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[1] We present a model of effusive silicic volcanic eruptions which relates magma
chamber and conduit physics to time‐dependent data sets, including ground deformation
and extrusion rate. The model involves a deflating chamber which supplies Newtonian
magma through a cylindrical conduit. Solidification is approximated as occurring at fixed
depth, producing a solid plug that slips along its margins with rate‐dependent friction.
Changes in tractions acting on the chamber and conduit walls are used to compute surface
deformations. Given appropriate material properties and initial conditions, the model
predicts the full evolution of an eruption, allowing us to examine the dependence of
observables on initial chamber volume, overpressure, and volatile content. Employing
multiple data sets in combination with a physics‐based model allows for better constraints
on these parameters than is possible using kinematic idealizations. Modeling posteruptive
deformation provides an improved constraint on the rate of influx into the magma
chamber from deeper sources. We compare numerical results to analytical approximations
and to data from the 2004–2008 eruption of Mount St. Helens. For nominal parameters the
balance between magma chamber pressure and frictional resistance of the solid plug
controls the evolution of the eruption, with little contribution from the fluid magma below
the idealized crystallization depth. While rate‐dependent plug friction influences the time‐
dependent evolution of the eruption, it has no control on the final chamber pressure or
extruded volume.

Citation: Anderson, K., and P. Segall (2011), Physics‐based models of ground deformation and extrusion rate at effusively
erupting volcanoes, J. Geophys. Res., 116, B07204, doi:10.1029/2010JB007939.

1. Introduction

[2] Data collected at volcanoes, whether from InSAR,
GPS, tilt, gravity, COSPEC, or other instruments or tech-
niques, is most useful when interpreted in terms of physical
models. Most models of volcano deformation are kinematic
(they do not consider the physical and chemical processes
that lead to changes in pressures acting on magma chamber
walls) and are limited to idealized shapes such as spheres
or ellipsoids in elastic half‐spaces [e.g., Mogi, 1958; Yang
et al., 1988]. Because they are kinematic, they have no
predictive capability and cannot be used to model the evo-
lution of deformation with time given a set of initial con-
ditions such as magma chamber overpressure and volume,
and they are also poorly suited for predicting other types
of data such as effusion rate or gravity change. Inversions
for deformation data therefore typically consider only net
deformations over some time period, ignoring the rich
information contained in the details of the time series as well
as valuable constraints that could be provided by additional
data sets.

[3] Physics‐based models of magma ascent and eruption
are available, but typically do not consider interactions of
the magma with the surrounding host rock and therefore
cannot be used to predict ground deformation. Because
these models are often strongly nonlinear, and behavior
depends on parameter values and constitutive laws which
are only poorly known, additional constraint by data is
vitally important, but is not available because these models
do not consider interaction with the host rock.
[4] In this work we develop a physics‐based model of an

effusive silicic eruption which links magmatic processes
directly with observed ground deformation and effusion rate.
The model is designed to replicate behavior commonly
observed during effusive eruptions, in which extrusion rates
(and ground deformation rates, if recorded) decline smoothly
with time (Figure 1). The model is further specialized herein
for a silicic, dome‐building eruption of the type observed at
Mount St. Helens (2004–2008); with modification, however,
it could also be applied to other types of effusively erupting
volcanoes. This approach has the potential to significantly
improve constraints on magmatic processes while simulta-
neously enhancing our ability to understand and model a
variety of geophysical time series.
[5] A following study (K. Anderson and P. Segall,

Bayesian inversion of data from effusive volcanic eruptions
using physics‐based models: Application to Mount St. Helens
2004–2008, manuscript in preparation, 2011, hereafter referred
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to as “part 2”) will examine the use of this forward model
to estimate eruptive parameters at Mount St. Helens using
GPS and effusion rate data employing a Bayesian approach
which allows us to evaluate full posterior probability dis-
tributions, rather than simply inverting for a single set of
model parameters which “best” fits the data.

2. Previous Studies

[6] Models of magma flow through a conduit are used to
explain observed phenomena including eruptive periodicity
and the transition between effusive and explosive behavior
[e.g., Woods and Koyaguchi, 1994; Jaupart, 1996; Slezin,
2003]. In simple form, these models consist of the laminar
1D steady state ascent of magma through a rigid cylinder
[e.g., Jaupart, 1996;Melnik and Sparks, 1999, 2002;Mastin
and Ghiorso, 2000]. Even these simple models may dis-
play strongly nonlinear behavior and have multiple steady
state solutions due to nonlinearity in constitutive laws and
dependencies between different parameters, and additional
complexity is introduced by consideration of lateral varia-
tion of magma properties in the conduit [Massol et al., 2001;
Collier and Neuberg, 2006; Mastin, 2005], non‐Newtonian
rheologies [Melnik and Sparks, 2005], noncylindrical or
depth‐varying conduit geometries [Costa et al., 2007a,
2007b; de’ Michieli Vitturia et al., 2008], and elastic or
viscoelastic behavior of the conduit walls and/or inclusion
of the magma chamber feeding the eruption [Maeda, 2000;
Barmin et al., 2002; Costa et al., 2007a].
[7] Consideration of time‐dependent behavior adds fur-

ther complexity. Such behavior may occur over many dif-
ferent timescales due to changes in conduit size, nonlinear
behavior associated with gas exsolution and crystal growth,

or a time‐varying magma chamber pressure [Ramos, 1995;
Barmin et al., 2003; Proussevitch and Sahagian, 2005;
Starostin et al., 2005; Melnik and Sparks, 2005, 2006;
Mason et al., 2006]. Time‐dependent models with complex
interactions may provide insight into the short‐to interme-
diate‐period oscillatory behavior often observed during
eruptions. In contrast, quasi‐exponential declines in extru-
sion rate often observed over long time periods may be
explained with simple models of a deflating magma cham-
ber coupled to Newtonian conduit flow [Wadge, 1981;
Stasiuk et al., 1993; Segall et al., 2001; Huppert and Woods,
2002; Woods and Huppert, 2003] sometimes including rate‐
dependent slip of a solid plug in the upper conduit [Mastin
et al., 2008].
[8] Complex models with numerous material parameters

require constraint from laboratory or field observations, yet
few conduit models consider how magma or magma/rock
interactions generate observable geophysical signals, and
they remain unconstrained by data except time‐dependent
extrusion rate. Exceptions include Nishimura [2006, 2009],
who model time‐dependent ground deformation due to
magma ascent and degassing in an open conduit, Lensky
et al. [2008] for tilt due to cycles of plug slip and degassing,
and Hautmann et al. [2009], who compute ground defor-
mation due to a dike/conduit system with the geometry used
by Costa et al. [2007a, 2007b] and the pressure changes
calculated therein. Finally, Mastin et al. [2008, 2009] use
time‐dependent models of the effusive eruption of Mount
St. Helens (2004–2008) along with deformation and extru-
sion rate data to constrain aspects of the midcrustal magma
chamber that fed that eruption.

3. Model Design

[9] Oscillatory and chaotic behavior is often observed at
erupting volcanoes, but over long periods of time many
volcanoes display a gradual reduction in effusion rate sug-
gestive of the deflation of a pressurized magma chamber
(Figure 1). Our goal in this work is to relate well‐established
conduit and magma chamber physics to geophysical ob-
servables, and we seek a balance between simplicity and
solution speed on the one hand, and model complexity and
realism on the other. Here we do not seek to model oscil-
latory eruptive behavior, and we disregard certain processes
such as the kinetics of crystallization in order to focus on
general features of the magmatic system (chamber volume,
influx rate, etc.) with a relatively simple forward model that
may be run tens of thousands of times in order to perform
Monte Carlo inversions. Inspiration for this analysis comes
from the 2004–2008 eruption of Mount St. Helens, and
while the resulting model cannot be considered general for
all effusive eruptions, with appropriate modification our
approach should be generally applicable to many volcanoes
displaying a gradual decline in eruptive activity.
[10] We assume a model geometry consisting of an

ellipsoidal magma chamber coupled to the surface by a thin,
vertical, cylindrical conduit (Figure 2). Excess pressure in
the magma chamber drives Newtonian flow of magma
(containing melt, phenocryst, bubble, and dissolved gas
phases) through the conduit. At the top of the conduit the
magma solidifies into a solid plug which slips on cylindrical
faults with rate‐dependent friction. The physical model can

Figure 1. Lava extrusion time series at five volcanoes, nor-
malized in time and volume. Paricutín and Lonquimay data
are for tephra plus lava DRE (dense rock equivalent) and are
taken from Stasiuk et al. [1993]; Soufriere of St. Vincent
data are from Huppert et al. [1982]; Unzen data are from
Nakada et al. [1999]; and Mount St. Helens data are from
Schilling et al. [2008, also personal communication, 2010].
Durations of extrusion ranged from <6 months for Soufriere
of St. Vincent to almost 10 years for Paricutin. Paricutin
produced more than one billion m3 of lava, while Soufriere
of St. Vincent produced ∼50 million m3.
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be used to predict observables including ground deformation
and extrusion rate (the focus of this study), as well as gas
emissions, changes in gravity, and potentially seismicity (to
be considered in future work). Pressure changes in the
magma chamber and fluid conduit, and tractions along the
length of the conduit, are used to calculate surface dis-
placements in the surrounding elastic medium. Computing
elastic Green’s functions using numerical methods allows
for the inclusion of topography and variations in material
properties (layering, etc.) of arbitrary complexity in the
predicted surface deformation.
[11] Model parameters are listed in Table 1 along with

representative values.

