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Abstract

Numerical seismic modeling can aid in the understanding of wave patterns ob-
served on seismograms and can provide crucial guidance on seismic experiment de-
sign, data processing, and data interpretation. However, modeling wave propagation
in multi-scale heterogeneous media can be extremely computationally intensive, es-
pecially if small spatial sampling, required by small features, is used throughout a
large domain.

In this thesis, I present a new variable grid finite-difference (FD) method for solv-
ing wave equations. This method accommodates multi-scale features by allowing fine
grid spacing for zones with small-scale features, and coarse grid spacing for zones with
large-scale structures. Since the FD stability condition requires a very small timestep
for the finest grid spacing, a spatially variable timestep FD technique is implemented
to further reduce CPU time by providing small timesteps for zones with fine grid
spacing and large timesteps for zones with coarse grid spacing. Comparing numerical
results of the variable grid, and the variable grid and timestep FD methods with those
obtained by the conventional constant grid and timestep FD method demonstrates
their high accuracy and efficiency. Furthermore, parallel versions of the variable grid
FD codes are developed for efficient solution of large problems.

Four applications are used to demonstrate the efficacy and the benefits of the
developed techniques. First, I directly model an open fluid-filled fracture using the
variable grid FD method and compare the numerical results with those obtained using
an equivalent medium theory. Then, the variable grid and timestep FD method is used
for efficient single-well seismic modeling with a realistic-sized borehole in the modeling

scheme. Third, I use a parallel variable grid FD code to model cross-well field data

v



with inclusion of tube-waves and tube-wave-related arrivals caused by the presence
of the perforated cased boreholes. Finally, I apply the variable grid FD method for
DARS (Differential Acoustic Resonance Spectroscopy) lab data simulation to better

understand the theory and to guide experimental design and data analysis.
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Chapter 1
Introduction

The main focus of this thesis has been to develop and apply efficient finite-
difference techniques to model wave propagation in multi-scale heterogeneous media
to guide seismic experiment design, data processing, and data interpretation.

In this chapter, first I present the research motivation; then I discuss numerical
modeling methods; third I overview applications; and finally I briefly describe the

chapters of this dissertation.

1.1 Research motivation

In seismology, variations in the subsurface of the earth are often present on many
scales: from scales much larger than the typical seismic wavelength down to scales
that are much smaller. Figure 1.1 shows a model with multi-scale structures: a large-
scale salt dome, thick layers, small-scale thin layers, fractures and a borehole. The
presence of heterogeneous structures at various scales often leads to a very compli-
cated wavefield. In fact, even heterogeneities that are much smaller than the seismic
wavelength can have significant effects on the wavefield. For example, the presence of
borehole(s) often causes strong tube waves in borehole seismic data (Campbell, 1992;
Mo and Harris, 1995; Wu et al., 2001; Wu et al., 2004); and the aligned fractures
often induce azimuthal anisotropy on field observations (Lynn and Thomsen, 1986;
Garotta, 1989; and Lynn et al., 1995).
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borehole

N

fractures

Figure 1.1: A model with multi-scale structures: a large-scale salt dome, thick layers,
small-scale thin layers, fractures and a borehole.

Numerical seismic modeling can aid in the understanding of wave patterns ob-
served on seismograms and can provide crucial guidance on seismic survey design,
data processing, and data interpretation. However, modeling wave propagation in
multi-scale heterogeneous media can be extremely computationally intensive because
of the large range of spatial scales present. In order to resolve the small-scale fea-
tures such as boreholes or/and fractures which are often 2 or 3 orders of magnitude
smaller than the typical seismic wavelength in the medium, a very fine grid spacing
is required. Using this fine grid spacing throughout the entire domain will require
too much memory and CPU time thereafter for simulation on most computers. It is
desirable to develop special computational techniques for efficient seismic modeling in
multi-scale heterogeneous media to aid in experimental design, data processing, and

data interpretation.
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1.2 Modeling methods

1.2.1 Review

There are a variety of approaches for seismic modeling which can be classified
as: (1) analytical methods (e.g. Green’s function and Cagniard-de Hoop), (2) semi-
analytical methods (e.g. integral-equation), (3) asymptotic methods (ray tracing),
and (4) direct methods (finite-difference, finite-element, and pseudo-spectral). These
techniques differ by their regime of validity, their usefulness and their cost.

Analytical methods (e.g. Lamb, 1904) are limited for problems with very simple
geometries. However, they yield exact solutions which can serve as reference results
for other modeling methods.

Integral-equation methods (Cruse and Rizzo, 1968; and Cruse, 1968) are based
on integral representations of the wavefield in terms of waves originating from point
sources. These methods are very efficient and accurate for specific geometries, such
as a bounded object in a homogeneous background. However, they require high
computational cost for complex geometries.

Asymptotic methods or ray tracing methods (Cerveny et al., 1977) are based
on high frequency asymptotic solutions to the wave equation; therefore they do not
take the full wavefield into account. Amplitude and spectral characteristics modeled
by these methods are not always accurate, particularly when the medium contains
wavelength-scale or smaller heterogeneities. On the other hand, they are very efficient
for computing the arrival times of waves and are very useful for identifying specific
events on seismic records.

Direct methods, e.g. finite-difference (FD), finite-element (FE) and pseudo-spectral
(PS) methods, numerically solve wave equations on a discrete grid; therefore they are
also called grid methods. These techniques simulate the full wavefield. Direct or grid
methods can model wave propagation in arbitrarily inhomogeneous media and can
achieve high accuracy by using a fine grid. Furthermore, these techniques provide
the ability to generate snapshots or movies of the wavefield which are very important
for the interpretation of the results. However, a main disadvantage of these general

methods is the computational cost which can be more expensive than the analytical
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and ray methods.

1.2.2 The choice of FD method

The objective of this thesis is to efficiently model wave propagation in multi-
scale heterogeneous media. Clearly this goal has significant influence on the choice
of algorithm. The most likely candidates are the direct or grid methods which can
model wave propagation in arbitrarily heterogeneous media. Further requirements

for the grid method to be chosen are:

e high accuracy,
e low operation cost,
e compatibility with multi-scale heterogeneities,

e casy parallelization.

Most existing grid approaches excel in one or sometimes two of these respects.
For example, the FE method (Lysmer and Drake, 1972; Drake, 1972) is very flexible
in incorporating variable geometries, but it has difficulty achieving high accuracy
without a large operation count; the PS method (Gazdag, 1981; Kosloff and Baysal,
1982) is accurate and efficient in modeling large models with a coarse grid, but it is
often incompatible with multi-scale structures.

The FD method (Alterman and Karal, 1968; Kelly et al., 1976) is an alternative
grid based modeling method. This method is less computationally intensive than
the FE method, and is more flexible in representing multi-scale features than the PS
method. Also, the FD method is easy and straight forward to implement, and can be
easily parallelized on a parallel computer.

Therefore, I choose to explore and improve the FD method to efficiently model
wave propagation in multi-scale heterogeneous media. The new FD scheme to be

developed will meet all the four requirements above.
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1.2.3 The history of FD modeling

Alterman and Karal (1968) pioneered in the use of FD techniques in seismic mod-
eling. They developed a discrete solution to the second-order elastic wave equation
in homogeneous regions by the use of explicit time integration methods. For this
method, boundary conditions across all interfaces separating different regions must
be satisfied explicitly.

A heterogeneous FD algorithm solution of the second-order system of equations
on a single grid was introduced by Boore (1972) and extended by Kelly et al. (1976).
This approach incorporates the boundary conditions implicitly by specifying physical
properties at each node of a FD grid; therefore it provides the flexibility required to
simulate a variety of complex subsurface geometries.

Madariaga (1976) developed the first of currently very popular staggered grid FD
algorithms based on the first-order velocity-stress equation to model fault-rupture
dynamics. Virieux (1984, 1986) and Levander (1988) have since extended the tech-
nique to model wave propagation in 2-D media, and the formulation for 3-D media
is outlined by Randall (1989). The advantage of the staggered grid FD scheme is
that it is stable and accurate for modeling large Poisson’s ratio materials and mixed
acoustic-elastic media.

The displacement-stress staggered grid FD scheme was introduced by Luo and
Schuster (1990) and extended to the 3-D case by Olsen and Schuster (1992). This FD
scheme requires less computer memory than the velocity-stress scheme since it only
stores displacement components, not stress components.

Recently, many efforts have been made to optimize FD modeling. For example,
Falk et al. developed a varying grid spacing (1996) and a adjustable timestep (1998)
FD technique to avoid spatial and temporal oversampling for tube wave modeling.
Zhang (1997) proposed a quadrangle-grid FD method to flexibly handle complex
geometrical boundaries and interfaces. Saenger et al. (2000) presented a rotated grid
FD scheme to improve the computational accuracy on modeling wave propagation
in fractured media. All these techniques made FD modeling more efficient, accurate

and flexible in representing variable complex structures.
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1.2.4 The efficient FD techniques developed in this work

In this thesis, I explore and improve the FD method for efficient seismic modeling
in multi-scale heterogeneous media.

I first developed an “optimized” variable grid F'D scheme on a staggered grid mesh
(Wu and Harris, 2002; Wu and Harris, 2004) for solution of wave equations. Variable
grid FD methods can accommodate multi-scale features by allowing fine grid spacing
for zones with small-scale features, and coarse grid spacing for zones with large-scale
structures. The advantage of this optimized variable grid FD scheme is that it has
less dispersion errors than the variable grid FD scheme based on the Taylor series
expansion (Moczo, 1989; Jastram and Behle, 1991; Jastram and Tessmer, 1994; Falk
et al., 1996; Pitarka, 1999); therefore it leads to either more accurate results or more
efficient computations.

