dc increases,
and the shear is spread over a greater volume of fault gouge,
reducing the temperature rise; both effects are stabilizing and
slip becomes completely steady when h is increased to 10
mm. On the other hand, reducing h makes the system less
stable. However, even for h of 100 µm the system still re-
sponds with transient slow slip events. In this case dynamic
events occur much more frequently, although the maximum
temperature increases are only on the order of 10◦C.

We compare the temperature and pore pressure distri-
butions normal to the fault in the finite-width case in Fig-
ure 8 for a background effective stress of σ− p∞ = 100 MPa,
h = 100µm, and dc = 10µm. In this simulation the effective
dc for dilatancy (only) was scaled by h/hc = 1/10. Thus,
the effective dc for dilatancy is extremely small and the con-
sequent increase in effective stress occurs with very little
slip. Even so, the temperature rise is limited to 200◦C, com-
pared to > 1000◦C in the zero-width case. The pore pressure
reaches roughly 0.95σ but is everywhere less than the fault
normal stress. For the identical case without dilatancy the
maximum temperature rise was reduced, but only by about 5
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to 10%.
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Appendix A: Numerical Solution
We describe the numerical methods employed in

the software Fault Dynamics with a Radiation-damping
Approximation (FDRA). FDRA solves the equations of
momentum balance (1), heat (2 or 4) and pore fluid pressure
(5 or 6) diffusion, state evolution (8), and porosity evolution
(23).

The diffusion equations. Let us write a diffusion equation
for a general diffusive quantity q; those for pressure p and
temperature T follow this form.

The diffusion equations are discretized in space using
finite differences on a nonuniform mesh. To capture steep
gradients in p and T that occur in and near the shear zone,
we use the following change of coordinate between y and z:
z(y) = log(c+ y), with c = 10−6.

Let the original PDE be

q̇ = (aqy)y + f

qy(0, t) = g0(q(0, t), t)
q(y∞, t) = q∞.

The PDE under the change of coordinate is

q̇ = e−z (ae−zqz
)

z + f

e−zqz(0, t) = g0(q(0, t), t)
q(y∞, t) = q∞.

Let ∆z be the grid spacing, and let δ = ∆z/2. For a node
k ∈ {1, . . . ,K−1}, the PDE is semidiscretized as

q̇ = (∆z)−2e−zk(−a(zk−δ)e−(zk−δ)(qk−qk−1)+

a(zk +δ)e−(zk+δ)(qk+1−qk))+ f (qk,yk).

This discretization is a second-order-accurate conservative
discretization of the gradient of the flux function ae−zqz. The
boundary conditions are discretized as

e−z0
q1−q−1

2∆z
= g0(q0), qK = q∞.

The discretization of the Neumann boundary condition is a
second-order-accurate approximation centered around k = 0.

We integrate the diffusion equations implicitly to avoid
the Courant-Friedrichs-Lewy (CFL) time-step restriction on
explicit methods, and we use the implicit-Euler method in
particular. It is useful to view the resulting equations as a
matrix equation. Let bc(α,β) ≡

(
α 0 · · · 0 β

)T . This vec-
tor is used to incorporate the boundary conditions. Let A be
the matrix that arises from the diffusion equation. Given a
time interval ∆t, let Ā ≡ I−∆tA. Rearrangement of the dis-
cretized boundary conditions yields two scalars that must be
incorporated into the matrix equation; we refer to these as



the Neumann factor nf and Dirichlet factor df. To take a step
in time, the following system is solved:

Āqn+1 = qn + f (qn+1)+∆t bc
(
nf g0(qn+1),df q∞

)
.

Implicit-explicit time integration. Consider a semiexplicit
index-1 differential algebraic equation (DAE) of the general
form

0 = F(u,w,q, t)

ẇ = G(u,w,q, t)

q̇ = (aqy)y + f (u,w,q, t) (26)

qy(0, t) = g0(u,w,q(0, t), t)
q(y∞, t) = q∞.

q is a diffusive quantity, u is the vector of variables whose
values are determined by algebraic equations, and w is the
vector of variables in first-order ODE. The zero- and finite-
width models are each DAE in slip δ, slip speed v, state θ,
porosity φ, pressure p, and temperature T . Relative to (26),
w = {δ,θ,φ}, q = {p,T}, and u = {v}.

The time-stepping scheme must satisfy several objec-
tives. First, F = 0 must be maintained to high precision.
Second, q must be integrated implicitly to avoid a stability-
related time-step restriction. Third, it is preferable to inte-
grate w explicitly to avoid work associated with linear alge-
bra. Fourth, the time step must be sensitive to u, w, and q.