3.1. Conduit

[12] Key physical processes occur in the conduit which
play a critical role in controlling the evolution of an eruption
and the transition between effusive and explosive behavior
[e.g., Jaupart, 1996]. As magma ascends, pressure decreases
and volatiles exsolve from the melt to form a bubble phase.
The growth of bubbles leads to a reduction in bulk density
and an increase in vertical velocity, and the reduction of
dissolved volatiles increases melt viscosity. At low pres-
sures, gas escape [Diller et al., 2006] and decompression‐
driven crystallization [Cashman and Blundy, 2000] can
result in the formation of semisolid plugs of rock in the
upper conduit. Such plugs may play important roles in
governing eruptive behavior: for example, extrusion rate

Figure 2. Model geometry and parameterization. An ellipsoidal magma chamber is connected to the sur-
face by a thin, vertical, cylindrical conduit. The lower portion of the conduit contains magma, while the
top portion is filled with a solid plug which slips along the conduit walls. Some key model parameters are
shown in italics; these parameters may either be estimated in an inversion or taken from other sources
(such as petrologic studies). Note that the surface may include topography of arbitrary complexity if
Green’s functions are estimated using numerical techniques. The model may be compared to a variety
of data sets including deformation, time‐dependent dome growth, and gas emissions.
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Table 1. Symbols and their nominal valuesa

Symbol Description Nominal Value or Equation

Independent Variables
z Vertical spatial coordinate ‐
r Radial spatial coordinate ‐
t Time ‐

Unknowns in Numerical Solution
p(z, t) Pressure in conduit ‐
v(z, t) Magma velocity in conduit ‐
r(z, t) Bulk magma density in conduit ‐
pch(t) Pressure at top of magma chamber ‐

Geometry and Host Rock Parameterization
R Conduit radius 50 m
L Length of solid plug 700 m
Lc Length of fluid (Newtonian) conduit 4300 m
h(t) Height of lava dome 0 m
rp Density of solid plug 2400 kg/m3

m, n Shear modulus and Poisson’s ratio 20 GPa, 0.25
w Chamber aspect ratio (height/width) 5
V0 Initial chamber volume 10 km3

Other Model Parameters (Partial List)
pch0 Initial pressure at top of magma chamber 130 MPa
cd
w, cT

c Mass concentrations dissolved water, total CO2 4.4 wt%, 2000 ppm
�ch Mass fraction phenocrysts in chamber 45%
T Temperature of melt 1123 K (850°C)
W Chamber influx coefficient 0 m3 day−1 MPa−1

f0 Friction: Nominal coefficient of friction 0.4
a, b Friction: Direct and evolution effects 0.08 and 0
vr Friction: Reference velocity 0.001 m/s
sc Friction: Effective normal stress coefficient 0.3
rl Density of host rock 2700 kg/m3

rl
0 Nominal melt density 2200 kg/m3

r�
0 Nominal phenocryst density 2600 kg/m3

rc0 Nominal dissolved volatile density 741 kg/m3

bl Compressibility of melt 2 × 10–10 Pa−1

b� Compressibility of phenocrysts 2 × 10−11 Pa−1

bc Compressibility of dissolved volatiles 1.38 × 10−10 Pa−1

Dependent Variables
pcc(t) Pressure at center of magma chamber ‐
ce
w(z, t), ce

c (z, t) Mass concentrations exsolved H2O, CO2 equations (4) and (5)
a(z, t) Bubble (exsolved volatile) mass fraction ‐
c(z, t) Dissolved volatile mass fraction ‐
�(z, t) Phenocryst mass fraction ‐
l(z, t) Melt mass fraction ‐
Sw(z, t), Sc(z, t) Volatile solubility in melt for H2O, CO2 Liu et al. [2005]
r*(z, t) Bulk magma density equation (3)
ra(z, t) Density of exsolved gas equation (6)
rl(z, t) Density of melt phase equation (7)
r�(z, t) Density of phenocryst phase equation (7)
rc(z, t) Density of dissolved volatile phase equation (7)
h(z, t) Effective magma viscosity equation (8)
hc(z, t) Viscosity of crystal‐free magma Hess and Dingwell [1996]
h�(z, t) Viscosity increase due to phenocrysts Costa [2005, see also arXiv:physics/0512173v2]
tp(t) Shear tractions on conduit walls due to plug equations (10) and (11)
t(z, t) Shear tractions on walls of fluid conduit equation (25)
� Average effective normal stress on plug equation (12)
�v(z, t) Volume fraction phenocrysts equation (A3)
qin(t) Volumetric flowrate into chamber (recharge) equation (14)
bm(t) Compressibility of melt in chamber equation (15a)
bch(t) Compressibility of chamber equation (15b)
u(x, t) Surface ground displacements equation (26)

Fixed Constants
g Gravity 9.81 m/s2

Rw, Rc Individual gas constants for H20 and C02 461.5 and 188.9 J kg−1 K−1

aParentheses indicate functional relationships for spatial coordinate z and/or time t only; other relationships are not specified.
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data often show a nonexponential decay with time [e.g.,
Stasiuk et al., 1993; Wadge, 1981], which may be due in
part to frictional sliding of a solid plug at shallow depth
[Mastin et al., 2008].
3.1.1. Conservation Laws
[13] Magma ascending from the chamber to the base of

the solid plug is modeled as a compressible, multiphase
Newtonian fluid. All phases are assumed to travel together
at velocity v(z, t) and at pressure p(z, t) (see section 3.1.3 for
a discussion of gas loss assumptions). Magma properties are
averaged horizontally such that equations are one‐dimen-
sional along the vertical z axis. For laminar flow in a long
thin cylindrical pipe with z positive upwards, momentum
conservation is given by (section A1)

0 ¼ @p

@z
þ �g þ 8�v

R2
; ð1Þ

where r = r(z, t) is the depth‐ and time‐dependent bulk
magma density in the conduit, h = h(z, t) is the bulk magma
viscosity, and R is the conduit radius.
[14] For a cylindrical conduit, changes in radius due to

reasonable pressure changes must be very small. Calculating
radial displacements ur on the walls of the cylinder assum-
ing plane strain deformation, ur = DpR/2m [Timoshenko and
Goodier, 1970]. Assuming a pressure change of Dp = 20
MPa, conduit radius R = 50 m, and shear modulus m = 20
GPa, radial displacements are 2.5 cm (less than 0.1% of the
radius). Assuming therefore a constant radius R, as well as
no gas loss, mass conservation in the conduit is given by

@�

@t
¼ � @

@z
�vð Þ: ð2Þ

[15] The time‐dependent term in equation (2) may be
neglected only when magma ascent times are significantly
shorter than the times associated with changes in eruption
dynamics [Ramos, 1995; Melnik and Sparks, 2006]. Chan-
ges in eruption dynamics can be slow for effusive dome‐
building eruptions, but magma ascent rates are low and
residence times are thus long. Rather than making a quasi

steady state assumption, we use the transient expression
above; the model therefore remains general and can be used
to evaluate the importance of the time‐dependent terms for
different eruptions.
3.1.2. Magma
[16] We model a multiphase magma containing melt,

phenocrysts, dissolved volatiles, and exsolved volatiles
(bubbles), with mass fractions l, �, c, and a, respectively.
Phenocrysts are carried upwards from the magma chamber
without growth, and microlite crystallization occurs as a step
function at a fixed solidification depth (section 3.1.4). Bulk
density (section A3)

�* ¼ 1� �

1þ �e þ �d

�e

��
þ �d

�c
þ 1

��

� �
þ �

��

� ��1

ð3Þ

is an explicit function of pressure through the mass frac-
tions and concentrations (section A2) of the different phases.
Mass concentrations of total dissolved and exsolved volatiles,
respectively, are given by cd and ce, and ra, rc, rl, and r�
are the phase densities of the exsolved volatile, dissolved
volatile, melt, and phenocryst phases, respectively.
[17] While many models utilize only a single volatile phase

