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Software for Efficient Static Dislocation—
Traction Calculations in Fault Simulators

by Andrew M. Bradley

Online Material: Software packages with documentation.

Quasistatic or quasidynamic rate-state friction (QRSF) simula-
tors are used to study the mechanics of faults (e.g., Shibazaki and
Shimamoto, 2007). The displacement discontinuity method
(DDM; Crouch and Starfield, 1983) meshes the fault or faults
into N elements and constructs a matrix of Green’s functions
(GFs) relating slip to stress. The simulator evolves strength and
slip in time. Usually, the most expensive part of a simulation time
step is the matrix—vector product (MVP) of the slip distribution
with the DDM matrix; the straightforward implementation pet-
forms O(N?) operations. A simulator performs thousands to
millions of MVPs with the same DDM matrix.

My free and open-source software (FOSS) package hmmup
speeds up simulations by an asymptotic factor of a little less
than N faster than the straightforward implementation for
both forming an approximation to and performing MVP with
the GF matrix.

In QRSF simulations, rupture tip length scales as
f,oxu'd./(bo) for the aging evolution law and £, multiplied
by a factor that depends on slip speed and background values
for the slip law. In this case, ¥’ = /(1 —v), p is the shear
modulus, v is Poisson’s ratio, & is the constant multiplying
the state term in rate—state friction, ¢ is the effective normal
stress, and d, is the characteristic slip distance for friction evo-
lution (Rubin and Ampuero, 2009). Rupture tips must be well
resolved in simulations. If /' is nonuniform on the fault, dis-
cretization also can be nonuniform for efficiency. However,
not all DDM operators are accurate on nonuniform meshes.
My FOSS package dc3dm implements a method, IGA, that
is as accurate on a nonuniform mesh as the standard method
is on a uniform mesh. de3dm uses hmmuvp to efficiently ap-
proximate the IGA operator.

H-MATRIXES AND hmmvp

A variety of methods can speed up the MVP. Let a rectangular
fault be discretized uniformly into N = N N, elements, in
which N is the number of along-strike elements and N ; is
the number along dip. The straightforward implementation
is O(IV?), in which O is big-O notation. In a homogeneous elas-
tic (HE) full-space, the fast Fourier transform (FFT) can be used
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to calculate stress from slip in O(N log N') work. In an HE half-
space, the FFT can be used in the along-strike direction to imple-
ment the convolution, resulting in O(N3N/ log N,) time. In
general, the FFT cannot be applied to a nonuniformly discretized
or nonplanar fault. A class of methods, including fast multipole
methods (Greengard and Rokhlin, 1987; Ying et 4, 2004),
Barnes—-Hut (Barnes and Hut, 1986), and hierarchical matrixes
(H-matrixes; Hackbusch, 1999), are instead applicable. These
methods take advantage of off-diagonal block (for an appro-
priate permutation) approximate low-rank structure. A block
B~ UV, with columns(U) < min(rows(B), columns(B)).
For a mesh having IV elements, work is close to O(/N'). Among
these methods, the H-matrix is best suited to QRSF simulators
because it is fastest when the operator is formed infrequently rel-
ative to the number of times it is applied, it handles complicated
GFs as casily as simple ones, and it can handle certain boundary
conditions (BCs) more efficiently than the other methods.

Many others have used low-rank approximation (LRA).
Ohtani et 4l (2011) work in the same rate—state friction
framework as I do and describe their use of the H-matrix pack-
age Hlib (Hackbusch, 1999; Borm ez al., 2003). They found
that to get adequate performance, they had to empirically de-
crease the ranks (relative to those H/ib prescribed) of the
far-off-diagonal blocks of their matrix; I believe method M
I describe herein may solve this problem. Maerten (2010) fo-
cuses on using an H-matrix in static problems; the software is
proprietary. Coulier ¢# /. (2013) use H-matrix approximation
for an elastodynamic boundary-element method (BEM); see
also the references therein for other example applications in
the framework of the BEM for elastostatics and elastodynamics.
I believe that all these and similar applications of H-matrix
approximation have used the less efficient method B (described
below) to control error.