Using variable grid spacing for seismic modeling in multi-scale media considerably
reduces computer memory requirements and CPU time, however the simulation is
still time consuming. This is due to the use of a very small timestep required by the
finest grid spacing to satisfy the FD stability condition. To overcome this problem, I
developed a spatially variable timestep FD scheme for a spatial staggered grid based
on the technique introduced by Tessmer (2000) for a spatial non-staggered grid. This
variable timestep scheme is more flexible than the scheme proposed by Falk et al.
(1998), because it can handle any integer timestep ratios between different domains.
The use of the variable timestep scheme with the variable grid scheme in the FD
method results in great savings in CPU time.

Recently, low-cost networked PC clusters (Beowulf clusters) have become widely
available. In addition, the FD algorithm is well suited for distributed parallelization.
Therefore, I developed 2-D/3-D parallel variable grid FD codes for solution of large

realistic problems.

1.3 Applications

The developed FD techniques have a wide range of applications. Four examples
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are presented in this thesis.

First, I directly model a very small feature in a large homogeneous domain, i.e.,
an open fluid-filled fracture, using the variable grid FD method and compare the
numerical results with those obtained using an equivalent medium theory. The com-
parison shows excellent agreement between the two methods for the wavefield away
from the fracture. The discrepancy between the two is that a fracture slow wave is
only observed from the variable grid FD simulation.

Then, I apply the variable grid and timestep FD method for single-well seismic
modeling with the presence of a realistic-sized borehole in the modeling scheme. Nu-
merical results show that reflections from the near vertical structures can be observed
although strong tube waves obscure some temporal regions of the data.

Third, I use a parallel variable grid FD code to model cross-well field data with
inclusion of the two perforated cased boreholes. The synthetics resemble the field
observations not only on direct waves, but also on tube waves and tube-wave-related
secondary arrivals generated by the perforations in the receiver and source wells.

Finally, I apply the variable grid FD method for DARS (Differential Acoustic
Resonance Spectroscopy) lab data simulation to better understand the theory and to
guide experimental design and data analysis.

These widely successful applications demonstrate the efficacy and the benefits of
the developed FD techniques for efficient seismic modeling in multi-scale heteroge-

neous media.

1.4 Chapter description

The following is a brief description of each chapter in this dissertation.

This chapter presents the research motivation and thesis overview. Chapter 2
briefly reviews the derivation of the acoustic and elastic wave equations. These equa-
tions are solved by FD methods in the following chapters. Chapter 3 presents the
finite-difference techniques (variable grid and variable time FD techniques). Their

accuracy and efficiency are tested by numerical examples. Chapter 4 describes the
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parallel implementation of the variable grid FD algorithm in the 3-D case. The ac-
curacy and the performance of the 3-D parallel code are demonstrated by numerical
examples also.

In chapter 5, I apply the variable grid FD method to directly model an open fluid-
filled fracture and compare these results with those obtained using an equivalent
medium theory. Chapter 6 provides the application of the variable grid and timestep
FD method for single-well seismic modeling with a small realistic-sized borehole in
the modeling scheme. In chapter 7, I use a parallel 2-D variable grid FD code to
model cross-well field data with inclusion of tube waves and tube-wave-related arrivals
caused by the presence of the perforated cased boreholes. Finally, chapter 8 presents
the application of the variable grid FD method for DARS modeling including DARS

methodology and sensitivity study, and lab data simulation.



Chapter 2
Wave equations

This chapter presents a brief derivation of the acoustic and elastic wave equations
that are numerically solved by the FD methods in the following chapters. First, we
introduce the concepts of traction, stress and strain that characterize the forces in,
and deformation of, a fluid or solid. Then, we present the relation between stress
and strain, called the constitutive relation, in acoustic and elastic media. Finally, we
derive wave equations based on the constitutive relations and Newton’s law. We as-
sume infinitesimal deformations and we limit our discussion to a Cartesian coordinate

system.

2.1 Basic concepts

2.1.1 Traction and stress

The concepts of traction and stress are used to analyze the internal forces acting
mutually between adjacent particles within a continuum.

Traction is a vector, being the force per unit area acting on a surface. Consider-
ing an infinitesimal force 0f acting on an infinitesimal surface element 6S with unit

outward normal vector n, the traction vector t is defined as:

. of
t= élslgo 6S (21)



2.1 Basic concepts 10

The adopted convention is that t is the force per unit area exerted by the side to
which n points, acting on the other side.

In equilibrium, the two sides exert equal and opposite tractions:
t(—n) = —t(n) (2.2)

Traction depends on the orientation of the surface on which it acts. In Cartesian

coordinates, tractions acting on the three coordinate planes can be represented as:

t(x1) = o11X1 + 021X + 031X3 (2.3)
t(x2) = 012X + 029X2 + 039X3 (2.4)
t(x3) = 013X + 023X2 + 033X3 (2.5)

The components o;; of these tractions are called stress components. Thus, stress is a
tensor, being the set of components of tractions acting on the various surfaces. o;; is
the ith component of traction acting on the jth plane.

We can use the stress tensor to calculate the traction on an arbitrarily oriented

surface with unit normal n:

t=o0-n, (2.6)
or
ti = oymy, (2.7)
which is known as Cauchy’s formula.
The stress tensor is symmetric
Oij = Oji, (28)

therefore, there are only 6 independent terms. The diagonal components (i = j) of
the stress tensor are called normal stresses, and the off-diagonal components (i # j)

are called the shear stresses.
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2.1.2 Strain

Strain is a geometric quantity that describes a change in size or shape. With
strain, we have deformation or distortion of a medium, whether it is fluid or solid.

We can describe the deformation or distortion of a continuum with a vector dis-
placement field u. The displacement gives the vector motion of each point in the
body. It is important to note that the displacement can vary with position.

For infinitesimal strain, the components of strain ¢;;, defined in terms of displace-
ment, are:

1
€ij = §(Ui,j + uj). (2.9)

Like the stress tensor, the strain tensor is symmetric
eij = eji; (210)

and so has six independent terms too. The diagonal strain terms (i = j), called
normal strains, describe relative changes in length. The off-diagonal terms (i # j),
called shear strains, describe a change in angle.

The trace (sum of the diagonal components) of the strain tensor is volumetric

strain 6, which is sometimes called the dilatation. It is given by

8ui o

2.2 Constitutive relation

The connection between stress and strain is called the constitutive relation or the
stress-strain relation. For infinitesimal strain, the relation is given by Hooke’s law,
which states that the stress is linearly proportional to the strain. We now present the

relations in an acoustic medium or fluid, and an elastic medium or solid.

2.2.1 Acoustic medium

In an acoustic medium or a fluid when viscous effects are assumed negligible,
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the shear stresses are zero and normal stresses equal to the pressure p acting on the
medium. Thus we have:
0y = —pdij, (2.12)

or:
o= —pl, (2.13)

where I is the 3 x 3 identity matrix.

The pressure p causes a volumetric strain or dilatation 6 defined by equation
(2.11). The pressure and the accompanying dilatation are linearly related through
the bulk modulus K:

p=—K0, (2.14)

which expresses the generalized Hooke’s law for a fluid. This constitutive relation is

normally valid for small pressures and deformations (6 < 1).

2.2.2 Elastic medium

In an elastic medium or a solid, both normal and shear stresses can be non-zero.
For small elastic deformations (¢;; < 1), the generalized form of Hooke’s law states
that each component of the stress tensor is a linear combination of all components of
the strain tensor:

045 = Cijki€kl, (2-15)

where c;jx;, called elastic stiffnesses, form a fourth-order tensor with 81 components.
However, not all 81 components are independent. The symmetry of the stress tensor

(2.8) and strain tensor (2.10) implies that
Cijkl = Cjikl = Cijik = Cjilk, (2-16)

reducing the number of independent constants to 36. Also the existence of a unique

strain energy potential requires that

Cijkl = Cklij, (2-17)
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further reducing the number of elastic constants to 21. Thus, the most general stiffness
tensor for an elastic medium contains 21 independent parameters.

Alternatively, the strains may be expressed as a linear combination of the stresses
by the expression

€ij = SijkiOki- (2.18)

In this case, s;;i; are elements of the elastic compliance tensor, which has the same
symmetry as the corresponding stiffness tensor. The compliance and stiffness are

tensor inverses denoted by

CijklSkimn = Iz'jmn

1

It is a standard practice in elasticity to use an abbreviated notation for the stress,
strain and stiffness tensors, for doing so simplifies some of the key equations (Auld,
1973). In this abbreviated notation, the stresses and strains are written as six-element

column vectors rather than as nine-element square matrices:

01 =011 €1 = €11
02 = 022 €2 = €22
03 = 033 €3 = €33
, (2.20)
04 = 023 €4 = 2€93
05 = 013 €5 = 2€13
O = 012 €6 = 2€12

Note the factor of 2 in the definitions of strains.
The four subscripts of the stiffness tensor are reduced to two. Each pair of indexes

ij(kl) is replaced by one index I(J) using the following convention:
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(kD) I(J)

11 1
22 2
33 3 (2.21)
23,32 4
13,31 5
12,21 6
The relation, therefore, is:
CrJ = Cijkl, (IaJ: 1,25"' 56)a (222)
and
SIJ:SijklNa (I,J: 1,2,"' ,6), (223)
where
1for I and J=1,2,3
N=2< 2forIorJ=4,506
4 for I and J =4,5,6
Then, the constitutive relation (2.15) and (2.18) can be rewritten as
or = Crj€y, (I,J:1,2,,6) (224)
and
€r = 81507, (I,J:1,2,,6) (225)

respectively. c¢y; and sy;y form 6 x 6 stiffness matrix C and compliance matrix S,
respectively.