(H2O) in the melt, Mastin et al. [2008] used the two‐phase
solubility code VolatileCalc [Newman and Lowenstern,
2002] and demonstrated the importance of considering
both H2O and CO2, as gas exsolves more gradually over a
wider range of pressures in the two‐phase model and a
sudden increase in compressibility at the water saturation
pressure is thus avoided.
[18] We model combined H2O and CO2 solubility using

relations S of Liu et al. [2005] (isobaric relationships are
shown in Figure 3):

�w
d ¼ �w

T � �w
e ¼ Sw mw;mc; p; Tð Þ; ð4Þ

�c
d ¼ �c

T � �c
e ¼ Sc mw;mc; p; Tð Þ; ð5Þ

where T is the temperature of the melt, and assuming closed
system degassing and neglecting crystallization, the total
mass concentration of volatiles cT must remain constant and
equal to the sum of dissolved and exsolved gases. Mole
fractions mw and mc of water and carbon dioxide, respec-
tively, are related by mw + mc = 1, and molar and mass
concentrations are related by ce

w = ce
cBmw/mc, where B =

18.02/44.01 ≈ 0.41 is the ratio of the molecular mass of
water to carbon dioxide.
[19] Given dissolved water cd

w (which may be estimated
from petrologic analysis) and total carbon dioxide cT

c (which
may be estimated by comparing CO2 emissions and
extruded dome volume [e.g., Gerlach et al., 2008]) at pch0 at
the top of the magma chamber at t = 0, we solve the re-
sulting system of six equations for the six unknowns cT

w, ce
w,

cd
c, ce

c, mw, and mc. With cT
w and cT

c (both of which remain
constant) it is then possible to solve for dissolved and ex-
solved volatile mass fractions at any pressure (Figure 4).
[20] Partial pressures of H2O and CO2 in bubbles are

calculated using pw = mwp and pc = mcp, respectively. Using
the ideal gas law [e.g., Jaupart and Tait, 1990], exsolved
gas density ra may be calculated using

�� ¼ pw

RwT
þ pc

RcT
; ð6Þ

Figure 3. Isobaric solubility plot using the expressions of
Liu et al. [2005] at 850°C. Each line represents the locus
of all possible dissolved volatile concentrations for a melt in
equilibrium with a CO2 ‐ H2O fluid at the indicated pressure.
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where Rw and Rc are the gas constants for water vapor and
carbon dioxide.
[21] Assuming a linearized equation of state, phase den-

sities of melt, phenocrysts, and dissolved volatiles may be
calculated as functions of pressure with compressibilities bl,
b�, and bc, respectively, using [e.g., Costa et al., 2009]

�i ¼ �0i 1þ 	iDpð Þ; for i ¼ �; �; c ð7Þ

where the 0 superscript indicates the nominal density at the
reference pressure p0, and Dp = p − p0.
[22] Compressibilities of melt and phenocryst phases are

taken from Mastin et al. [2008]. For dissolved volatiles we
assume that density is controlled by the dominant water
phase (neglecting CO2), and use results of Ochs and Lange
[1999], who report a nominal partial molar volume for water
of VH2O = 2.29 × 10−5 m3/mole (787 kg/m3) at 1000°C and
0.1 MPa, independent of water concentration in the melt. At

T = 850°C this yields a nominal density rc
0 = 741 kg/m3

using the thermal expansivity reported in the same study.
Finally, we use a compressibility of bc = 1.38 × 10−10 Pa−1

also from Ochs and Lange [1999]. Dissolved water is thus
relatively compressible in the melt, although still highly
incompressible compared to the gas phase which dominates
system compressibility (see Table 1); however, we include
compressibility of other phases for completeness.
[23] The viscosity h of a silicate melt is a complex func-

tion of melt composition, dissolved water content, temper-
ature, phenocryst content, bubble content, and other effects.
We estimate viscosity using the empirical results of Hess
and Dingwell [1996] for viscosity hc of a crystal‐free melt
as a function of the mass concentration of dissolved water
cd
w and temperature T, increased by a factor h� due to

phenocryst content �v after Costa [2005, see also Comments
on “viscosity of high crystal content melts: dependence on
solid fraction,” arXiv:physics/0512173v2] but neglect the
effect of bubbles [Llewellin and Manga, 2005], such that

� ¼ �� �w
d ; T

� �
�� �

vð Þ; ð8Þ

where detailed expressions are given in the cited references.
3.1.3. Gas Loss
[24] Bubbles do not move easily through viscous silicic

melts [e.g., Eichelberger, 1995] and bubble (or possibly
fracture) connectivity and subsequent permeable gas flow is
probably required for gas to escape from the conduit (either
vertically or laterally). Several factors enhance degassing at
shallow depths and restrict it at deeper depths, including
much higher porosities in the shallow conduit and reduced
wallrock permeability at depth. Because the conduit is
capped by a solid plug and modeled as a fluid magma only
at deep to intermediate depths, this suggests that gas loss
from the conduit may not be significant in the context of the
current model. This inference is supported by a 2D model of
gas loss developed by Collombet [2009] for a 4.5 wt% melt
which shows that conduit outgassing primarily influences
the shallowest 500 m of the conduit. For simplicity, we
therefore neglect conduit outgassing in this study; this
assumption may somewhat bias velocities and densities in
the upper conduit, but we postpone a more detailed analysis
for future work.
3.1.4. Plug Formation
[25] Low ascent rates allow for extensive decompression

crystallization in the shallow conduit and the formation of
solid or semisolid plugs of rock [Cashman et al., 2008];
extrusion of these plugs onto the surface in the form of
spines has been observed at many eruptions including
Mount St. Helens (2004–2008), Unzen (1991–1995), and
Soufriere Hills (1995–present). Spine formation is favored
at ascent rates of less than 1–5 × 10−4 m/s, such that magma
ascent is slow relative to the kinetics of crystallization and
dynamics of gas loss [Cashman et al., 2008]. Higher ascent
rates favor shear lobes, oscillatory or chaotic behavior, or
even vulcanian explosions.
[26] In this work we focus on eruptions with low ascent

rates and assume that decompression and volatile exsolu-
tion‐driven crystallization processes are not limited by time
but by pressure, and that the depth of crystallization remains
constant despite changes in conduit pressure over the course
of an eruption. We make use of petrologic observations to

Figure 4. (a) Dissolved and (b) exsolved volatiles as func-
tions of pressure assuming closed system degassing using Liu
et al. [2005]. In this example, water cd

w = 4.4 wt% and total
carbon dioxide cT

c = 2000 ppm are specified at 130 MPa
(vertical dashed line). At 130 MPa, the melt contains 40 ppm
dissolved CO2 along with the 4.4 wt% water, while total
exsolved gas concentration is 1.7 wt%. Note that deeper in a
chamber (p > 200 MPa) the dissolved water concentration
would exceed 5 wt%.
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directly enforce a fixed crystallization depth at the base of
the solid plug. More realistically, a declining conduit pres-
sure might result in a crystallization depth which increases
with time, lengthening the solid plug over the course of the
eruption and thereby increasing the total resistive force
provided by the plug (see section 3.1.5). This, in turn, would
likely hasten the end of the eruption, so our assumption of a
constant crystallization depth probably biases our results
toward extruded volumes and geodetic displacements which
are too high.
[27] Because melt viscosity is highly nonlinear around the

point at which crystals begin to strongly interact with one
another [Costa, 2005], after Barmin et al. [2002] we assume
a step transition between Newtonian fluid flow in the lower
conduit and frictional slip of the solid plug in the upper
conduit (but as noted we enforce this depth, rather than
compute it as in the work of Barmin et al. [2002]).
[28] As material is extruded onto the surface, a dome may

grow to height h with time (affecting vent pressure), or for
simplicity it may be assumed that the rate of surface erosion
equals the rate of extrusion such that h is constant. System
response to sudden unloading caused by dome collapse is
not examined in this study.
3.1.5. Motion of the Solid Plug
[29] The solid plug is subjected to an upwards force due to

magma pressure in the conduit, and downward forces due to
the weight of the plug and frictional resistance due to slip on
the marginal faults (we neglect atmospheric pressure).
Assuming that changes in extrusion rate are slow over the
course of the eruption, such that inertia may be neglected,
forces on the plug must balance [e.g., Mastin et al., 2008]:

0 ¼ ppR� �pR Lþ hð Þg � 2L
p; ð9Þ

where pp is pressure at the base of the plug, rp is the density
of the plug, L is the length of the solid plug (distance from
the surface to the depth of crystallization, not including
dome height h), and tp is the velocity‐dependent shear stress
on the margins of the plug. Solving for tp yields


p ¼ R pp � �p Lþ hð Þg� 	
=2L; for z > �L: ð10Þ

[30] The plug slips upwards along a cylindrical fault with
rate‐dependent friction. The choice of friction law is based
on laboratory tests which indicate that the coefficient of
friction f between two sliding surfaces depends on the
instantaneous slip rate as well as the past history of sliding
[Ruina, 1983; Marone, 1998]. Following a step increase in
sliding velocity, f immediately increases (the direct effect)
but then decays exponentially (the evolution effect) over a
characteristic distance scale dc to a new steady state value. It
is also observed that f increases roughly with the logarithm
of time the surfaces are in static contact [Dieterich, 1972].
Although the variation in f is small, the effect may play an
important role in earthquake nucleation and other fault
processes [see Marone, 1998; Segall, 2010].
[31] Common formulations of rate‐ and state‐dependent

friction (section A4) are unphysical as velocity approaches
zero, and therefore ill suited for modeling the waning phases
of an eruption. Rice et al. [2001] derived a regularized
expression based on the friction laws of Dieterich [1979]

and Ruina [1983] which overcomes this limitation. Assum-
ing for simplicity that there are no state evolution effects,
which may be appropriate for high temperature sliding of
granite surfaces [Blanpied et al., 1998], solid plug shear
tractions tp are equal to


p ¼ a�arcsinh
v

2vr
exp

f0
a

� �
; ð11Þ

where v is sliding velocity, f0 is the coefficient of friction at
the reference sliding velocity vr, a governs the direct effect,
and � is the mean effective normal stress (depth average of
normal stress minus pore fluid pressure) on the sliding
surfaces, calculated using

� ¼ �c�lgL=2; ð12Þ

where sc is a coefficient relating lithostatic pressure to
normal stress on the plug. For a shallow conduit surrounded
by cohesionless fallback material, with pore pressure rang-
ing from 0 to the least compressive stress and f0 = 0.6,
Mastin et al. [2008] estimates sc ≈ 1/3 to 3 times the vertical
stress.

3.2. Magma Chamber

[32] Properties of magma in the chamber are averaged
throughout, such that density, compressibility, and other
parameters represent average values (however, the full
chamber shape is used to calculate deformation). At the
onset of the eruption the magma chamber has an initial
volume V0. We consider two chamber pressures: the pres-
sure at the top of the chamber pch which drives flow into the
conduit, and the pressure at the center of the chamber pcc,
which may be considered an ‘average’ chamber pressure,
and is used to calculate magma compressibility. The magma
in the chamber is parameterized by overpressure and initial
volatile content at the top of the chamber and base of the
conduit (z = −L − Lc). Pressure at the center of the chamber
pcc is calculated from pch assuming a magmastatic pressure
gradient and, for simplicity, a constant average magma
density of �m = 2300 kg/m3.
[33] As an eruption progresses magma flows out of the

chamber into the conduit; magma may also flow into the
chamber from a deeper source. The rate of pressure change
in the chamber dpch/dt depends on rates of volumetric out-
flux qout and influx qin into the chamber, as well as the
compressibility bch of the chamber and the compressibility bm
of the magma within the chamber [e.g., Segall et al., 2001]:

dpch
dt

¼ qin � qout
V0 	m þ 	chð Þ : ð13Þ

Chamber outflux qout is given by pR2vch where vch is the
velocity at the chamber/conduit interface. We estimate the
chamber influx qin by assuming that influx is driven by some
deeper, constant pressure pdeep, such that influx is linearly
proportional to drop in magma chamber pressure [e.g., Mastin
et al., 2008]:

qin ¼ W pdeep � pch
� �

; ð14Þ

where W is a scaling factor with units of volume flux per
pressure difference.
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[34] Compressibilities are defined as

	m ¼ 1

�cc

@�cc
@pcc

; ð15aÞ

	ch ¼ 1

V

@V

@pcc
; ð15bÞ

where rcc is the bulk density of magma in the chamber at
pressure pcc. We evaluate ∂r/∂p using equation (3).
[35] The compressibility bch of the chamber itself is a

function of its shape and depth. For a spherical chamber in
an elastic full‐space, bch = 3/4m where m is the shear
modulus of the elastic medium [McTigue, 1987]; however,
this result does not hold for nonspherical shapes [Amoruso
and Crescentini, 2009]. Using the finite element method
we numerically compute bch for chambers with aspect ratios
w ranging from 0.05 to 20 in an elastic half‐space with n =
0.25 and m = 20 GPa. We find good agreement with full‐
space analytical results for the sphere, and the prolate
spheroid and penny‐shaped crack given by Amoruso and
Crescentini [2009] for deep magma chambers (Figure 5).
As the relative chamber depth decreases the numerical re-
sults begin to diverge from these analytical approximations,
particularly for penny‐shaped chambers. For deep prolate
ellipsoids, bch = 1/m [Amoruso and Crescentini, 2009], so
errors using the spherical approximation (bch = 3/4m) will
not exceed ∼25%.

[36] For the inverse problem (in part 2), we precompute
compressibility for a wide range of aspect ratios and
chamber depths and interpolate between these results to find
the appropriate bch.

4. Numerical Solution

[37] The final system of equations is strongly nonlinear.
For initial conditions pch0, V0, w, cd

w, etc., we solve the
equations of magma ascent from t = 0 to the final time t = tf
and then use the solution to calculate observables such as
ground deformation (section 5).
[38] The governing system of equations, including expres-

sions for momentum conservation, density, and mass con-
servation (equations (1), (3), and (2), respectively), is given by

0
0

@�=@t

2
4

3
5 ¼

@p=@zþ �g þ 8�v=R2

�� �*
�@ �vð Þ=@z

2
4

3
5; ð16Þ

where the explicit analytical expression for density r* (which
is an implicit function of pressure in equation (16)) is used as
a constraint on the unknown r. Note that unknowns p, v, and
r are functions of position z and time t; i.e., r = r(z, t).
[39] The boundary condition at the top of the conduit is

found by equating force balance on the plug (equation (10))
with rate‐dependent shear tractions (equation (11)), which
yields a relationship between plug velocity vp and pressure
at the base of the plug pp. Solving for vp yields the velocity
boundary condition

vp ¼ 2vr
exp f0=að Þ sinh

R pp � �p Lþ hð Þg� 	
2La�


 �
; ð17Þ

where pp and rp are both functions of time. The boundary
condition at the bottom of the conduit is simply p = pch,
which may be obtained using equations (13) and (14):

dpch
dt

¼ W pdeep � pch
� �� �R2vch

V0 	m þ 	chð Þ ; ð18Þ

and initial condition

pch t ¼ 0ð Þ ¼ pch0 ; ð19Þ

where vch and bm are functions of time.
[40] Spatial derivatives along the conduit are approxi-

mated by discretizing in space and employing the finite
difference operator D. For points away from the boundaries
we use the fourth‐order stencil

@f =@z � D fj
� 	 ¼ fj�2 � 8fj�1 þ 8fjþ1 � fjþ2

� �
= 12Dzð Þ; ð20Þ

where j = 1,2, …, n − 1, such that j = 0 would correspond
to the magma chamber and j = n to the plug, and Dz is the
(constant) discretization spacing. Lower‐order finite differ-
ence operators are used as necessary near the boundaries.
[41] We do not attempt to model the onset of the eruption,

but rather assume that at t = 0 the flow rate has already
reached its maximum value and define initial conditions at
this time (these values should not differ significantly from
preeruption values if the onset was relatively rapid). To do
so we solve the steady state version of equation (16) for

Figure 5. Finite element calculations of magma chamber
compressibility bch as a function of aspect ratio w = Lh/Lw
in an elastic half‐space, shown relative to the compressibility
of a sphere in a full space 3/4m. The volume of the chamber is
kept constant and the top of the chamber at a fixed depth d;
three depths are shown (normalized by the radius Rs of a
sphere with an equivalent volume). Penny‐shaped cracks
(left) become highly compressible, while vertical pipe‐like
chambers (right) become only somewhat more compressible
than the sphere. Analytical expressions and results from
Amoruso and Crescentini [2009] are shown for a sphere,
penny‐shaped crack (with n = 0.25), and highly elongate
vertical prolate ellipsoid (all in elastic full‐spaces); the latter
two are end‐member cases so their horizontal position on
the axes is approximate. Analytical approximations fail most
significantly with shallow penny‐shaped chambers.
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initial values pj(t = 0), vj(t = 0), and rj(t = 0), and then time
step the full system of equations

0
0

d�j=@t
dp0=dt

2
664

3
775 ¼

D pj
� 	þ �jg þ 8�jvj=R2

�j � �j*
�D �jvj

� 	
W pdeep � p0
� �� �R2v1

� 	
=V0 	m þ 	chð Þ

2
664

3
775 ð21Þ

with boundary condition given by

vn ¼ 2vr
exp f0=að Þ sinh

R pn � �n Lþ hð Þg½ �
2La�


 �
ð22Þ

and initial condition

p0 t ¼ 0ð Þ ¼ pch0 : ð23Þ

(Note that vn in equation (22) is coupled to the system in
equation (21) through the D[rjvj] term, which includes vn at
the top of the fluid conduit.) This system is a Differential‐
Algebraic Equation (DAE) with independent variable t for
unknowns pj(t), vj(t), rj(t), and p0(t), which we time step
using a MATLAB ODE solver (ode15s) suitable for DAEs.
To verify the system of equations and numerical procedures
under certain limiting assumptions, we compare results to an
analytical model by Mastin et al. [2008] (see section A5).
[42] Posteruptive periods (t > tf) may be modeled by

constraining conduit velocity to zero and solving the sim-
plified system of equations. This formulation allows
chamber recharge due to continued influx from a deeper
source, leading to a pressure increase and a deformation
signal in the absence of conduit flow.