In this section, I focus on some details of the H-matrix
method that I have implemented in hmmuvp. Let B be the
M x N matrix that implements the DDM operator and B
be the approximation to it. The procedure to construct an
H-matrix has four parts. First, based on distance, a cluster tree
over mesh elements is formed. If source and receiver element
sets are not the same, a cluster tree is formed for each set. The
cluster trees induce row and column permutations of B. For
notational brevity, hereafter I assume B is already permuted.
Second, pairs of clusters are found that satisfy a criterion
involving distance between the two clusters and their diame-
ters; associated with pair 7 is a block of B, B,. Third, the re-
quested error tolerance ¢ (hereafter usually just “tolerance”) is
mapped to tolerances on each block B;. The tolerance specifies

Seismological Research Letters Volume 85, Number 6 November/December 2014 1



SRL Early Edition

the maximum error allowed. Fourth, cach block is approxi-
mated by an LRA that satisfies the block’s tolerance.

An LRA to an 7 x 7 block B; can be efficiently expressed
as an outer product of two matrixes U and V: B,~ B, =
UV, Let r be the number of columns in U; then 7 is the
maximum rank of B, and the rank if U and V have indepen-
dent columns, as is always the case in this work. B; requires
O(mn) storage; B; requires O[r(m + n)].

Let 6B=B — B. In hmmup, the tolerance € bounds the ma-
trix error as ||6B||g < €||B||g. This specification of the error
bound must be mapped to one for each block. There are at least
two methods. The standard method is what I call method B, for
block-level relative error control (REC): ||6B;||r < €||B;||g.
Then 8Bl = 3, I6B,12 < &Y, IB,12 = &2[Bll in which
>, sums over the blocks B; of B. I have found that a second
method, method M for matrix-level REC, yields greater compres-

sion: ||6B;||y < 8\/——% Bl As MN = mn, ||6B|i =

B < 2N [BIZE mn, = & [BIE Method M
tends to request less accuracy than does method B for the large
far-off-diagonal blocks and more for the small near-diagonal
blocks, which often must be exact in any case, and increases in
relative efficiency with the order of singularity of the GE At least
one other researcher has described method M (Hackbusch,
2009). In Bradley (2011), I compared methods B and M on
several model GFs.

The singular value decomposition (SVD) is the optimal
method (in the 2 and Frobenius norms) to obtain an LRA,
but it is far too expensive for large blocks for at least two rea-
sons. First, the computation itself is expensive. Second, ideally
only a small fraction of the clements in a block are computed,
but the SVD requires them all. However, the SVD can be used
efficiently in a certain instance. If A = UV7 and U has few
columns, a combination of the thin QR factorizations of U
and V (so that in U = QR, Q has only as many columns
as U) and the SVD of the product of their triangular factors
gives the SVD of A. This technique is often called the reduced
SVD or SVD recompression in the context of LRA methods
(Borm et al., 2003).

A practical method to find the LRA of large blocks effi-
ciently, though suboptimally, is adaptive cross approximation
(ACA) (Bebendorf and Rjasanow, 2003). I followed the imple-
mentation in the software package AHMED (Bebendorf,
2008), with a modification for method M. In hmmup, ACA
gives an initial approximation Efo) ~UO(VO)T SVD recom-
pression using this initial approximation then efficiently gives
the final approximation Bff ) U (VT with rank(By) )
often tens of percent smaller than rank(BfO) ). SVD recompres-
sion can also be used to quickly construct a second H-matrix at
looser tolerance from a first.

hmmuvp contains a C++ program to compress a matrix and
a library to compute MVP. It handles arbitrary 2D and 3D
distributions of elements and smooth, decaying GFs. The user
writes a C++ class specifying the element locations and imple-
menting the GE. Parallelization uses OpenMP or MPL

A numerical test is constructed as follows. A square planar
fault dips at 12° in an HE half-space; the top of the fault is at
the surface. The Poisson’s ratio is set to 1/4. Shear modulus
and length are nondimensionalized. The fault is uniformly dis-
cretized into IV squares. Refinement divides each square into
four. An entry in the N' x N matrix By is computed using the GF
for a constant-dislocation rectangular source (Okada, 1992). In
this test, column 7 of By relates slip in a shear component of
element 7 to that component of traction on each element; the
shear component is a lincar combination of strike and dip direc-
tions. H-matrixes are formed for a sequence of N = 4 for
k = 6-10, with methods M and B, and at € = 107* for
k = 8,6,4,and 2 for M and £ = 6, 4 for B. The programs were
run on a computer having these specifications: 16 cores, 2.6 GHz
AMD Opteron 6212, and 32 GB memory.