The stiffness matrix C is widely used to display the elastic constants. The max-
imum number of elastic constants is 21, which is required by a general anisotropic
body. This number is considerably reduced for media with various symmetries. The

non-zero constants of the more symmetric models used in this thesis are given below.



2.3 Wave equations 15
Isotropic-2 independent constants:
A+2u A A 0 0 0
A A+ 2p A 0 0 0
A A A4+2u 0 0 0
C= K , (2.26)
0 0 0 uw 00
0 0 0 u O
0 0 0 0 u
where \ and p are Lamé constants.
Transversely isotropic-5 independent constants:
[ ci1 ci2 c3 0 0 0 ]
ci2 ci1 ci3 0 0 0
0 0 0
c_ | @3 G3 Cs ’ (2.27)
0 Cq4 0 0
0 0 Cq4 0
0 0 0 0 0 Ce6

with Ci2 = C11 — 2666-

2.3 Wave equations

In the previous sections, we have reviewed the concepts of stress and strain, and

the relation between them. We now introduce the equation of motion which is valid

for any continuum—{fluid or solid. Combining this equation with the constitutive

relations, we then derive acoustic and elastic wave equations.

2.3.1 Equation of motion

Consider a particle of arbitrary shape, with volume 6V and surface area §S. The

forces associated with its acceleration are a body force 0V and traction forces t(n)dsS.
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Newton’s Law then states that

0%u
tm)dS+ [ £dv = | pZ2av, (2.28)
58 5V sy Ot

where p is the density of the medium.

Applying (2.6) and the divergence theorem to the surface integral in (2.28) gives:

/ t(n)dS = a’-ndS:/ V-odV. (2.29)
ss ss %

Using this equation, (2.28) becomes:

0%u
/ V-ornav={[ p22av, (2.30)
5V sy Ot

If the particle volume is sufficiently small, the integrands of the volume integrals

in (2.30) are essentially constant, hence

0’u

This is the equation of motion which is valid for any continuum-—fluid or solid. It

also can be written as:
Bzui . 8015
P o = g,

+ fi- (2.32)

2.3.2 Acoustic wave equation
Acoustic waves are pressure waves in a fluid. Substituting for the stress tensor

(2.13) in the equation of motion (2.31) and set body force f equal to zero, we obtain:

ov 1
— = —-Vp. 2.33
5 pr (2.33)

where v is the particle velocity.
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The constitutive relation (2.14) can be rewritten as:

Op

Replacing the bulk modulus K by the acoustic velocity ¢ and the fluid density p
according to K = pc?, equation (2.34) becomes:
Op 9
— =—pc°V - v. 2.35
5 = P (2.35)
Taking the divergence of equation (2.33), differentiating equation (2.35) with re-
spect to ¢, and subtracting to eliminate v, we get one single partial differential equa-
tion: 52
1 0p 1
——=—= —V-(-Vp) =0. 2.36
PR (p p) (2.36)
This is the 3-D acoustic wave equation for small amplitude waves in a fluid with
spatial variations in both density and wave velocity.

For a medium with constant density, equation (2.36) is reduced to:
—— —V*’ =0, (2.37)
c

which is the familiar wave equation for acoustic waves in a constant density medium.

2.3.3 Elastic wave equation

Elastic waves propagate in a solid. Different forms of the elastic wave equation
can be obtained by combining the equation of motion and the constitutive relation.

To clearly demonstrate this, we consider an isotropic elastic medium.

Navier wave equation

Setting f; equal to zero, the equation of motion (2.32) becomes:

2
0 U; _ 6025

8t2 B &L'j ’

p (2.38)
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With the stiffness matrix (2.26), the constitutive relation for an isotropic elastic
medium can be written as:
045 = )\0513 + 2/,L€Z'j, (239)

where 6 is the dilatation (2.11).
Using (2.9) and (2.10), equation (2.39) becomes:
8u,~ 8uj

Oij ]+/’l’(ax]+axz

). (2.40)

Using this to substitute the stress in the equation of motion (2.38), we get the elastic

wave equation involving only displacement

82 U;

P50 + puV3u;, (2.41)

00

which is called the Navier wave equation. The FD algorithm solution of this second

order system of equations is on a single grid.

Velocity-stress wave equation

Using particle velocity rather than displacement, the equation of motion (2.38)

becomes 5 5
U; 7]
— = 2.42
and the constitutive relation (2.40) becomes
80ij 6vk 8’()Z' ov;
= \— ). 2.43
TR TR Fo (2.43)
These two equations generate a coupled system
v _ 99y
ot Ox;’
aO'ij _ )\aQJ)k + (aUZ + 8vj) (244)
ot~ 0wy Moz, " 9z

which is called the velocity-stress wave equation. This first order system of equations

can be solved by staggered grid FD algorithms in both space and time domains
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(Virieux, 1984, 1986; Levander, 1988; Graves, 1996).

Displacement-stress wave equation
The coupled displacement-stress wave equation can be easily obtained by combin-

ing the equation of motion (2.38) with the constitutive relation (2.40):

2
0 U; . 6az~j

p - )
ot? 0x;

o A%i Qv 0, (2.45)
Yo 8£Ck a an &EZ '

Solving this system by FD method involves a staggered grid scheme only in space. In
this system, the differencing formula for stress can be plugged into the differencing
formula for displacement to yield a formula in terms of displacement only (Luo and
Schuster, 1990). Thus, this system requires less computer memory than the velocity-

stress system by storing only displacement components, not stress components.



Chapter 3

Efficient FD techniques

To efficiently model wave propagation in multi-scale heterogeneous media, we
developed an optimized variable grid FD scheme to approximate the first spatial
derivatives in wave equations, and developed a variable timestep FD scheme for time
marching. The use of the variable grid and timestep FD techniques results in great
savings in both computer memory and CPU time. In this chapter, we present these

techniques and their accuracy and efficiency in detail.

3.1 Introduction

Conventional FD methods use a constant grid and timestep throughout the entire
domain for seismic modeling. While the constant grid and timestep FD schemes are
easy to implement (Kelly et al., 1976; Virieux, 1984, 1986; Levander; 1988; Graves,
1996), they lead to intensive computational cost for geological models with multi-scale
heterogeneities (e.g. Figure 1.1). To resolve small-scale features such as boreholes
or/and fractures which are often 2 or 3 orders smaller than the typical seismic wave-
length in the medium, a very fine grid spacing is required. Using the fine grid spacing
throughout the entire domain requires too much memory and CPU time thereafter
for simulation on most computers.

Variable grid FD methods can overcome this problem by allowing fine grid spac-

ing for zones with small-scale features and coarse grid spacing for zones with large

20



3.1 Introduction 21

structures. However, most variable grid FD schemes developed so far are based on
the Taylor series expansion (Moczo, 1989; Jastram and Behle, 1991; Jastram and
Tessmer, 1994; Falk et al., 1996; Pitarka, 1999) which may suffer unacceptable dis-
persion.

We derived an optimized variable grid FD scheme based on the idea of the DRP
(dispersion-relation-preserving) scheme proposed by Tam and Webb (1993). The
philosophy of the DRP method is to optimize the coefficients of the FD scheme by
matching the effective wave number and the actual wave number over a wide range
of wave numbers. The optimized variable grid FD scheme has less dispersion errors
than the Taylor variable grid FD scheme (Pitarka, 1999); therefore it can lead to
either more accurate results or more efficient computations.

The use of variable grid spacing considerably reduces the computer memory re-
quirements and CPU time thereafter for seismic modeling in multi-scale heterogeneous
media. However, if a constant timestep is used throughout the entire domain, the
simulation is still time consuming. This is due to a very small timestep required by
the finest grid spacing in the model to satisfy the FD stability condition. The global
use of the small timestep yields temporal oversampling for coarser grids; thus CPU
time is wasted.

To further reduce the CPU time in the simulation, we developed a spatially vari-
able timestep FD scheme for a spatial staggered grid based on the method introduced
by Tessmer (2000) for a spatial non-staggered grid. A spatial staggered grid is crucial
for handling solid-liquid interfaces present in most applications in this thesis (e.g.
fracture and borehole modeling in the following chapters). This variable timestep FD
scheme is more flexible than the scheme proposed by Falk et al. (1998), because it
can handle any integer timestep ratios between two different domains. The use of
this variable timestep scheme with the variable grid scheme results in great savings
in CPU time.

The following sections present the developed efficient FD techniques and their

accuracy and efficiency in detail.
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3.2 Efficient FD techniques

3.2.1 Optimized variable grid FD method

The optimized variable grid FD scheme we developed is based on the idea of the
DRP scheme (Tam and Webb, 1993). The idea in the DRP scheme is to optimize
the coefficients of the FD operator by minimizing the difference between the effective
wave number and the actual wave number over a wide range of wave numbers.

We derived an optimized fourth-order variable grid FD operator on a staggered
grid mesh to approximate the first spatial derivatives in wave equations. To illustrate
the problem, the 1-D displacement-pressure wave equation is considered (because
spatial derivatives with respect to x, y and z are decoupled, the 1-D wave equation

illustration will not lose generality):

ou_op

Poet = an (3.1)
_ i

p_ ax’

where p and u are pressure and displacement, respectively; p is density and K is bulk
modulus.

Discretizing equation (3.1) in space by a staggered grid FD mesh with variable
grid spacing yields the scheme shown in Figure 3.1. Suppose that the field variable g
represents displacement u or pressure p. The approximation of the first-order spatial
derivative dg/0z by a fourth-order FD operator on a variable grid of spacing dx; is

given by

dg(z)
o0x

~cig(x+ Ar) + cog(x — Ag) + c3g(x + Az) + cag(z — Ay), (3.2)

where ¢; are the four coefficients to be determined. Spatial increments A; can be
expressed in terms of the variable grid spacing dz; (Figure 3.2).