Our method is built around a Runge-Kutta 2-3 pair
(RK23) [34]. The second-order-accurate Runge-Kutta for-
mula is used in the relative error control (REC) to determine
the appropriate time step. Both the pair and the REC method
are as implemented in MATLAB’s ode23.

We take the time derivative of F to obtain a first-order
ODE in u. Two versions of u are used: the DAE version,
which always satisfies F = 0 to high precision; and the ODE
version, which is used with w in the REC and as an initial
guess when solving F = 0.

RK23 has three stages in each time step. Consider
a time step in which the time tn is advanced to time
tn+1. In this step, quantities are computed at the times
tn < tn

1 < tn
2 < tn+1; and the stages advance from tn to s for

s= tn
1 , tn

2 , and tn+1. qn, un, and wn are known, and un satisfies
F = 0 to high precision. At each time stage s, w(s) and the
ODE version of u(s) are available; and u̇(s), ẇ(s), the DAE
version of u(s), and q(s) must be computed. Using w(s), qn,
and the ODE version of u(s) as an initial guess, F = 0 and
the implicit-Euler formula in q are solved simultaneously
for the DAE version of u(s) and q(s). Then ẇ(s) and u̇(s)
are computed using the DAE version of u(s), w(s), and q(s).
At the end of each time step, the ODE solver’s version of u
is updated to be the DAE value.

Factorization update. Consider a general matrix A for
which we have a factorization fac(A). Suppose column i
is altered to give the new matrix Ā. A classical update

to the factorization—called the product-form update in lin-
ear programming—follows. Let the new column i be v, let
Au = v, and let Ti ≡ I +(u− ei)eT

i , where ei is column i of
the identity matrix. Then ATi = A(I +(u− ei)eT

i ) = Ā. The
third term removes the old column i from A, and the second
term adds the new column.

To solve Āx = b, first solve fac(A)u = v, then solve
fac(A)Tix = b, where Ti is a function of u. For A ∈ Rn×n,
solving Tix = b requires a small factor of n operations.

Our model. In this section we discretize the equations for
the finite-width shear zone. The organization of the compu-
tations decouples the pressure, temperature, and momentum
balance equations by cell. For a particular fault cell suppose
we have (pn−1,T n−1) at time tn−1, (δn,θn,φn) at time tn, and
we must determine (vn, pn,T n) at time tn. Once these latter
quantities are available, we can then provide the time deriva-
tives of δ, θ, φ, and v (the latter for the purpose of REC) to
the time-integration procedure. Here, pk is the perturbation
from p∞. Let ∆t ≡ tn− tn−1, σb ≡ σ− p∞, and σ̄n ≡ σb− pn

0.
We must solve the system of equations

ĀT T n−T n−1−∆t bc(0,dfT T∞)−∆t
σ̄n f (θn,vn)vn

hρc
g = 0

Āp pn− pn−1−Λ(T n−T n−1)−∆t bc(0,dfp p∞)+

φ̇n(φn,vn)

β
g = 0

τ
n− σ̄

n f (θn,vn)−ηvn = 0.
The first two equations rearrange the implicit-Euler up-

dates for T and p. The final equation is the momentum bal-
ance equation.

In a typical simulation, several thousand nonlinear sys-
tems in several hundred variables must be solved at each
stage. We solve each system using Newton’s method. At
each iteration of Newton’s method, a linear system involving
the Jacobian of the problem must be solved. The system is
the following:


ĀT

∆t f nvn

hρc geT
1 −

∆t σ̄n
(

∂ f n
∂ψn + f n

)
vn

hρc g

−ΛI Āp
∆t
β

∂φ̇n

∂ψn g

0 f neT
1 −σ̄n ∂ f n

∂ψn −ηvn


T n +∆T n

pn +∆pn

∆ψ



=

 T n−1 +∆t bc(0,dfT T∞)+
∆t σb f nvn

hρc g

pn−1−ΛT n−1 +∆t bc(0,dfp p∞)− ∆t φ̇n

β
g

−τn +σb f n +ηvn

 ,

where ψ = ln(v/v0) and f n ≡ f (θn,vn). At fault cells away
from the rupture tip, one to three Newton iterations are re-
quired; near the rupture tip, approximately five. It turns out
that we can group fault cells by certain physical properties,
perform only one sparse LU factorization per group, and
update the factorization to solve each linear system. Two
columns of the Jacobian must be modified. The factoriza-
tion of the Jacobian is updated for each cell and then at each
Newton iteration. For a fault having uniform properties, this



method’s complexity scales linearly in both the number of
fault cells and the number of diffusion-profile nodes.