Figure 1 shows the results. In all four plots, the x axis is
log,, IV, and the y axis is indicated by the text title. Solid lines
are for method M, dashed lines are for method B, and dash-
dotted lines are reference lines.

In Figure la, H-matrix sizes, including metadata, are plot-
ted. The top reference line is for storage of a single-precision
full matrix. The bottom reference shows the slope for O(V)
scaling. The jump in compression for method M between the
first two and second two sets of measurements results from an
automatic switch from single to double precision. As a specific
example, for N = 1024% and with € = 107¢, method M pro-
duces a 12.4 GB matrix, which is 330 times less storage than the
4 TB required for a single-precision full matrix of that size. The
size of the files for method B on the largest mesh were not
recorded. For N = 5122 and with € = 107, method M yields
a 2.7 GB matrix and method B yields a 6.9 GB matrix.

The measured relative errors ||6By||g/ || By || are plotted
in Figure 1b. Every matrix has less error than requested. Any
accuracy greater than that requested means work and storage
are wasted. Every H-matrix of method M is within a factor of
10 of the requested tolerance except those for & = 1072, which
are within a factor of 100. In contrast, the H-matrixes of
method B are a little less than 10° (for € = 107#) and almost
10* (for € = 107°) times more accurate than requested. The
slight negative slope in the coarse-tolerance method-M curves
results from approximations in the spatial decomposition that
slightly alter the blocks at each resolution level. In general, I
found that for DDM matrixes, method M produces a more ef-
ficient approximation than method B for a requested error tol-
erance by producing an approximation B that is little more
accurate than is requested; for identical achieved tolerances,
methods M and B are about equally cfficient.

Because ACA does not require every element of a block,
H-matrixes can be formed in a time that scales better than
O(N?). In Figure lc, compression time in wall-clock seconds
is shown for method M with € = 1078 and method B with
€ = 107 16 cores were used. Times are not shown for other
values because those matrixes were derived from the most ac-
curate matrixes using SVD recompression, which is fast enough
that file input/output is the bottleneck. Reference lines are
shown for O(IV) and O(N?) scaling. For N = 1024%, com-
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A Figure 1. Results for hrmmvp numerical experiment. The x axis is shown as logyg V, in which N is the number of elements in fault mesh;
the yaxis is indicated by plot titles. Solid curves are for method M; dashed lines are for method B; and dash-dotted lines are the reference

lines of O(N) and O(N?). Numbers k indicate tolerance 10,

pression using method M took 34 minutes. Calculating every
entry of this matrix using 16 cores and ignoring memory move-
ment would take several tens of hours.

In Figure 1d, the time to compute an MVP using eight cores
and OpenMP is plotted, along with O(N) and O(IN?) referen-
ces. For N = 1024%, ¢ = 1078, and method M, an MVP takes
1.9 s. Ignoring memory movement and assuming perfect effi-
ciency, an MVP with a dense matrix of this size on 16 cores
would take ten to a few tens of seconds. In practice, the time
would be quite a bit longer because of memory movement.

IGA AND dc3dm

IGA is a DDM for a nonuniformly discretized rectangular pla-
nar fault in an HE half-space. The standard DDM for a uniform
mesh in this physical setting, which I call DDMu and is essen-
tially that of Crouch (1976), is as follows. Discretize the fault
into uniformly sized rectangles. Use Okada’s routine DC3D
(Okada, 1992) (or an equivalent for a different physical set-

ting) to calculate traction 7 at the center of each element due
to slip s, which is constant over each element. For each com-
ponent 7 of slip and 72 of traction, these calculations generate
the matrix G,(,m”), in which the element in row 7 and column  is
the traction component 7 at element 7’s center due to a unit
dislocation in component 7 in element j.

Components of interest arc of several types: shear traction
due to parallel shear dislocation (SS), shear traction due to
orthogonal shear dislocation (SOS), normal traction due to
normal dislocation, normal traction due to shear dislocation,
and shear traction due to normal dislocation (SN). Only three
need to be distinguished in what follows; I take these three to
be SS, SOS, and SN.