5. Calculation of Observables

[43] Extruded volume Vex is obtained by integrating the
volume flux at the top of the conduit and removing bubble

volume fraction av to obtain the dense rock–equivalent
(DRE) volume (Figure 6a).
[44] Time‐dependent carbon dioxide emissions may be

approximated by assuming that the CO2 flux equals the CO2

mass fraction times the mass flux of liquid (nonphenocryst)
magma [e.g., Gerlach et al., 2008] (Figure 6a).
[45] Time‐dependent ground displacements u(x, t) are

calculated at position x on the surface due to changes in
chamber and conduit pressures pcc(t) and p(z, t), respec-
tively, and shear tractions t(z, t) and tp(z, t) for the fluid
conduit and solid plug, respectively, using

u x; tð Þ ¼ ucc pccð Þ þ up pð Þ þ u
 
; 
p
� �

; ð24Þ

where ucc, up, and ut are functions which give displace-
ments due to the evolving chamber pressure, conduit pres-
sures, and conduit shear tractions, respectively.
[46] Pressures p and pcc are available directly from the

solution to equations (21)–(23). Tractions tp(t) generated by
the solid plug are calculated using equation (11). Shear
tractions t(z, t) in the fluid conduit are obtained by inte-
grating the equilibrium equations in cylindrical coordinates
under conditions of radial symmetry, ∂(rsrz)/∂r + r∂(szz)/∂z =
0 [e.g., Segall, 2010], then substituting using equation (1) to
obtain


 z; tð Þ ¼ 4�v=R; ð25Þ

where t acts in the direction opposite to flow.
[47] Analytical models exist for ucc [Mogi, 1958; Yang

et al., 1988], up [Bonaccorso and Davis, 1999], and ut
[Nishimura, 2009; K. Anderson and P. Segall, Ground
deformation associated with volcanic conduits, manuscript
in preparation, 2011]. Although computationally inexpen-
sive, these models rely on various assumptions and do not
easily allow for spatial variations in material properties or
topography. On the other hand, numerical techniques allow
for the inclusion of an arbitrary degree of realism including

Figure 6. Some of the types of observables predicted by the model, here using nominal parameters.
(a) Extruded volume time series (which can be compared to dome growth time series), and cumulative
CO2 emissions. The two curves are identical in shape (although scaled slightly differently here) because
CO2 emissions are calculated directly from extruded volume time series. (b) The spatial pattern of total
vertical displacements, similar to what might be recorded by InSAR. Deformation calculated using Yang
et al. [1988]. (c) Temporal deformation time series (radial) for points shown in Figure 6b, similar to what
might be recorded by GPS.
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complex surface topography and layering of earth proper-
ties, but can be slower to compute.
[48] We precompute influence functions G using radially

symmetric topography (future work may include full three‐
dimensional topography for individual volcanoes). Influence
functions are dependent on receiver position x and source
properties which include chamber aspect ratio w, chamber

volume V0, and conduit length L. After equation (24),
deformation is then calculated using

u x; tð Þ ¼ Gp
cc x; LþLc!;V0ð Þpcc tð Þ þ

X
j

Gp
j x; zj;R
� �

pj tð Þ

þ
X
j

G

j x; zj;R
� �


j tð Þ þ G

p
plug x;Rð Þ
p tð Þ; ð26Þ

where Gcc
p , Gj

p, Gj
t, and Gplug

tp are influence functions asso-
ciated with chamber pressure, fluid conduit pressures, fluid
conduit tractions, and sliding plug tractions, respectively,
and j is the conduit discretization as defined in section 4.
Once functions G are precomputed, this approach yields
the speed of an analytical method with the realism and flex-
ibility of a numerical approach (computational speed becomes
important when running many forward models, as in the
Monte Carlo inversion procedure we follow in part 2).
[49] The resulting deformation field is fully characterized

in space (Figure 6b) and time (Figure 6c) and may be
compared to InSAR, GPS, tilt, and other data.
[50] For nominal eruption parameters described in section

6.1, we find that displacements due to the conduit are small
relative to displacements due to the chamber except for
observations made close to the conduit. The fluid conduit, in
particular, generates relatively little ground deformation
although at closer distances the influence of the solid plug
can become significant. A more detailed analysis of ground
deformations generated by the conduit, including the solid
plug, will be examined in future work; for the remainder of
this study we focus on deformations generated by the
chamber.

6. Model Behavior

[51] We examine model behavior using a set of nominal
parameter values given in Table 1. These values should be
generally appropriate for effusive silicic eruptions, but are
not meant to represent a particular volcano. We show results
both with and without a forced cessation of the eruption at
tf = 4 years.

6.1. Solution With Nominal Parameters

[52] After 5 years, the nominal eruption yields an extruded
DRE volume of about 87 million m3, and chamber pressure
is reduced by 29 MPa (Figure 7a). With a friction law
dependent only on slip rate, the eruption continues for many
years with monotonically decreasing extrusion rate; after
200 years, extrusion rate has dropped to 0.003 m3/sec from
more than 9 m3/sec at the onset of the eruption. A more
realistic friction law would cause the plug to lock up and
terminate the eruption (as would a more realistic consider-
ation of crystallization), but we postpone such an analysis to
a future study, and here impose an end to the eruption at a
fixed time (Figure 7b).
[53] The ability to simulate posteruptive periods is an

important feature of the model, as geodetic evidence for
reinflation can provide a valuable constraint on chamber
recharge which is difficult to estimate during an eruption.
Figure 7b shows the nominal eruption including chamber
recharge. For an eruption involving no precursory inflation
we set pdeep = pch0 (see equation (14)) so that qin(t = 0) = 0,
and examine the effect of different values of W. Recharge

Figure 7. Magma chamber pressure (dashed lines) and
extruded volume (solid lines) with time for the nominal
model parameters. (a) Evolution without influx into the
chamber. Without forced termination, the eruption would
continue at a decreasing rate for decades. (b) The same erup-
tion with termination at 4 years, and the addition of chamber
recharge using W = [0, 1500, 3000, 4500] m3 day−1 MPa−1.
Addition of recharge alters time series during the eruption
and leads to chamber reinflation after the cessation of the
eruption. Repressurization occurs at a decaying rate such
that chamber pressure will eventually recover pch0. For the
highest value of W, influx rates approach 1 m3/sec late in
the eruption.
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causes the extrusion rate to approach a constant value, and
the magma chamber pressure to decay more slowly. Rein-
flation of the chamber following the eruption occurs at a
decaying rate such that chamber pressure eventually recovers
pch0.
[54] Depth‐ and time‐dependent variation in magma

properties in the conduit are shown in Figure 8, with W =
1500 m3 day−1 MPa−1 and with tf = 4 years. Bubble volume
fraction varies from <10% at the top of the chamber to
∼40% at the base of the plug, suggesting that gas loss is
probably not significant for most of the conduit with these
parameters. After the end of the eruption, repressurization
due to chamber recharge can be seen, causing exsolved gas
to reenter solution in the magma, and an increase in magma
density.
[55] Although a fit to specific data is not the focus of this

work (see instead part 2), to demonstrate that the model is

capable of recovering the general characteristics of an actual
eruption we compare to the 2004–2008 eruption of Mount
St. Helens, Washington, using a representative set of model
parameters. These parameters are somewhat different than
the nominal set, including a larger chamber of ∼25 km3.
(They should not be considered “best fitting” parameters; in
part 2 we invert the observations from this eruption to find
posterior probability density functions of the model para-
meters using a Markov Chain Monte Carlo approach.)
[56] Figure 9 shows the fit of this tentative model to dome

growth and GPS time series at Mount St. Helens, where to
match observations we constrain the model extrusion
velocity to 0 at the end of the eruption in January 2008 after
∼3.3 years. The model fits the general characteristics of both
the GPS and dome growth data, although the fit is imperfect
and does not explain apparent posteruptive inflation at the
volcano. These issues are treated in detail in part 2.

Figure 8. Evolution of magma properties in the conduit using nominal model parameters, with W =
1500 m3 day−1 MPa−1 and with forced cessation at t = 4 years (vertical dashed line). Pressure, density,
velocity and dissolved water all decrease throughout the eruption, while viscosity and bubble volume
fraction increase; these trends reverse and velocity drops to zero during chamber repressurization follow-
ing the end of the eruption.
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6.2. Influence of Parameters on Observables

[57] We examine how model parameters influence two
key observables: volume extruded Vex and ~u ≡ V0Dpch, the
latter being proportional to ground displacements when the
dimensions of the chamber are small compared to its depth.