Appendix B: Analytical Results for the Zero-Width Fault
To obtain analytical approximations, Laplace transform

equations (4) and (6), leading to two coupled ODE’s in y.
The solution to the heat equation, evaluated on y = 0, is

T̂ (y = 0,s) =
1

2ρc
√

cth

1√
s

τ̂v,

where ·̂ indicates Laplace transform, with s the transform
variable. The solution to the pore pressure equation yields

p̂(y = 0,s) =
ΛT̂ (y = 0,s)

(1+
√

chyd/cth)
− 1

2β

√
h2

chyd

1√
s
̂̇
φ(s),

where p is the perturbation from the background pore-
pressure. In the absence of dilatancy, the pore pressure and
temperature on the fault are proportional [12]. However, the
effect of dilatancy is not to offset p by−δφ/β as suggested in

Rice [12], in which case the second term would be−̂̇φ(s)/βs.
To proceed further, we follow [12] and examine be-

havior for constant f and v. In this case the equation for
T̂ (y = 0,s) is

T̂ (0,s) =
f v

2ρc
√

cth

1√
s

[
σ− p∞

s
− p̂(0,s)

]
.

Eliminating T̂ (0,s) from the previous two equations yields

p̂(0,s) =
(σ− p∞)/s√

Ls
v +1

− ω
̂̇
φ(s)√
Ls
v +1

,

where ω = 1
2β

√
h2L

chydv and

L =

[
2
f

ρc
Λ

(
√

cth +
√chyd√

v

]2

is a characteristic length scale [12]. The non-
dilatancy term for p inverts as pnd(0, t) = (σ− p∞)[1−
exp(δ/L)erfc(

√
δ/L)], where δ = vt [12]. The dilatancy

term can be approximated in the limit that φ evolves over
a characteristic slip scale much shorter than L. We thus
approximate, for v/L� s,

−
ω
̂̇
φ(s)

√
v/L

√
s(1+

√ v
Ls )
≈−ω

̂̇
φ(s)

√
v/L√
s

[
1−
√

v
Ls

+

v
Ls

+O((v/Ls)3/2)
]

=−ω
̂̇
φ(s)

√
v/L

[
1√
s
−
√

v
L

1
s
+

v
Ls3/2 +O((v/L)3/2s−2)

]
.

Considering that φ evolves over distance scales dc, we exam-
ine the following φ̇(t) = δφmax(v/dc)(vt/dc)exp(−vt/dc),

such that ̂̇φ(s) = δφmax(v/dc)
2/(s + v/dc)

2. Inverting the
leading two terms in the expansion yields an approximation
to the dilatancy-induced pore pressure

pd(0, t)≈−
δφmax

2β

√
h2v

πchyddc

[
(1+2δ

′)D(
√

δ′)−
√

δ′

+

√
πdc

L

(
1− e−δ′ −δ

′e−δ′
)]

,

where δ′ = δ/dc, and D(z) is Dawson’s integral: D(z) =
e−z2 ∫ z

0 et2
dt . Comparisons to numerical inverse Laplace

transforms shows that the approximation with the leading
two terms accurately recovers the peak suction for dc/L =
0.01, but underpredicts the peak suction by about 10% for
dc/L = 0.1.

The peak of the leading term in brackets is ∼ 0.85 at
δ/dc ' 2.2. For h = 100µm, dc = 20µm, and chyd = 1×
10−6m2/s, v = 1m/s,

√
h2v/πchyddc/2 ' 6.3, so that the in-

duced pressure substantially exceeds −δφmax/β. For φmax =
6× 10−4,β = 6× 10−5 1/MPa, then −δφmax/β ' 10MPa,
and thus can be of the order of (σ− p∞).

To estimate the temperature, we use the second equation
of this appendix to write

T̂ (0,s) = (1+
√

chyd/cth)Λ
−1

[
p̂(0,s)+

ω
̂̇
φ(s)

√
v/L√

s

]
.

Thus, the leading term in the dilatancy expansion cancels in
the temperature and

T̂ (0, t)≈
(1+

√
chyd/cth)

Λ

{
(σ− p∞)[1− eδ/Lerfc(

√
δ/L)]

+
δφmax

2β

√
h2v

chydL

(
1− e−δ′ −δ

′e−δ′
)}

.

At the same order of expansion the temperature is less ac-
curate than the pore pressure. Retaining the first three terms
in the Taylor series, the maximum temperature is accurate to
3% when dc/L= 0.01, but is off by∼ 20% when dc/L= 0.1.