The order of accuracy (OOA) of a 3D DDM is
—2Alogerror/Alog N, the change in the logarithm of the error
for a given change in the logarithm of the number of elements, for
a suitable mesh refinement scheme. DDMu has an OOA of 2 for
SS and SN and 1 for SOS. All OOA I provide without explanation
must be viewed as empirical; I do not have proofs for them.
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A number of DDMs are available in addition to that of
Crouch (1976). IGA is most similar to that described in Shou
et al. (1997). They developed a DDM for a planar, rectangular,
uniformly discretized crack based on the DDM in Shou and
Crouch (1995) for a line crack. Biquadratic interpolation over
a 3 x 3 patch of elements gives the slip in the middle source
element. Extending their method to a tensor nonuniform
mesh, or even to a logically rectangular mesh, might be possible.
Vijayakumar e al. (2000) describe a method in which slip is
piecewise linear on a triangular mesh. They report evaluating
tractions at element vertices. As stress is singular at such loca-
tions for piecewise linear slip, I speculate they regularize the
integral for the stress at the nodal points of the source element.
See Shou ez al. (1997) and Vijayakumar ez 4/ (2000) for a list
of other DDMs.

In all DDMs to date, elements are flat even if the slip rep-
resentation is at least locally smooth. On a curved fault, certain
components of stress are singular at flat element edges even if
the slip field is smooth. On any fault, certain components of
stress are singular at element edges if the slip field does not have
a continuous derivative. Generally, if a singularity in the stress
field is present due to cither of these sources, only a uniform
mesh or a mesh for which the nonuniformity is governed by a
smooth function will give acceptable OOA. IGA uses a suffi-
ciently smooth representation of slip on a nonuniform mesh
and is intended to be used only on flat faults; it uses a discon-
tinuous representation of slip on the underlying uniform mesh
and, therefore, is able to use the efficient closed-form GF of
Okada (1992).

The procedure of applying DDMu to a nonuniform mesh
is called DDMu(n) in this work. There are at least two useful
categories of nonuniform meshes having rectangular elements.
The first is a tensor mesh having element sizes that are prescribed
by a smooth function. The second is a mesh constructed by re-
cursively splitting elements of an initially uniform mesh. On the
first type of mesh, the OOA of DDMu(n) for component SS is
1; on the second, it is 1/2. IGA uses the second type of mesh.
Usually the second type is more efficient than the first in terms
of number of elements.

Let M,, be a uniform mesh. Each entry of DDMu’s op-
erator G, corresponds to the output of one call to Okada’s
DC3D; such an entry is described here as a simple GE

Let M, be a nonuniform mesh having the following
property: each element must tile each element larger than itself.
Let the smallest element in M, have the same size as an
element in M,,. By these two properties, every element ee M,
has associated subelements in M, that tile ¢. I also choose M,
so that each neighbor element of element ¢ is no smaller than
half or larger than twice ¢'s length: the resulting mesh is
referred to as “smooth.” M,, is constructed according to the
resolution function f',, which maps a fault coordinate to a
maximum permissible element size.

Let 7, be a triangulation induced by M,,. Triangulations
are nonunique. I choose the triangulation to have this prop-
erty: every rectangular clement is covered by the triangles
radiating from its center. This property is one way to get fast
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triangle lookup, given a coordinate. On a smooth mesh, this
triangulation is almost a Delaunay triangulation.

Let I, (sometimes written as just I) be a linear operator
mapping data on M, to M,,. It implements smooth (C!) in-
terpolation. I use the local cubic Clough—Tocher interpolant
over 7, following the details in section 2 of Alfeld (1984).
This interpolant needs a gradient estimate at each node. I
fit a quadratic function to the data at the node and its neigh-
bors and calculate the gradient of this quadratic function at the
node. These calculations are implicit; because I is a linear op-
crator, entrics are calculated without reference to particular
data. This operator has an OOA of at least 2.

Let A,,, (or just A) be a linear operator mapping data on
M, to M,,. Let ee M, be tiled by ECM,,. A averages values at
the centers of /' €F to the center of e. Because the center of ¢ is
also the center of E, averaging is equivalent to a linear fit fol-
lowed by interpolation. Hence A has an OOA of 2.