After Fourier transform of equation (3.2), the effective numerical wave number of
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(a)

o—i o i1 o 1 i o [ ]
. . . . ] B u
1-2 1-1 1 1+1 1+2
b
( ) dXi—Z dXi-l dXi dXi+l
@ @ @ @ ®

Figure 3.1: 1-D staggered grid mesh with variable grid spacing: (a) unit cells; (b) the
variable grid spacing.

the FD scheme can be calculated by
k, = —z'(cleim1 + coe FR2 o cyethBs cw’im‘l). (3.3)

For the optimized FD scheme, ¢; in equation (3.3) are chosen so that the effective
wave number £, is close to the actual wave number £ for a wide range of wave numbers.
To determine the coefficients ¢;, we impose the condition that equation (3.2) is

accurate to the third-order of A; through the Taylor series expansion:

c1+c+tce3+cy :0,
ClAl — CQAQ -+ 03A3 — C4A4 = 1, (34)
ClA% + CQA% + 03A§ + C4AZ =0.

This leaves one of the coefficients, e.g., ¢, as a free parameter. This parameter is

then chosen to minimize the integrated error E, defined as

E= )\/n(k ~ Re(ko))2dk + (1— ) /n(Im(ke))Q dk, (3.5)

where 7 is a predetermined number that gives the optimized range of wave numbers.
A is a weighting coefficient which is used to balance the L, norm of the truncation
errors of the approximation of the real and imaginary parts of the effective numerical

wave number to the actual wave number. The necessary condition used to minimize
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Figure 3.2: Grid nodes with variable spacing. Spatial increments A; (i = 1, 4) are used to
calculate the FD operator centered between (a) the nodes i and i+1 and (b) that centered
at the node 1.
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From equation (3.6), we can get ¢; analytically. Then ¢y, c3, and ¢4 can be obtained

0. (3.6)

from equation (3.4). Thus, we get the four coefficients of the optimized fourth-order
variable grid FD operator.

To show the advantages of this optimized variable grid FD operator over the same
order variable grid FD operator based on the Taylor series expansion (Pitarka, 1999),
we compare their spectral properties for different variable grid meshes.

Figure 3.3 shows the relation between Re(k.)dZmin and kdz,,;, of both schemes
for the stencil in Figure 3.2(a) with the spacing ratio (r) between the coarse grid size
and the fine grid size of 1, 3 and 6. The closer the curves are to the exact relation
Re(ke)dTmin = kdZpn, the smaller the dispersions.

Figure 3.3 demonstrates that the optimized FD scheme has less dispersion errors

than the FD scheme based on the Taylor series expansion with the same mesh. In fact,
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the spectral resolution property of the optimized FD scheme with the grid spacing
ratio of 6 is much better than that of the Taylor variable grid FD scheme of the same
stencil and is even close to that of the Taylor regular grid FD scheme (spacing ratio
of 1). This means that the optimized variable grid FD scheme with large spacing
ratios between two grid size domains can give the same accurate results as the Taylor
variable grid FD scheme with small spacing ratios. Therefore, the optimized variable
grid F'D technique can lead to either more accurate results with the same grid points or
more efficient computations with the less grid points compared to the Taylor variable
grid FD method.

3t — J
— exact : : :
—— Optimized r=1 | Retkdx, =kdx 3
— - Taylor r=1 j j j j
25} | — Optimizedr=3|-:-.. ... \ S -
— - Taylorr=3 ‘ ‘ ‘ o
Optimized r=6 | - ; = |
Taylor r=6 j j = =
ot — — . L ) 2P I
E : Z Z
‘ 7. .
3 Ny
S T~ 7 ]
% 1.5 /
o 72
1 ............................................
05b - / ‘‘‘‘‘ T R e T =
/ : : : : : :
/ : ‘
/
O / 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
kdx
min

Figure 3.3: Re(ke)dZpmin versus kdx,, of the optimized and Taylor variable grid FD
schemes for the stencil in Figure 3.2(a). r represents the ratio of the coarse grid spacing
to the fine grid spacing. The exact relation is Re(ke)dZmin = kdZmin.-
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3.2.2 Variable timestep FD method

The variable timestep FD method we developed is based on the staggered grid
FD scheme for the displacement-stress wave equation (2.45). To clearly illustrate the

method, we consider the 1-D case.

Solution of wave equation

Equation (3.1) is the 1-D displacement-pressure wave equation. After discretiza-
tion in time, we replace the temporal derivative in equation (3.1) by the second-order
central FD operator. For a timestep of At, the solution of this system of equations

can be written as:

At 2 n
un+1 — _unfl + 2u™ + ( ) aap ’
L aun—l—l P u (37)
n-+ — K
P ox

where the superscripts refer to the time index.

The time stepping defined by equation (3.7) is done iteratively from one time level
to the next. At time level ¢ = nAt, the algorithm is: (1) update displacement u at the
following time level (n + 1)At using the values of u at the present and previous time
levels nAt and (n — 1)At plus the spatial derivative Op/0x at the present time level
nAt; (2) update pressure p at time level (n+ 1)At using the spatial derivative du/dz
at the same time level (n + 1)At¢. The spatial derivatives (Op/0z and du/0x) are
calculated by the fourth-order staggered grid FD operator developed in the previous

section.

Variable timestep FD scheme

Based on equation (3.7), we developed a spatially variable timestep FD scheme
which can handle any integer ratios of timesteps used in two spatial domains. I use
an example to illustrate the method.

Figure 3.4 shows two different timesteps used in two domains of a 1-D spatial
staggered grid. A large timestep of 3At¢ is used in Domain 1 and a small timestep

of At is used in Domain 2. The ratio of the large timestep to the small timestep is
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3. The dashed black line represents the boundary separating the two domains with

different timesteps.

Domain 1 Domain 2
l—»space !
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Figure 3.4: Time stepping scheme with spatially variable timesteps for a 1-D spatial
staggered grid. The timestep of 3A¢ used in Domain 1 (left) is three times greater than
the timestep of At used in Domain 2 (right). Symbols with yellow and red colors represent
intermediate wavefield values in the transition zone (blue shaded area).

When time stepping with different timesteps in two spatial domains is performed,
difficulties are encountered for the calculation of the spatial derivatives by the fourth-
order FD operator on or around the boundary between the two domains. A spatial
derivative at a grid point is calculated from the wavefield values at four grid points
symmetrically around it (see Figure 3.4). However, due to the change of timesteps,
the wavefield values required by the spatial derivatives on or around the domain
boundary do not exist at certain time levels. For example, to calculate the spatial
derivative Ou/0z on the boundary at time levels of (n+1)At and (n+ 2)At, we need
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wavefield values of u beyond the boundary at the same time levels (Figure 3.4). Thus,
the critical issue for a variable timestep FD scheme is how to provide the wavefield
values within a transition zone (blue shaded area in Figure 3.4).

We calculate the wavefield values within the transition zone at intermediate time
levels by the same time stepping scheme (equation (3.7)) used in the computational
domain but with different timesteps. For example, we update the displacements in
the transition zone at time levels of (n + 1)At and (n + 2)At (yellow and red squares
in Figure 3.4) with timesteps of At and 2At, respectively. The advantage of this
multiple time stepping method is that the calculated wavefield values within the
transition zone have the same order accuracy as those in the computational domain.

Therefore, our variable timestep FD scheme uses the same time stepping formula
(equation (3.7)) throughout the entire model. The only difference is that the timesteps
used in different domains and transition zones are different.

Now we start at time level nAt to demonstrate the procedure of time stepping for
the variable timestep FD scheme shown in Figure 3.4:

(1) Update the displacement in Domain 1 (large timestep domain) at time level
(n+ 3)At from the displacement at time levels nAt and (n — 3)At, and the pressure
at time level nAt.

(2) Calculate the displacement in the transition zone at intermediate time levels
(yellow and red squares). This is done by updating the displacement at (n + 1)At
and (n + 2)At with timesteps of At and 2At, using time levels nAt and (n — 1)At
and time levels nAt and (n — 2)At, respectively. These wavefield values are needed
for the time stepping in Domain 2 (small timestep domain).

(3) Perform time stepping in Domain 2 with the small timestep of At until time
level (n + 3)At is reached. At each timestep, we first update the displacement at the
following time level in Domain 2; we then update the pressure in both the transition
zone and Domain 2 to the same time level.

(4) Update the pressure in Domain 1 at time level (n+3)At from the displacement
at the same time level. This calculation needs the displacement values in Domain 2.

After steps (1)-(4), we get all wavefield values (both displacement and pressure)
at time level (n + 3)At. Repeat steps (1)-(4) after incrementing the timestep of 3At.
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While the timestep ratio between the large timestep and the small timestep of
3 is used in the example, this variable timestep FD scheme can handle any integer
timestep ratios between different domains. Also, the width of the transition zone,
which is determined by the length of the spatial FD operator, is independent of the
timestep ratios. The constant width of the transition zone is very narrow (e.g. four
grid points for the fourth-order spatial staggered grid scheme); thus the computer
memory and CPU time required by the intermediate wavefield values within the

transition zone are negligible.

3.3 Accuracy and efficiency

To test the accuracy and efficiency of the developed techniques, we compare the
numerical results and the computational costs of the variable grid, and the variable
grid and timestep FD methods with those of the constant grid and timestep FD
method.