We also examine how vesicularity av, magma compress-
ibility bm, and the importance of time‐dependent terms in
the solution (section 6.6) vary with these same model
parameters. Simulations are run until the approximate ces-
sation of an eruption (v → 0). Results represent parameter‐
by‐parameter deviations from the nominal model para-
meters, not accounting for correlations between parameters.
Results are therefore strictly valid only in the region of the
nominal model.
[58] Figure 10a shows the temporal evolution of ob-

servables Vex and ~u with variations in nine key model
parameters, with dashed lines connecting points at which
Vex/Vf and ~u=~uf reach 1 − 1/e ≈ 0.63 (defining a time con-
stant), where the subscript f indicates the final value at the
end of the eruption and we use the DRE estimate for Vf. All
examined model parameters influence the time constant tc,
while some also influence Vf and total displacements ~uf (not
generally visible in these plots which end at t = 20 years).
Erupted volume increases more rapidly with larger V0 and R,
as expected. Interestingly, the extruded volume increases
with the volatile concentrations (cd

w and cT
c), but displace-

ments show a weaker dependence. It can also be seen that
the effect of pch0 on volatile solubility (and hence magma
compressibility) overwhelms the expected behavior that
larger pch0 produces more erupted magma.
[59] To examine these and other dependencies more

closely, in the first two rows of Figure 10b we plot tc, Vf,
and ~uf as functions of the same key model parameters. Re-
sults confirm that all parameters influence the time constant
tc, but (due largely to the compressibility of the magma) Vex

and ~u exhibit different tc; this is in contrast to a simple
analytical model of a deflating magma chamber which
predicts identical tc given by (section A5)

tc ¼ 8�LcV0 	m þ 	chð Þ=�R4; ð27Þ

where bm is assumed constant in time and � indicates the
depth‐averaged viscosity, also constant in time.
[60] Equation (27) predicts that tc should vary linearly

with V0 and inverse quartically with R. These predictions are
shown as black lines in Figure 10b (scaled to match
numerical results as closely as possible); agreement is good
for R and poor for V0, in part because V0 influences the
depth of the center of the chamber, which influences the
exsolved gas fraction and thus compressibiltiy bm in
equation (27). This dependency leads to nonlinear scaling of
tc with V0.
[61] Sensitivity of tc to frictional parameters sc, f0, and a

cannot be predicted using analytical approximations which
do not include a frictional plug, but some inferences may be
made by examination of the unregularized rate‐dependent
friction law (equation (A9)). It is clear that larger sc (which
controls �; see equation (12)), L, and f0 increase the net plug
frictional resistance and therefore reduce effusion rate and
increase tc. The regularized version of the expression
(equation (11)) shows that friction scales with a� and f0/a.
Numerical results show that larger values of a actually
decrease tc by increasing the time dependence of friction,
suggesting that f0/a dominates.
[62] Total extruded volume Vf and final displacements ~uf

at the end of the eruption are particularly sensitive to V0

Figure 9. Comparison of model to data from the 2004–
2008 eruption of Mount St. Helens. This result is not
intended to show the best fitting model; for an in‐depth
study on fitting this data, see part 2. Cessation of the erup-
tion is forced at the vertical gray dashed line (to fit observa-
tions). (a) Growth of the lava dome versus time. Final
posteruption data points are based on seismic, gas, and geo-
detic evidence suggesting the cessation of extrusion, not on
dome volume estimates. (b) Continuous weekly GPS time
series, radial from the volcano (see Lisowski et al. [2008]
for information about the GPS network). Uncertainties
shown are for daily solutions (white noise only). Model at
JRO1 is offset by 2 mm to account for the time difference
between the onset of ground deformation and measurable
extrusion.
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and pch0, as predicted in the analytical approximations ~uf =
V0Dpf = V0(�gLc − pch0) and Vf = −V0(	m + bch)(�gLc −
pch0) (see section A5). Dependence on pch0 is somewhat
counterintuitive, with a minimum in ~uf at around 130 MPa,
and larger pch0 leading to smaller Vf. This behavior is due to
the way we define dissolved water content at pch0, which
leads to very high total water content and magma com-
pressibility near the solubility limit at ∼125 MPa. Vf also
shows a very strong dependency on volatile concentration
cd
w (and to a less exstent on cT

c); this is because increasing
cd
w from 4% to 4.5% at 130 MPa increases the total H20

content cT
w by more than a factor of two, leading to a large

increase in compressibility and thus Vf. No dependence of
~uf or Vf on plug friction parameters is observed because
the model for plug friction includes no locking strength (as
v→ 0, t → 0 in equation (11)). Inclusion of a frictional plug
therefore influences the evolution of an eruption, but not its
final outcome (except to the relatively minor extent that plug
density is different from melt density).
[63] For the parameters explored, bubble fractions av at

the top of the conduit during an eruption typically range
from 30% or less at the onset to more than 50% at the end of
the eruption due to decreased conduit pressure. Values at the
top of the conduit are mostly lower than the critical bubble
fraction (percolation threshold) required for significant
permeability in some studies [e.g., Eichelberger, 1995;
Takeuchi et al., 2005], but not in other studies which sug-
gest relatively high permeabilities even at low porosities
[e.g., Klug and Cashman, 1996; Melnik and Sparks, 2002],
perhaps due to the presence of crystals [Collombet, 2009].
These results suggest that the assumption of no conduit
outgassing is probably appropriate for most of the fluid con-
duit (where bubble fractions are modest), but the assumption
may be less valid at shallow depth for late in eruptions with
gas‐rich melts.

6.3. Chamber Compressibility and Host Rock Rigidity

[64] The compressibilities bm and bch of the magma and
chamber, respectively, are an important control on eruption
duration and volume. While early work considered primarily
the elastic compressibility of the host rock surrounding the
chamber [Stasiuk et al., 1993], more recent work has sug-
gested that the compressibility of the magma plays a dom-
inant role due to the high compressibility of the exsolved
gas phase [Huppert and Woods, 2002; Melnik and Sparks,
2005].
[65] These conclusions rest on estimates of bm and bch.

For a homogeneous medium, bch is inversely proportional to
shear modulus m. Shear modulus may be only poorly known
because static elastic modulii can be appreciably less then

those inferred from seismic wave speeds [e.g., Lin and
Heuze, 1987], and the presence of fractures in situ can
further reduce stiffness relative to laboratory tests. In part
due to these fractures, m may vary greatly: for fractured
rocks or sediments m may be <1 GPa, while for more
competent rocks m > 30 GPa [e.g., Dzurisin, 2007, p. 281].
As a result, bch may be very poorly constrained. (For a
linear, homogenous elastic medium, ground displacements
scale linearly with shear modulus, so the uncertainty in m
also plays an important role in interpreting this observable.)
[66] The compressibility of magma in the chamber bm

may also vary considerably with volatile content (and
parameters which influence volatile content) and change
throughout an eruption. Figure 10b shows maximum values
of bm sometimes exceeding 15 × 10−10 Pa−1 at the end of
an eruption (top of shaded region), while minimum values
for the onset of an eruption (bottom of the shaded region)
are often <3 × 10−10 Pa−1. Compressibility bm increases
significantly with higher volatile concentrations, smaller V0

(because larger chambers extend to deeper depths and con-
tain less compressible magma) and with smaller pch0 (because
lower pressures increase total dissolved water, as noted in
section 6.2). For m = 20 GPa and bch = 4.7 × 10−11 Pa−1

(section 3.2), bch varies between <3% and >30% of bm,
suggesting that chamber compressibility could be an impor-
tant effect and should not be neglected.