These three linear operators together implement exact
IGA (EIGA): G,=A,,,G,1,,,. To be clear, G, is the output
of the IGA method; A, G, and I are intermediate quantities.
The interpretation of EIGA is as follows: it interpolates slip
sufficiently smoothly to a fine uniform mesh, computes the
DDMu solution on this mesh, and then coarsens traction to
the nonuniform mesh. As I and A have OOA of at least 2 and
G, is the DDMu operator on a uniform mesh, the OOA of the
method is that of DDMu on a uniform mesh.

A Figure 2. Nonuniform mesh and element sets in the IGA algo-
rithm. Solid lines indicate element edges. The black solid element
is the receiver; all other elements are sources in this example. The
inner white source elements and receiver element are subdivided
into a uniform size, indicated by dashed lines, and contribute di-
rectly to the Green's function through full IGA calculations. The gray
source elements contribute to interpolation calculations for the in-
ner white elements. The Green's function for each gray and outer
white source element is simple instead of an IGA calculation.
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EIGA has the undesirable property that its computational
complexity is determined by the smallest element in M,,; this
element induces the mesh M, for which the three matrixes A,
G, and I must be computed. Approximate IGA (AIGA) uses
an additional mechanism to solve this problem. Define a
parameter 8, to set the receiver neighborhood (nbhd) size. It
must be a number between 0 (no neighborhood; in fact, iden-
tical to DDMu(n)) and a problem-dependent value at which
EIGA is obtained.

Let 7,=nbhd(e;, 5) be the set of elements such that each
element e€n; has distance (for two elements, the minimum 2-
norm of the difference between a point in each element) from
¢; no greater than J length(¢;). Let ¢; be a receiver element. The

initial neighborhood for ¢; is njEnbhd(e, d,). The final neigh-

borhood for element ¢; is rz]f =nbhd(e;, 5/:), in which &, is the

Test along-strike shear slip

log10 Relative error-

2 3 4 5
Iogw Number of elements

minimum value > 4§, such that if ejEnZ, then e/eenjf . In words,
the final neighborhood is constructed such that if element 1 is in
element 2’s initial neighborhood, then each element is in each

other’s final neighborhood. Let ej‘g be the smallest element in nf ;

length(f,f ) sets the subelement size that tiles every element in nf .

Figure 2 illustrates details of the IGA algorithm. The solid
lines make up the mesh. The black solid element is the receiver
¢, and all element sets in this example are defined with respect
to this receiver. Full IGA source—receiver calculations are car-
ried out for sources eEnj{ (white inside of the shaded layer,

including the black element itself). The smallest element in
this set governs the subelement (gray dashed lines) size for
all elements in this set. A source e in a layer (shaded) around

n}[ may contribute to IGA calculations for sources inside njf

Computed along-strike shear traction

2.5

15 ........ =—)— uniform

: —V—AIGA
1. ........ E DDMU(n)

05- ......... "

. Empirical order of accuracy -

2 25 3 3.5 4
Iog10 Number of elements

A Figure 3. Results for de3dm numerical experiment. (Top) Plots for the test of along-strike shear slip function and the resulting com-
puted plots of along-strike shear traction. In the slip image, white is zero, and dark is positive. In the traction image, the white contour
separates the negative (inside) from the positive (outside), and gray contours are in the positive region only. On each edge is a zero-
velocity boundary condition. (Bottom) The relative error in traction and empirical 00A.
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through interpolation, but e itself is not broken into subele-
ments. For all other sources (white outside of the shaded layer),
the GFs are simple.

If §. (i.e., 5, at mesh refinement level 7) is chosen correctly,
AIGA has the same OOA as EIGA. For example, if a non-
uniform mesh is refined by splitting each element, set
8. = [2/(28% + 1) — 1]/2. This choice implements the follow-

Traction (DDMu(n))

Iog10 Error

ing rule: let £/ be the set of elements that tile the element ¢ at
refinement level 7 < j. Then the areas of the neighborhoods
around ¢ and f€F must be the same in the limit of infinite
refinement.