The simulations are performed for a 108 m x 108 m 2-D homogeneous model
with the physical properties of V,=3000 m/s, V;=1732 m/s, p=2100 kg/m3. Figure
3.5 shows the grid spacing and timesteps used for the simulations by the constant
grid and timestep FD method (Figure 3.5a), the variable grid FD method (Figure
3.5b), and the variable grid and timestep FD method (Figure 3.5¢). The two dashed
lines (at x=40.5 m and x=67.5 m, respectively) in Figure 3.5b and 3.5¢ represent
the artificial boundaries at the change of grid spacing and the change of both grid
spacing and timesteps. The ratio of the coarse grid spacing to the fine grid spacing
is 3 in both Figure 3.5b and 3.5c. The timestep ratio of the large timestep to the
small timestep in Figure 3.5¢ is 3. An explosive source S(54 m, 54 m), which has a
Ricker pulse with central frequency of 500 Hz, is used for the three simulations. Two
receivers R;(41.4 m, 51.84 m) and Ry(39.69 m, 51.84 m) are placed on each side of the
artificial boundary at x=40.5 m (see Figure 3.5b and 3.5¢) to measure the reflections
and transmissions, respectively.

Figure 3.6 shows the wavefield snapshots of the horizontal displacement compo-

nent at 15 ms of the simulations by the constant grid and timestep FD method (left
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column panel), the variable grid FD method (middle column panel), and the variable
grid and timestep FD method (right column panel). For each column panel, the snap-
shots from the top to the bottom are the same results but displayed with different
ranges of the amplitude. On the top, the amplitude range is from -100 to 100, taken
to be 100 %; in the middle, the range is from -1 to 1 which is 1 %; and on the bottom,
it is from -0.1 to 0.1 which is 0.1 %. Comparison of these snapshots shows that the
effects caused by the change of grid spacing (middle panel) and the change of both
grid spacing and timesteps (right panel) are less than 0.1 %.

The comparison of the wavefield snapshots of the vertical displacement component
at 15 ms of the three simulations is shown in Figure 3.7. We can see that the artificial
effects caused by the change of grid spacing, and the change of both grid spacing and
timesteps are less than 0.1 %, too.

Figure 3.8 and 3.9 present the comparisons of the seismograms of the horizontal
and vertical displacements (Uy and U,) computed by the constant grid and timestep,
the variable grid, and the variable grid and timestep FD methods at receiver R; and
Rg, respectively. The fit among the results of the three simulations is excellent. We
then calculate the corresponding differences due to the change of the grid spacing,
and the change of both grid spacing and timesteps at R; and Ry, which are shown in
Figure 3.10 and 3.11, respectively. We can see that the artificial reflections observed
at R; and the artificial transmissions observed at Ro are all less than 0.1 %. These
results quantitatively demonstrate the high accuracy of the developed variable grid
and variable timestep FD techniques.

The simulations were carried out on a 1.4 GHz Athlon computer with 1 GB DDR
RAM. The memory and CPU time required by the three methods are listed in Table
3.1 for comparison.

Compared to the oversampled constant grid and timestep FD method, the vari-
able grid FD method saves 43 % memory and 54 % CPU time, and the variable grid
and timestep FD method saves 42 % memory and 71 % CPU time with comparable
accuracy. Compared to the variable grid FD method, the variable grid and timestep
FD method further reduces CPU time of 17 % with almost the same memory require-

ment. The comparison shows that the use of the variable grid and variable timestep
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FD techniques greatly saves both memory requirements and CPU time.
The efficiency of the developed techniques depends on the simulation model. For
more realistic multi-scale problems, such as borehole seismic modeling in the following

chapters, higher efficiency can be achieved.

Const. dx and dt | Varied dx and Const. dt | Varied dx and dt
nxxnz=1201x401 nxxnz=601x401 nxxnz=601x401
dt=.008 ms dt=.008 ms dt=.008/.024 ms
nt=3000 nt=3000 nt=3000/1000
Memory (Mb) 20 11.5 (save 43 % ) 11.6 (save 42 % )
CPU (min) 24 11 (save 54 % ) 7 (save 71 %)

Table 3.1: Computer memory and CPU time required by the simulations of the con-
stant grid and timestep, variable grid, and variable grid and timestep FD methods for a
homogeneous model.

3.4 Conclusions

In this chapter, we presented a new variable grid and timestep FD method for
efficient seismic modeling in multi-scale heterogeneous media.

The developed optimized variable grid FD scheme has less dispersion errors than
the variable grid FD scheme based on the Taylor series expansion; therefore it can
lead to either more accurate results or more efficient computations.

The developed variable timestep FD scheme for a spatial staggered grid has a
narrow constant width of the transition zone for any integer timestep ratios between
different domains; thus the computer memory and CPU time required by the inter-
mediate wavefield values within the transition zone are negligible.

Numerical examples show the high accuracy and efficiency of the variable grid
and variable timestep FD techniques. Applications of these techniques for seismic

modeling in multi-scale heterogeneous media are presented in the following chapters.
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Figure 3.5: Grid spacing and timesteps for the same homogeneous model used for the
simulations of the constant grid and timestep FD method (a), the variable grid FD method
(b), and the variable grid and timestep FD method (c). The dashed lines in (b) represent
the artificial boundaries at the change of grid spacing, and the dashed lines in (c) represent
the artificial boundaries at the change of both grid spacing and timesteps.
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Figure 3.6: Comparison of the horizontal displacement snapshots at 15 ms of the simula-
tions by the constant grid and timestep FD method (left column panel), the variable grid
FD method (middle column panel), and the variable grid and timestep FD method (right
column panel). For each column panel, the snapshots from the top to the bottom are the
same results but displayed with different ranges of the amplitude. Dashed lines represent
the artificial boundaries at the change of grid spacing (middle panel) and the change of
both grid spacing and timesteps (right panel).
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Figure 3.7: Comparison of the vertical displacement snapshots at 15 ms of the simulations
by the constant grid and timestep FD method (left column panel), the variable grid FD
method (middle column panel), and the variable grid and timestep FD method (right
column panel). For each column panel, the snapshots from the top to the bottom are the
same results but displayed with different ranges of the amplitude. Dashed lines represent
the artificial boundaries at the change of grid spacing (middle panel) and the change of
both grid spacing and timesteps (right panel).
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Figure 3.8: Comparison of seismograms of the horizontal and vertical displacements (U,
and U,) at receiver R; of the simulations by the constant grid and timestep, the variable

grid, and the variable grid and timestep FD methods.
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Figure 3.9: Comparison of seismograms of the horizontal and vertical displacements (U,
and U,) at receiver Ry of the simulations by the constant grid and timestep, the variable

grid, and the variable grid and timestep FD methods.
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Figure 3.10: The differences of the horizontal and vertical displacements (U, and U,)
caused by the change of grid spacing, and the change of grid spacing and timestep at

receiver R;.
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Figure 3.11: The differences of the horizontal and vertical displacements (U, and U,)
caused by the change of grid spacing, and the change of grid spacing and timestep at

receiver Rs.



Chapter 4
Parallel computing

To efficiently solve large realistic problems, such as borehole seismic field data
modeling, we have implemented the parallel 2-D/3-D variable grid FD algorithms for
computing on a “Linux Beowulf” cluster. In this chapter, we use the 3-D case to
illustrate the parallel implementation. The accuracy and the performance of the 3-D

parallel algorithm are tested by numerical examples.

4.1 Introduction

The developed variable grid and variable timestep FD techniques described in
chapter 3 make modeling of wave propagation in multi-scale heterogeneous media
feasible. However, for real problems with large size, e.g. cross-well field data mod-
eling with the survey geometry (see chapter 7), simulations are still computationally
intensive. It is very difficult or impossible to perform such realistic-sized modeling on
a single-processor machine except for the large and expensive SMP (Share Memory
Processor). Since low-cost networked PC clusters (Beowulf clusters) are now widely
available and FD algorithms are well suited for distributed parallelization, it is de-
sirable to develop a parallel version of the algorithm for efficient solution of large
problems.

There have been several parallel implementations of FD seismic modeling algo-

rithms on memory distributed computers. Ewing et al. (1994) for example, showed

37



4.2 Beowulf cluster and MPI 38

results of a PVM (Parallel Virtual Machine) implementation of 2-D acoustic and elas-
tic FD seismic modeling in a homogeneous dedicated cluster of IBM RS/6000 comput-
ers. Villarreal and Scales (1997) presented a distributed 3-D FD acoustic modeling
algorithm using the PVM message-passing library, and showed the performance of
the algorithm on two different distributed memory architectures, the IBM SP2 and
a network of low-cost PCs running the Linux operating system. Xu and McMechan
(1998) performed distributed 3-D viscoelastic modeling on an Intel ipsc860.

In this work, we have developed parallel 2-D/3-D variable grid FD elastic mod-
eling codes for more efficient computations of large problems on a “Linux Beowulf”
cluster. The parallelization strategy is spatial domain decomposition. We divide a
2-D/3-D full computational grid into subdomains and assign these subdomains to sep-
arate processors. Wavefield calculations within each subdomain/processor take place
concurrently. Interprocessor data communication uses the MPI (Message Passing
Interface) library. Here, we only present the 3-D implementation since the 2-D imple-
mentation is just a simpler case of the 3-D in both domain decomposition and data
communication. We use numerical examples to show the accuracy and performance

of the 3-D parallel algorithm.

4.2 Beowulf cluster and MPI

4.2.1 Beowulf cluster

Cluster is a widely-used term meaning independent computers combined into a
unified system through software and networking. At the most fundamental level,
when two or more computers are used together to solve a problem, it is considered
a cluster. Clusters are typically used for high performance computing to provide
greater computational power than a single computer can provide.