6.4. Volume Change of Magma Chamber

[67] Geodetic estimates of total volume change DVch in a
magma chamber are commonly smaller than the volume of
magma Vf extruded onto the surface, or the estimated vol-
ume of intruded dikes [Owen et al., 2000; Wright et al.,
2006; Lisowski et al., 2008]. While such differences have
been attributed to chamber recharge from a deeper, geode-
tically invisible source, they may sometimes be explained
by compressibility of the melt and of the magma chamber as
shown in the relationship Vf /DVch = −(1 + bm/bch) [e.g.,
Mastin et al., 2008; Rivalta and Segall, 2008; Segall, 2010],
which demonstrates that Vf = DVch only when the magma is
incompressible.
[68] We calculate the ratio Vf /DVch for the parameter

combinations explored in Figure 10. Results generally fol-
low compressibility relationships shown in Figure 10b
because higher values of bm lead to larger (more negative)
Vf /DVch. As a result, the magnitude of Vf /DVch increases
significantly with higher volatile concentrations and de-
creases strongly with larger V0 and pch0. For the nominal
parameters, the ratio is around −6, but with different para-
meters ranges from roughly −3 to −20. These results, which
explore only a small part of parameter space, are not

Figure 10. Dependence of model behavior on key model parameters (arranged by column). (a) Time series (solid lines) of
observables as functions of different model parameters, with colors (red for Vex and blue for ~u) indicating large parameter
values and black lines indicating small parameter values (minimum and maximum curves are also labeled). Dashed lines
connect points at which the observable reaches ∼63% of its final value (tc). (b) First row shows time constants tc calculated
from results in Figure 10a, some with comparison to analytical results (see text). Second row shows final extruded DRE
volume Vf and “displacements” ~uf. Third row shows magma compressibility in the chamber bm, with the shaded region
indicating the range between minimum (t = 0) and maximum (t = tf) values during a given eruption; for example, bm varies
between roughly 2.6 × 10−10 Pa−1 and 6.2 × 10−10 Pa−1 for V0 = 10 km3. Fourth row shows maximum value of ∣K∣ in the
conduit during the eruption (section 6.6), where smaller values indicate increasing importance of time‐dependent terms.
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inconsistent with the estimated Vf /DVch ratio at Mount St.
Helens of around −3 to −5 [Lisowski et al., 2008; Mastin
et al., 2009] (and results in section 6.1 show that with
appropriate parameters these results can be reproduced).
Results confirm that magma and chamber compressibilities
may explain excess erupted volumes without requiring
magma chamber recharge.

6.5. Conduit Force Balance

[69] For the nominal eruption parameters, Newtonian
viscosities below the solid plug are relatively low and
pressure gradients are nearly constant. Because of the low
viscosity, the fluid part of the conduit plays an insignificant
role in the overall momentum balance and eruption
dynamics are dominated by the competition between magma
chamber pressure and frictional plug resistance (Figure 11).
[70] These results can be quantified in a simple way by

taking the ratio of resistive forces exerted by the solid plug
(2pRLtp) to resistive forces exerted by the fluid conduit
(equation (25) times 2pRLc) to obtain a nondimensional
parameter which measures the ratio of frictional to viscous
forces:

 ¼ RL
p
4Lc� v

: ð28Þ

Using the nominal model parameters and solution at t = 0
(tp ≈ 1 × 106 Pa and v ≈ 1 × 10−3 m/s), forces achieve parity
(y = 1) for � ≈ 2 × 109 Pa·s, which is more than four orders
of magnitude higher than the viscosities calculated in the
nominal eruption.
[71] Since average viscosity increases nonlinearly as the

plug is shortened and Newtonian flow extends to shallower
depths, is there a point at which �→ 2 × 109 Pa·s and y→ 1?
Sparks [1997] calculates � for several models involving
Newtonian ascent to the surface with no frictional plug, and �
does not much exceed � = 1 × 108 Pa·s. The effect of crystal
growth and other rheological changes as the fluid melt un-
dergoes the transition to a solid state must greatly increase
the melt viscosity in the transition zone just beneath the solid
plug, but would probably not extend into the deeper conduit.
Therefore, it seems likely that for typical silicic melt vis-
cosities, upper conduit (solid plug + transition zone) forces
most likely dominate viscous drag forces in the remainder of

the conduit, except perhaps for systems with very shallow
plugs, or possibly for gas‐poor or crystal‐rich magmas.

6.6. Importance of Time‐Dependent Terms

[72] The importance of time‐dependent terms in the
solution may be evaluated by expanding the right‐hand side
of the continuity equation (equation (2)) and taking the ratio
K of the two terms:

K ¼ v
@�

@z

� �
= �

@v

@z

� �
: ð29Þ

The closer ∣K∣ to 1, the less significant the ∂r/∂t term in the
solution. For the nominal parameter values, ∂r/∂t terms are
most important at the beginning of the eruption. For modest
deviations from the nominal model parameters ∣K∣ is typically
not much less than 0.9, but very small magma chambers or
wide conduits (which reduce ascent rates for a given volume
flux) result in ∣K∣ < 0.7 or 0.6 (Figure 10b). The error intro-
duced by making a quasi steady state assumption (a steady
state conduit driven by a time‐dependent boundary condition
dpch/dt) would therefore depend on the model parameters
chosen, and could vary from relatively minor to significant.

7. Discussion: Simplicity Versus Realism

[73] Simplification of any model provides obvious bene-
fits, while additional complexity provides more realism. The
balloon‐and‐straw model geometry is an obvious simplifi-
cation. The assumption of constant conduit radius R may be
valid for a conduit but less so for a more compressible dike,
in which case there could be considerable feedback between
pressure and cross section. However, while magma transport
is likely to initiate in the form of dikes, long‐lived eruptions,
such as at Mount St. Helens, are likely to evolve to more
axisymmetric conduits.
[74] The inclusion of a solid plug in the upper conduit

matches observations at many volcanoes, plays an important
role in eruption dynamics, and simplifies numerical analysis
by removing extreme nonlinearities in nominally fluid
properties in the shallow subsurface which occur due to
greatly reduced volatile solubility and consequent crystalli-
zation at low pressures. Beneath the plug, gradients in
pressure and other magma properties are nearly constant,
and could in principle be approximated with depth‐averaged
values; this would allow us to replace ∂p/∂z in the
momentum balance with (pp − pch)/Lc (see section A5).
However, this approach restricts the model to relatively deep
plugs (pressure gradients beneath very shallow plugs would
not be constant) and reduces our ability to carefully propa-
gate observables upwards from the chamber.
[75] The friction law used for the margins of the plug is

based on well‐established experimental evidence, but usu-
ally at conditions far removed from those in the conduit. A
simple linearly rate‐dependent law might conceivably be
used to capture the essential elements of rate‐dependent
friction with less complexity. On the other hand, adding
state dependence to the friction model might allow us to
more carefully consider the effect of the plug at the onset
and cessation of the eruption.
[76] Results suggest that for typical effusive silicic erup-

tions, neglecting time‐dependent terms in the continuity

Figure 11. Total resistive forces generated by the solid plug
and the fluid (Newtonian) conduit for the nominal set of erup-
tion parameters. The force generated by the plug is orders of
magnitude higher than that generated by the conduit.
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equation could introduce a modest loss in accuracy and
would also prevent future consideration of time‐dependent
conduit processes such as crystallization.
[77] Modeling gas loss in the lower conduit may be rel-

atively unimportant due to low magma permeability, but
more careful consideration of gas loss in the upper conduit
will need to be considered in future work. A more detailed
simulation of the processes involved in plug formation,
explicitly including crystallization, would add realism and
might allow for the analysis of oscillatory behavior, and will
be considered in future work. However, inclusion of such
processes in the model could add considerably complexity.

8. Conclusions

[78] Physics‐based models of volcanic eruptions show
great promise for their ability to predict multiple types of
observables and thereby better constrain important proper-
ties of volcanic systems. Kinematic models of ground
deformation, although useful, do not have predictive capa-
bility, cannot easily model additional data sets such as
extrusion rate, gravity change, or gas emissions, and cannot
in isolation uniquely estimate both the volume of a magma
chamber and its pressure change [e.g., McTigue, 1987].
[79] The model developed in this study has the ability to

predict the evolution of a gradually declining effusive erup-
tion using realistic magma physics given appropriate material
parameters and initial conditions. We use it to calculate two
key observables, extruded volume and ground deformations
as a function of time, along with a simplistic estimate of CO2

emissions (directly proportional to extruded volume) and the
dependence of these observables on initial conditions. The
model can be extended in a straightforward manner to predict
additional data sets such as gravity changes.
[80] Key features of the model include the ability to

simulate posteruptive periods to better constrain chamber
influx, inclusion of a rigid plug in the upper conduit with a
regularized rate‐dependent friction law, and time‐dependent
ground deformation calculated for an arbitrarily realistic
medium as a function of overpressures and tractions acting
on the chamber and conduit using precalculated Green’s
functions. However, because the focus of this work is the
development of a relatively simple model capable of fitting
geophysical time series within a modest solution time, we
do not attempt to incorporate all possible physical‐chemical
processes in an erupting magma and the model is signifi-
cantly simplified relative to some models of conduit flow [e.
g., Melnik and Sparks, 2005].
[81] Results suggest that while important physical pro-

cesses occur in the fluid conduit, it may be difficult to detect
geophysically and that it contributes little to the total force
balance governing the evolution of an eruption; effusive
eruptions may therefore be dominated by the balance
between overpressure in the magma chamber driving
upward flow, and resistance in the upper conduit provided
by frictional plug slip (and also probably the flow of highly
crystalline near‐solid magma just beneath the solid plug,
although this is not modeled in this study). We observe that,
for nominal parameters, the magma chamber compressibility
is a significant ∼15% of magma compressibility, although
results are strongly dependent on host rock rigidity. Some-
what counterintuitively, plug friction parameters influence

the evolution of an eruption but have no effect on the final
erupted volume or pressure change in the magma chamber
(this would not be true with state‐dependent friction). Im-
portantly, modeling posteruption reinflation may provide
valuable constraints on influx into the magma chamber from
a deeper source, but such influx is in general not necessary
to explain observed differences between extruded volume
and apparent source volume change: consistent with earlier
studies, we find that large differences may be explained by
compressibility of magma and chamber.
[82] Much work remains to be done before physics‐based

models of this type can be easily or routinely used for
geophysical inversions. The continuation of this work in
part 2 examines some of these techniques, and employs the
forward model explored here to invert data from the 2004–
2008 eruption of Mount St. Helens, Washington.