The FOSS package dc3dm implements AIGA. It uses
hmmup for H-matrix compression and to compute MVP. Recall
that (for reasonable tolerance €) hmmup does not require every

Traction (AIGA) Iog10 Error

A Figure 4. Traction (columns 1 and 3; same gray scale) and relative error in traction (columns 2 and 4; same gray scale; darker color
indicates greater error) for DDMu(n) (columns 1 and 2) and AIGA (columns 3 and 4). Images correspond to the convergence test in
Figure 3; images are slightly enlarged relative to the full fault to reveal details. From top to bottom, refinement increases successively
by 2 in each dimension. (Top left) The lines indicate where the mesh changes element size.
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entry of G,; for this and other reasons, I, G, and A and related
quantities are not explicitly computed. DDMu is recovered
when the mesh is uniform. Matrixes for all nine source—
receiver dislocation—traction pairs and linear combinations
of dislocations and tractions, respectively, can be calculated.
BCs can be periodic in the surface-parallel direction in a half-
space and in both directions in a whole space, velocity, and free
surface. Periodicity is approximate: the domain is repeated
periodically a finite number of times. For a given source-
receiver pair, the periodically repeated source nearest the
receiver is used as the primary source, and then a specified
number of layers are constructed.

A suite of empirical convergence tests was developed. As in
the experiment for Figure 1, the fault is a square dipping at 12°
in an HE half-space, Poisson’s ratio is set to 1/4, and shear
modulus and length are nondimensionalized. The top of the
fault is at the free surface in some tests. In the test in Figure 3,
the top is beneath the free surface by half the depth range of the
fault. The suite includes every corner combination of BCs and
every source—receiver component. A base uniform mesh is cre-
ated for DDMu and a base nonuniform mesh for AIGA and
DDMu(n) at refinement level 0. In the nonuniform mesh, the
smallest element is 16 times smaller in area than the largest
clement. At level 7, each base clement is divided uniformly into
4 elements. In &, 8 = 1. Coarse solutions are mapped to a
uniform fine mesh using IGA’s interpolant, and the relative
error is with respect to the DDMu solution on this fine mesh.
Whether AIGA is more accurate than DDMu or the opposite
is arbitrary, as the mesh and test slip function are chosen inde-
pendently; only the OOA matters. The mesh is chosen to ag-
gressively test AIGA. The lines in the top-left image in Figure 4
segment the image by element size. Small and medium ele-
ments cross through large elements in an X pattern, with one
bar of the X aligned with the mesh and the other cutting it
diagonally. The test slip function is chosen to permit converged
results without refining the mesh too many levels and to
respect the BCs. Figure 3 shows one example test in which
0 velocity is imposed on all boundaries; the source—receiver
components arc SS; and the test slip function is s(x,y) =
[1 = (r/R)?]® for » < R and 0 otherwise, in which s(x, y) is slip,
r = y/x* + %, R =2L/5, and L is the length of the square.
The empirically obtained OOA support the hypothesis that
DDMu(n) has an OOA of 1/2 and DDMu and AIGA have
OOA of 2 for SS.

Figure 4 illustrates the reason for the different OOA. It
shows images of traction and error in traction for the test
in Figure 3, from coarsest mesh at top to finest mesh at bottom.
DDMu(n) causes errors where adjacent elements differ in size
(outlined by solid lines in the top-left image). The peak mag-
nitude of the error stays approximately constant with refine-
ment, but the area of large error decreases. Hence the OOA
drops below that of DDMu but is above 0. In contrast, AIGA
produces a smooth and accurate traction field.

The errors in DDMu(n) traction fields will of course affect
QRSF simulations. Subtly, the QRSF model smoothes stress con-
centrations; therefore, time-dependent results are smooth (if el-

ements are sufficiently small to meet the stability criterion)
regardless of whether the DDM operator is accurate and, in par-
ticular, regardless of whether the traction for a smooth slip func-
tion is smooth. For this reason, we should not interpret
smoothness of time-dependent results as indicating sufficient ac-
curacy; rather, we must perform a convergence test using a

method having acceptably high OOA, such as DDMu or AIGA.

DATA AND RESOURCES

No data were used in this paper. The current versions of
hmmuvp and dc3dm are available at pangea.stanford.edu/
research/CDFM/software (last accessed July 2014). ® Addi-
tionally, the versions used in this paper are available in the elec-
tronic supplement to this paper. K4
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