Beowulf cluster is scalable performance cluster built primarily out of commodity
hardware, running a free-software operating system like Linux or FreeBSD, intercon-
nected by a private system network. The designer can improve performance propor-

tionally with added machines. The commodity hardware can be any of a number
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of mass-market, stand-alone compute nodes as simple as two networked computers
each running Linux and sharing a file system or as complex as 1024 nodes with a
high-speed, low-latency network.

Recently, Beowulf clusters have become increasingly popular because they provide
a very cost-effective parallel computing environment. A 16 node “Linux Beowulf”
PC cluster has been built in the Geophysics Department at Stanford University (see
Figure 4.1). Each PC in the cluster has one 1.4/1.6 GHz Athlon processor and 1 GB
DDR RAM. The 16 PCs are connected via a 100 Mbps switch. We use this cluster
to test the parallel implementation of the variable grid FD algorithm.

Figure 4.1: A 16-node Beowulf PC cluster built in the Geophysics Department at Stanford
University.

4.2.2 MPI (Message Passing Interface)

Message passing is the most widely used parallel programming model for dis-
tributed memory computers. In this model, a parallel program is executed by mul-
tiprocessors concurrently, and each processor can access its own data as well as the

data in other processors by sending/receiving messages (Figure 4.2).



4.3 Method

MPI is a library specification for message passing. It is becoming the new in-
ternational standard for parallel programming and is replacing others, such as PVM
(Parallel Virtual Machine). MPI was designed for high performance on both massively
parallel machines and on workstation clusters and it provides source-code portabil-
ity of message passing programs across a variety of architectures. The MPI library
operates in FORTRAN, C or C++ languages. We use the message passing library
MPICH (Gropp et al., 1996), a portable free implementation of MPI under different
UNIX OS’s (including Linux) and Windows NT. It has support for MPI standards

version 1.0 and 2.0.

Procl

Figure 4.2: Schematic illustration of message passing between two processors (processor

1 and processor 2).

4.3 Method

message

(send/receive)

4.3.1 Sequential algorithm

The sequential algorithm for 3-D variable grid FD modeling of wave propagation

is as follows:
BEGIN

Proc2

-Setup data structures, variables and constants.

-Read velocity, density, and variable grid spacing.

FOR every timestep DO
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FOR every grid point DO
-calculate the wavefield.
END
END
END

4.3.2 Parallel implementation
1. Domain decomposition

The parallel implementation of the variable grid FD seismic modeling algorithm
is based on domain decomposition. Domain decomposition involves assigning sub-
domains of the full computational grid to different processors and calculating the
wavefield in each subdomain/processor concurrently.

In our implementation, a 3-D computational grid can be partitioned in one, two,
or three dimensions. Further, there is no requirement that the number of processors
in any one direction must evenly divide the number of grid points. Divisions with re-
mainders are allowed and are transparent to the user. A typical 1-D decomposition is
illustrated in Figure 4.3, a 2-D decomposition in Figure 4.4, and a 3-D decomposition

in Figure 4.5.

X

Figure 4.3: 1-D domain decomposition (in the x direction) for parallel computing.
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X

Figure 4.4: 2-D domain decomposition (in the x and y directions) for parallel computing.

X

Figure 4.5: 3-D domain decomposition for parallel computing.

Choosing 1-D, 2-D, or 3-D decomposition depends on the number of available
processors and the problem size. A proper domain decomposition should equalize
load balance and minimize communication time. In a homogeneous multiprocessor
environment, the load balancing is assured if all the subdomains are of the same
size. Communication is minimized by minimizing the perimeters of the subdomain

boundaries.

2. Interprocessor communication

The partitioning of the full computational grid introduces artificial boundaries

which are the borders of each subdomain. To calculate the spatial derivatives of
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Figure 4.6: Schematic illustration of a subdomain after addition of ghost layers (dashed
lines).

wavefield values at a border of a subdomain using a FD operator, wavefield informa-
tion in the adjacent subdomain is required. This information can be obtained through
interprocessor communication.

For the interprocessor communication, padding layers (ghost layers) to each sub-
domain have to be introduced. (see Figure 4.6 for an illustration of a subdomain after
addition of ghost layers). Wavefield information in a subdomain is transferred from
the subdomain to the ghost layers of a adjacent subdomain. Figure 4.7 schematically
illustrates how this works between two adjacent processors with 2-D view. Every
processor sends and receives information to and from its all neighboring processors
(up, down, left, right, front, back). The thickness of the padding layer is generally
half of the length of the spatial FD operator. For the fourth-order FD scheme we
used, the thickness is two grid points. Therefore, two extra planes of memory need

to be allocated on each face of a subdomain cube.
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The interprocessor communication for data exchange has to be performed at each
timestep. The communication is a very expensive operation and long communication
time can deteriorate the parallel performance. The communication can be minimized
by minimizing the perimeters of the subdomain boundaries. Therefore we need to
balance the work load and minimize the communication during domain decomposition

of a problem.

subdomain|1/processor1

ghostlayer \ 1o

: 4 \ghostlayer
[ J
[ J

subdomain2/processor2

Figure 4.7: Schematic drawing of how ghost layers work for the communication (data
exchange) between two adjacent processors. Arrows indicate communication of updated
border components. The thickness of the ghost layers required by a fourth-order FD
operator is two grid points.

3. A basic algorithm

In summary, the parallel algorithm using the domain decomposition appears as

follows:
BEGIN
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-Setup data structures, variables and constants.
-Read velocity, density, and variable grid spacing.
-Setup the domain decomposition of the grid.
-Send each subdomain with corresponding
velocity, density and variable grid spacing.
FORALL processors simultaneously DO
FOR every timestep DO
FOR every grid point DO
-calculate the wavefield.
END
-interchange wavefield values at borders
with neighbor processors.
END
-Gather wavefield from every processor.
END
This algorithm was implemented on the 16-node “Linux Beowulf” cluster (Figure
4.1) using MPICH library.

4.4 Accuracy and performance

We use numerical examples to test the accuracy and the performance of the de-
veloped parallel 3-D FD code.

Figure 4.8 shows the model which is a two-layer 3-D model with dimension of 800
mx800 mx800 m. The interface is in the middle of the model in Z direction. The top
layer has V,, = 3000 m/s, V; = 1732 m/s, and p = 1800 kg/m?; and the bottom layer
has V, = 4000 m/s, V; = 2000 m/s, and p = 2200 kg/m®. The model is discretized
using a 3-D grid containing 201x201x201 grid points. An explosive source, located
at (400 m, 400 m, 320 m) which is in the top layer, is used to excite the model. The
source function is a Ricker wavelet with a central frequency of 50 Hz.

We performed the simulations for this model on the 16-node “Linux Beowulf”

cluster using the sequential code, and using the parallel code with 4, 8, and 15 nodes.
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Two-layer model
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Figure 4.8: A two-layer 3-D model.

To be concise, we do not show all the simulation results here. In fact, the simulation
results are identical for the sequential and all parallel runs. This approves the accuracy
of the parallel version of the code.

Figure 4.9 shows a 3-D snapshot and corresponding 2-D slices (constant x, y,
and z slices) of V, component obtained from a parallel run. The interface reflected
and transmitted P- and S-waves are clearly seen in the yz-plane (x is constant) and
the xz-plane (y is constant) slices. Since the material on xy-plane (z is constant) is
homogeneous, we only observe the direct P-wave on the z-plane slice.

Two concepts are used for the performance measurement of parallel computing:
speedup and efficiency.

Speedup is defined as the ratio of running time of sequential code to the running

time of parallel code:

S(n,p) =

(4.1)

where Ti(n) and T,(n) are the times for running a problem of size n on 1 and p
processors, respectively. Speedup is linear if S(n, p) = p (ideal speedup), is superlinear

if S(n,p) > p, and is sublinear if S(n,p) < p. Sublinear speedup is common due to
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Figure 4.9: V, component 3-D snapshots and corresponding 2-D slices of the two-layer
3-D model shown in Figure 4.8.

the presence of sequential code and overhead. Overhead includes costs of starting a
process, costs of communication, synchronizing and extra (redundant) computation.

Efficiency is defined as the ratio of speedup to the number of processors:

T1 (n)
pT,(n) ,

E(n,p) = (4.2)
which is a measure of resource utilization in a parallel program, relative to sequential
code. Efficiency is 1, greater than 1, and less than 1 for linear, superlinear, and
sublinear speedups.

To find the efficiency and speedup of our parallel 3-D FD code, the total time

elapsed for the sequential and all the parallel runs are compared (Figure 4.10).
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Figure 4.10: Running time of the simulations for model shown in Figure 4.8.

Figure 4.11 shows the speedup curve. The numbers below each point on the
speedup curve indicate the efficiency of the parallel code obtained using the number
of nodes specified in the horizontal axis. The obtained speedup and efficiency are
not very high because the parallel FD algorithm involves a lot of communication and
the Ethernet card used in the cluster is slow (100 Mbps). In fact, for this fixed-size
problem with 201x201x201 grid points, the efficiency of 0.62 for 15 nodes is very
good. With a faster Ethernet card, higher performance of the parallel algorithm can

be achieved.

4.5 Conclusions

We have developed parallel 2-D/3-D variable grid FD algorithms based on domain
decomposition using the MPI (Message Passing Interface) library. In this chapter,
3-D implementation has been illustrated. Numerical examples show the accuracy and
performance of the parallel algorithm. The 2-D parallel variable grid FD code is used

for efficiently modeling cross-well field data with the survey geometry (see chapter
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Figure 4.11: Speedup and efficiency for the simulations of the model shown in Figure 4.8.
The solid curve is the speedup curve. The numbers below each point on the solid curve
indicate the efficiency of the parallel code obtained using the corresponding number of
nodes on the horizontal axis. Dashed line is linear speedup.