Appendix A

A1. Momentum Balance

[83] The well‐known momentum balance equation for
laminar fluid flow in a long, thin, vertical cylindrical pipe
may be derived from the Navier‐Stokes equations by
assuming a no‐slip boundary condition on the walls of the
pipe, no horizontal variation in melt viscosity or density, and
assuming that vertical derivatives of vertical velocity are
negligible compared to horizontal derivatives of vertical
velocity. Laminar flow is justified at low Reynolds numbers
(Re < 2000), where flow is dominated by viscous forces.
Using Re = Lcqr/pR

2h, for r = 2000 kg/m3 magma with
viscosity of h = 106 Pa·s flowing through a Lc = 5 km fluid
conduit of radius R = 50 m, Re = 2000 corresponds to a
flowrate of ∼1.5 × 106 m3/sec, which is many orders of
magnitude above that expected during an effusive eruption.
[84] Under these assumptions, the momentum balance is

given by [e.g., Jaupart and Tait, 1990]

0 ¼ @p

@z
þ �g þ 8�v

R2
: ðA1Þ

The pressure gradient which drives flow is balanced by the
weight of the magma and the viscous resistance to flow.

A2. Mass and Volume Fractions and Concentrations

[85] We use the terms mass fraction and volume fraction
to refer to masses and volumes of individual phases nor-
malized to the bulk magma, and the terms mass concen-
tration and volume concentration to refer to masses and
volumes of individual phases normalized to other phases
(not necessarily the total bulk magma). Such concepts are
simple, yet easily confused. To convert from mass fractions
(a, c) to mass concentrations (ce, cd) we use

�e ¼ �=� ðA2aÞ

�d ¼ c=�: ðA2bÞ

To convert from mass fractions to volume fractions we use

iv ¼ i�=�i; for i ¼ �; �; �; c ðA3Þ
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where the v superscript indicates volume fraction (for
instance, av = ar/ra).

A3. Bulk Magma Density

[86] Since volume fractions must sum to unity, av + cv +
�v + lv = 1, where av, cv, �v, and lv are volume fractions of
exsolved volatiles (bubbles), dissolved volatiles, pheno-
crysts, and melt. Converting to mass fractions using
equation (A3), solving for r, and then substituting equations
(A2a) and (A2b) yields

� ¼ �
�e

��
þ �d

�c
þ 1

��

� �
þ �

��

� ��1

; ðA4Þ

where

� ¼ 1� �ð Þ
1þ �e þ �dð Þ � 1� �; ðA5Þ

obtained by replacing a and c terms in a + c + � + l = 1
using equations (A2a) and (A2b) and then solving for l.
Note that l is constant in the absence of crystallization or
gas loss.

A4. Rate‐and‐State Friction

[87] The most common constitutive law for rate‐ and
state‐dependent friction gives the frictional resistance t as
[Dieterich, 1979; Ruina, 1983]


 ¼ � f0 þ a ln
v

vr
þ b ln

�

�0

� �
; ðA6Þ

where � is the effective normal stress on the sliding surface,
f0 is the coefficient of friction at the reference sliding
velocity vr and reference state �0, v is sliding velocity, and a
and b are dimensionless constants governing the direct and
evolution effects. The state variable � may be interpreted as
the average time of contact between asperities on the sliding
surfaces, and its evolution may be modeled using [Dieterich,
1979]

d�

dt
¼ 1� �v

dc
: ðA7Þ

[88] The reference state �0 is conventionally set to �0 =
dc/vr. Under sustained sliding at constant rate, lab experi-
ments show that friction evolves to a steady state depen-
dent on the instantaneous slip speed v [e.g., Marone, 1998];
that is, d�/dt = 0, and � = dc/v. Substituting these expres-
sions into equation (A6) yields


 ¼ � f0 þ a� bð Þ ln v

vr

� �
: ðA8Þ

If a‐b is positive, the fault is steady state strengthening
(friction increases with an increase in sliding velocity), and
if a‐b is negative then it is rate weakening. Because a is
always positive, if there is no state evolution and b = 0 (as
is indicated by some high temperature experiments

[Blanpied et al., 1998]), then friction is necessarily velocity
strengthening:


 ¼ � f0 þ a ln
v

vr

� �
: ðA9Þ

Rice et al. [2001] derived a regularized expression for rate‐
and‐state friction which is suitable for zero velocity; with
the steady state assumptions given above and b = 0, this
specializes to equation (11).

A5. Analytical Models

[89] Solving the momentum balance (equation (1)) for v,
converting to q using v = q/pR2, approximating the pres-
sure gradient dp/dz as a constant −(pch − pp)/Lc, and com-
bining with the expression for chamber pressure evolution
(equation (13)) with no recharge yields

dpch
dt

¼ �R4

8�V0 	m þ 	chð Þ
pp � pch

Lc
þ �g

� �
; ðA10Þ

where overbars on � and � indicate depth‐averaged values.
[90] With no solid plug, surface pressure pp = 0. Solv-

ing the resulting differential equation with initial condition
p(t = 0) = pch0, and assuming that bm, � and � remain
constant with time, yields the well‐known exponential
decay of chamber pressure with time

Dpch tð Þ ¼ Dpf 1� e�t=tc
� 


; ðA11Þ

where Dpch is pressure change relative to the onset of the
eruption, Dpf = �gLc − pch0, and time constant tc =
8�V0(bm + bch) Lc/pR

4.
[91] Extruded volume Vex may be calculated by integrat-

ing the flowrate with time [e.g., Mastin et al., 2008]:

Figure A1. Regularized versus unregularized rate‐dependent
friction as a function of volume flux (assuming R = 50 m), for
two different values of f0/a, with a = .05 and f0 = [0.5, 0.2].
Y axis shows effective coefficient of sliding friction f (v) =
t/s, minus f0, such that the unregularized friction plots as
a ln(v/vr). Regularized friction approaches f(v) = 0 for small
v, while unregularized does not. The effect of the regulari-
zation is more significant for smaller f0/a.
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Vex tð Þ ¼
Z

qdt ¼ �V0 	m þ 	chð Þ
Z t

0

dpch
dt′

dt′

¼ �V0 	m þ 	chð Þ pch0 � �gLcð Þe�t′=tc
h it

0

¼ V0 	m þ 	chð Þ pch0 � �gLcð Þ 1� e�t=tc
� 


¼ �V0 	m þ 	chð ÞDpch; ðA12Þ

where letting t → ∞ yields a final extruded volume Vf =
−V0(	m + bch)Dpf. Extruded volume is therefore directly
proportional to pressure change in the chamber, scaled by
chamber volume and compressibility.
[92] Mastin et al. [2008] developed an expression for

Vex(t) analogous to equation (A12) for a model which in-
cludes a solid plug slipping with unregularized rate‐depen-
dent friction (equation (A9)):

Vex tð Þ ¼ D ln 1þ �R2vt¼0

D
t

� �
; ðA13Þ

where D = 2a�LV0 (	m + bch)/R and vt = 0 is the extrusion
velocity at the onset of the eruption.
[93] Because equation (A13) assumes unregularized rate‐

dependent friction it becomes unphysical for small velocities
near the end of an eruption and it cannot be used to directly
estimate either final values or time constant tc. The
expression also requires knowledge of velocity at t = 0, and
this must be taken directly from observations or estimated
through some other means.
[94] Equation (A13) does provide a useful means for

verifying our model. To do so, we simplify the numerical
calculation by using a constant h, a near‐constant r
(achieved by setting dissolved water content to zero), and
plug density equal to the magma density. For vt = 0 in
equation (A13) we use the initial velocity from the solution
of the numerical model. The regularized friction law reduces

to the log form when (v/2vr) exp( f0/a) � 1 (Figure A1); we
set f0 = 0.3 and a = .05 and vr ≈ v(t = 0). The ratio v/vr is thus
always less than 1, and is greatest at the onset of the erup-
tion; we thus expect any divergence between numerical and
analytical results to increase with time as v → 0, as seen in
Figure A2. Results agree closely for early in the eruption,
providing validation of our numerical approach under these
restricted conditions.
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