7). And, the 3-D parallel code is applied for San Juan Basin 9-component VSP field
data modeling (not in this thesis).



Chapter 5

Modeling an open fluid-filled

fracture

—comparison of thin-layer and linear-slip models

Fractures can be described as thin layers or linear slip interfaces. In this chapter,
we apply our optimized variable grid FD method to directly model an open fluid-filled
fracture described by the thin-layer model and compare these results with those ob-
tained using the Coates-Schoenberg’s approach (equivalent medium theory approach)
for the linear-slip model. The purpose of this study is to determine to what extent
the thin-layer model agrees with the linear-slip model.

Numerical results show excellent agreement between the two models for the wave-
fields away from the fracture. The discrepancy between the two is the presence of a
slow wave propagating along the fracture of the thin-layer model. This study indi-
cates that the thin-layer model is required to study the fracture slow wave, although
the linear-slip model may be used to achieve accurate and more efficient modeling for

the remote seismic characterization of fractures.

5.1 Introduction

The presence of fractures critically affects the permeability of rocks and therefore

20
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the character of fluid flow in hydrocarbon reservoirs. Thus, fracture detection and
characterization is very important in hydrocarbon recovery. Seismic modeling of
fractured media is an efficient tool for investigating the possibilities of using seismic
waves to characterize the fractures.

For purposes of seismic wave propagation, fractures are often described as lin-
ear slip interfaces with displacement discontinuities (Schoenberg, 1980; Pyrak-Nolte,
1988). In the linear-slip model (LSM), it is assumed that a fracture can be represented
by an interface across which the displacements caused by a seismic wave are discon-
tinuous while the tractions remain continuous. The linear relationship between the
jump in the displacement vector and the traction vector is determined by the fracture
compliance tensor. Based on this model, Coates and Schoenberg (1995) introduced
an equivalent medium theory approach for embedding a linear slip fracture within
an anisotropic finite-difference (FD) code. In this approach, grid cells containing the
fracture interface are replaced by grid cells with equivalent anisotropic properties that
model the fracture and host compliance.

Alternatively, an open fluid-filled fracture can be represented by a thin fluid layer
following the approach of Groenenboom and Fokkema (1998). For the thin-layer
model (TLM), a fracture is directly modeled in the modeling scheme (Groenenboom
and Falk, 2000). The optimized variable grid FD method developed in chapter 3
can be used to smoothly vary the cell spacing from the far-field mesh to the vicinity
of the fracture, thus approximating the fracture directly by a number of grid points.
This variable grid approach for explicit modeling of open fluid-filled fractures requires
more cells than the Coates-Schoenberg approach. However, the use of the variable
grid around the fracture significantly reduces the number of extra cells needed to
model the fracture, compared to a constant, very fine grid.

We apply both the variable grid FD method and the Coates-Schoenberg approach
to model a single open fluid-filled fracture described by the TLM and the LSM,
respectively. The purpose of this study is to determine to what extent the TLM
agrees with the LSM. Numerical results show that the agreement between the two
models is excellent except for the existence of a slow fracture wave in the TLM.

Two computations also demonstrate that the two models require almost the same
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computer memory, but the TLM costs more CPU time. The sections that follow

present the methods and their comparison in greater detail.

5.2 Methodology

5.2.1 Variable grid FD method for the TLM

For constant grid FD methods, grid spacing, and hence the computational effort,
is determined by the smallest length scale to be modeled, usually the shortest seismic
wavelength. Explicitly modeling a fracture described by the TLM introduces a length
scale (the fracture width), which is often two or three orders of magnitude smaller
than the shortest seismic wavelength, thus greatly increasing the computational load
and restricting calculations to models of very small overall dimensions. To overcome
this problem, we apply the optimized variable grid FD scheme developed in chapter

3 to solve the 2-D velocity-stress elastic wave equation:

( p % _ OTyr | 0Ty,
s B A
P ot Oz z

o 0v,

OTux
= pY7) ,
. p A+ u)é?erAéaz
67—ZZ (% (%
5t = (A+2u) ~ +Aax
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where v, and v, are the particle velocity components; 7., 7,,, and 7,, are stress
components; p is density; A and p are the Lamé coefficients.

We use a simple FD gridding scheme to represent the x-z fracture plane. The
plane is partitioned into: (1) domains of fine grid spacing for resolving fractures,
(2) domains of coarse grid spacing constrained by the shortest wavelength, and (3)
transition regions where the grid spacing smoothly varies between these extremes
(see Figure 5.1). The smooth refinement from the coarse grid spacing to fine grid

spacing avoids the spurious reflection problems associated with sudden changes in
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Figure 5.1: Grid spacing in the vicinity of the fracture. The horizontal grid spacing
smoothly increases from 1 mm to 6 cm with a factor of 3 over a transition region of 11.7
cm wide. The vertical grid spacing is 6 cm throughout the grid.

grid spacing.

The spatial derivatives in equation (5.1) are approximated by the optimized fourth-
order variable grid FD operator (see chapter 3). Coefficients for the stretched grid
operators are pre-computed for all spatial locations. Since the mesh is only distorted
along the x- and z-axes, coefficients are invariant along grid lines, reducing the memory
required for stencil storage. The variable mesh is also staggered to increase stabil-
ity and minimize numerical dispersion. The staggered scheme is crucial for handling
solid-liquid contacts present in fractured media. Time derivatives are staggered across
the velocity and stress variables and are approximated using an explicit second-order

central difference operator.
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To minimize numerical dispersion during the computation, the spatial discretiza-

tion is chosen to satisfy the following inequality (Pitarka, 1999):

V.
h'mam < - Y
5 fmam

(5.2)

where Ap,q; is the maximum grid spacing, V,,;, is the lowest velocity in the media,
and fq is the maximum frequency of the propagating signal.

The stability condition for the 2-D fourth-order staggered grid FD scheme with
constant grid spacing h is (Levander, 1988):

At < ! h
V2(Jai| + |aa]) Vinaa
or (5.3)
At < 0.606
Vmaw ’
where a; = 9/8 and @y = —1/24 are the inner and outer coefficients of the fourth-

order approximation to the first derivative. V,,,; is the highest velocity in the media.
Through a series numerical tests, we found that the optimized variable grid FD
scheme used in this study is stable when the temporal increment At is chosen to
satisfy equation (5.3) with the minimum grid spacing in the variable grid.
In the modeling, sponge absorbing boundary conditions (Cerjan et al., 1985) are
used at the edges of the model to minimize artificial reflections at the boundaries of

the computational domain.

5.2.2 Coates-Schoenberg approach for the LSM

To incorporate a fracture described by the LSM into a FD modeling scheme,
Coates and Schoenberg (1995) introduced an equivalent anisotropic medium ap-
proach. In this approach, all FD grid cells containing a fracture are replaced by grid
cells with equivalent anisotropic properties that model the fracture and host compli-
ances (Figure 5.2). After this procedure, the standard FD modeling for anisotropic

media can be applied.
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Figure 5.2: Representation of a vertical fracture in a FD model as a single column of
anisotropic cells. The elastic constants for these cells are computed using the Coates-
Schoenberg approach described in the text.

The process for obtaining the anisotropic elastic constants for the FD cells rep-
resenting the fracture is based on a calculation of the average strain of each cell
(Schoenberg and Sayers, 1995):

1
€ = SijOn + ﬁ([ui]n]’ + [us]ni), (5.4)
where G?jkl is the compliance of the host rock, oy, is the stress, [u;] is the displace-

ment jump across the fracture (i.e., the displacement-discontinuity or crack opening
displacement), L is the length of the cell, and n; is the fracture normal vector.
For the LSM, the displacement jump [u;] and the traction oj;n; are linearly related

through the fracture compliance Z;;:

[us] = Zijojkm. (5.5)

Then equation (5.4) becomes:
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cell

_ b
ij - Sijklakl +

1
E(Ziknlnj + ijnlnz- -+ Zilnknj + ijkni)okl (56)
Sg;]illo-kl-

Here, sfj}fl are the anisotropic compliances for the cell containing the fracture.

The compliance matrix given in equation (5.6) can be inverted to give the anisotropic
elastic constants for the cell.

The variables required for the equivalent medium calculation in each FD cell are
Lamé constants A and p of the background medium, the length of the fracture L
(in two dimensions) in each cell, its orientation, and the normal and shear fracture
compliances Zy and Z7.

For a vertical fracture with its normal in the x-direction, the four independent

anisotropic elastic constants for a 2-D model in the x-z plane are (Nihei et al., 2001):

(A + 2u) (1 — 6) A(l = dn) 0
Ci'=|  A1-dv)  (+2m-ry) 0 |, (67)
0 0 (1 — o)

where

r=v/(1-v),

o = Zn(A+2p) /[L+ Zn (A +2p)],

or = Zrp/(L + Zrp),
and v, A and p are the Poisson’s ratio, Lamé constants of the background medium,
Zn and Zr are the normal and shear fracture compliances, and L is the length of the
fracture (in two dimensions) in the cell.

Equation (5.7) describes the fracture as a transversely isotropic material with a
horizontal axis of symmetry (HTT media). A fracture oriented at an angle to the FD
grid can also be modeled by applying a rotation transformation to Equation (5.7), as

described by Coates and Schoenberg (1995); this leads into a full anisotropic medium
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with six independent elastic constants in two dimensions.

After the equivalent medium properties of each cell are obtained, the standard FD
modeling for anisotropic media can be applied. The anisotropic FD code we used is
based on a constant staggered grid FD scheme with fourth-order spatial differencing

and second-order temporal differencing.

5.3 An open fluid-filled fracture model

Now, we apply both the variable grid FD method and the Coates-Schoenberg
approach to model wave propagation in a medium with an open water-filled fracture
described by the TLM and the LSM, respectively.

0
background:
5 Vp=4200m/s
Vs=2700m/s
p=2490kg/m’
10}
% S
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R R
A A
20
fracture:
Vp=1500m/s
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30 1 1 1 1 1
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Figure 5.3: A vertical fracture model.

Figure 5.3 shows the model. A vertical water-filled fracture with 4 mm thickness
and 10.56 m length is embedded in a homogeneous elastic medium. A monopole source
(S), located at (12.78 m, 12 m), radiates a Ricker pulse with a central frequency of 3
kHz. Two receivers (R; and Ry) are located at (10.2 m, 18 m) and (6 m, 18 m). For
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variable grid FD modeling of the TLM, the horizontal grid spacing smoothly increases
from 1 mm to 6 cm with a factor of 3 over a transition region 11.7 cm wide in the
vicinity of the fracture; the vertical grid spacing is 6 cm throughout the grid (Figure
5.1). For the Coates-Schoenberg approach of the LSM, a constant FD grid spacing of
6 cm is used in both the x and z directions. The calculation of equivalent anisotropic
elastic constants of the LSM cells containing the fracture is based on the transverse
fracture compliance Zr = oo, and the normal fracture compliance Zy = h/K = 0.004
m/2.25 GPa (h is the fracture width and K is the bulk modulus of the fluid). The
parameters of the background medium are A = 7.6194 GPa, u = 18.152 GPa, and
v = 0.148 calculated from the P-wave velocity V,,, S-wave velocity V;, and density p.

Snapshots of horizontal and vertical particle velocity components of the TLM and
the LSM are shown in Figure 5.4. In order to make the faint fracture tip diffracted
waves visible, the gain was chosen such that amplitudes were clipped at 1 % of the
maximum value. It can be seen that the body wave (P) and the head wave (H) are in
good agreement. The tip diffracted waves (PdP, PdS) are similar but with small dif-
ferences in the amplitudes. The incomparable event is a guided wave (G) propagating
along the fracture which is present in the snapshots of the TLM, but absent in the
snapshots of the LSM. This guided wave, with a velocity around 1210 m/s, is the very
slow wave predicted by Ferrazzini and Aki (1987). In theory, the TLM supports a
family of symmetric and antisymmetric normal modes (Ferrazzini and Aki, 1987); the
LSM supports only one symmetric and one antisymmetric modes ( Pyrak-Nolte and
Cook, 1987; Haugen and Schoenberg, 2000). Because the symmetry of the source-
fracture geometry used in this study (Figure 5.3) generates only symmetric particle
motion with respect to the fracture plane, only symmetric modes are considered in
the fracture guided wave analysis presented in Appendix A. As Figure A-1 shows,
except for the slow wave (the fundamental symmetric mode) of the TLM, none of the
other symmetric modes is expected in our numerical results because the frequency of
interest (3 kHz) is far below the cut-off frequencies of those modes (29.1 kHz for the
first symmetric normal mode of the TLM and 20.4 kHz for the symmetric mode of
the LSM).

Figure 5.5 shows the seismograms of the horizontal and vertical particle velocity
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Figure 5.4: Snapshots of the horizontal and vertical particle velocity components (V, and
V,) at 2.8 ms: (al) and (a2) are the results of the thin-layer model (TLM); (b1) and
(b2) are the results of the linear-slip model (LSM). P, H, and G are direct P-wave, head
wave, and fracture guided wave; PdP and PdS are P-to-P and P-to-S diffracted waves,
respectively. The fracture is indicated by the white dashed line.
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Figure 5.5: Comparison of seismograms of the horizontal and vertical particle velocity
components (V, and V,) of the TLM (blue solid line) and the LSM (red dashed line) at
receiver R; and Ry in the model (Figure 5.3).

components recorded off the fracture at receivers Ry and Ry of the TLM (blue solid
line) and the LSM (red dashed line). The fit between the two models is excellent. The
corresponding normalized differences between the two models at these two receivers
are shown in Figure 5.6. We can see that they are all less than 5 %. These results
quantitatively demonstrate the excellent agreement of the two models for the body
waves and fracture tip diffracted waves.

The simulations were performed on a 1.4 GHz Athlon computer with 1 GB DDR
RAM. The memory requirements of the two models are comparable (8.7 MB for the
TLM and 8.1 MB for the LSM). However, the CPU time used by the TLM (74 min)
is much longer than that of the LSM (14 min). This is because a very small timestep
required by the finest grid spacing in the variable grid (Figure 5.1) to satisfy the
stability condition (5.3) is globally used for modeling the TLM. Implementation of a
spatially variable timestep FD scheme can greatly reduce the CPU time used by the
TLM. However, the modeling of the TLM is still more costly than that of the LSM

for a set of fractures.
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Figure 5.6: The normalized difference of the horizontal and vertical particle velocity com-
ponents (Vy and V,) between the TLM and the LSM at receiver R; and Ry in the model
(Figure 5.3).

5.4 Conclusions

We have performed seismic modeling for an open water-filled fracture described
by the TLM and the LSM using the optimized variable grid FD method and the
Coates-Schoenberg’ approach, respectively. Numerical results show excellent agree-
ment between the two models on body waves and fracture tip diffracted waves. The
primary difference in the observed wavefields of the two models is the presence of
a very slow fluid guided wave in the TLM, which is predicted by the theory and
confirmed by the numerical simulations.

In this single fracture numerical experiment, the computer memory requirements
of the two models are comparable. But the TLM uses more CPU time than the LSM.
While the CPU time required by the TLM can be reduced by combining variable grid
and variable timestep techniques, modeling the TLM is still more costly than that of
the LSM for a model with a set of fractures.

This comparison study indicates that the TLM is required to study the fracture
slow wave which can be observed in a borehole intersecting a fracture (Nagano and
Niitsuma, 1996); for the remote seismic characterization of fractures, the LSM can

be used to achieve accurate and more efficient modeling.



Chapter 6
Modeling single-well seismic

Single-well seismic imaging has recently emerged as a valuable tool for delineating
well-parallel features within structurally complex regions. Forward modeling can
provide crucial guidance in both the design of single-well experiments and in the later
phases of processing and data interpretation. A significant difficulty in modeling
single-well data is the large range of spatial scales present: efficient inclusion of a
small borehole (10-20 cm) within a larger domain modeling (200-300 m) requires
special computational techniques.

Our variable grid and timestep FD method efficiently solves this problem: using
fine grid spacing and small timesteps in the vicinity of the borehole, and coarse grid
spacing and large timesteps in the far-field, our method allows inclusion of a realistic
well and captures the resulting propagation phenomenon including tube waves. Two
single-well modeling examples, which include both boreholes of reasonable dimensions
and reflecting salt structures in the far-field, demonstrate the efficacy of the numerical
method. Although strong tube waves obscure some temporal regions of the data,

reflections from the salt flank are evident.

6.1 Introduction

Single-well imaging techniques involve placing both a seismic source and a hy-

drophone string within the same well: geometries of this type allow characterization
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of reflectors near the borehole including high-angle faults, salt flanks (Cameron and
Chen, 1995), and fracture regions (Majer et al., 1997). For structural features with
near-vertical dips, single-well configurations provide favorable seismic illumination
conditions in comparison to surface surveys. When horizontal boreholes exist within
reservoirs, single-well measurements can aid interpreters in distinguishing local bed
boundaries and fluid contacts.

Numerical forward modeling is an excellent tool for exploding the impacts of
survey geometry and subsurface structure on imaging experiments. In the case
of single-well seismic surveys, intelligent choice of acquisition parameters, such as
source/receiver offset, are important in minimizing the amount of primary signal
obscured by high-amplitude borehole modes. The realistic synthetic seismograms
generated by forward modeling can also be used to evaluate data processing and
inversion algorithms in situations where a known model is required.

A significant difficulty in single-well seismic modeling is a large scale difference
between the diameter of the borehole and the formation extent present. To resolve
the borehole, a structural feature with tiny lateral dimensions, a very fine mesh is
required (2 cm). At the same time, the target of the single-well survey may be a salt
flank as much as 60 m from the well with significant vertical extent. An equi-spaced
mesh with sufficient resolution to describe the borehole and sufficient size to include
far-field reflectors requires too much memory for simulation on most computers. The
optimized variable grid FD technique developed in chapter 3 provides an efficient
solution to this multi-scale borehole problem: smooth refinement in the vicinity of
the borehole allows effective representation of the well without exhausting available
memory resources. While FD stability condition requires a very small timestep for the
finest grid spacing, the developed spatially variable timestep FD technique provides
large timesteps for coarse grid spacing to further reduce the CPU time.

We apply our variable grid and timestep FD method for the single-well experiment
study in the 2-D elastic case. Numerical results show: although strong tube waves
dominate the wavefield, reflections from the salt flanks are visible. The use of variable
grid spacing and timesteps significantly reduces computer memory requirements and

CPU time in the modeling. The sections that follow present the study in detail.
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6.2 Methods

We apply the variable grid and timestep FD method to solve the 2-D displacement-
stress wave equation for single-well seismic modeling. The 2-D wave equation can be

written as:
( Puy  OTpy | 0Ty,
P T ar T oz
0°u, 07y, 0T,

p o2 Oz 0z

\
where u, and u, are the displacement components; 7,,, 7,,, and 7,, are stress com-
ponents; p is density; A and p are the Lamé coefficients.

FD solution of equation (6.1) is based on a spatial staggered grid scheme which is
crucial for handling the solid-liquid contact present within the borehole.

For spatial discretization, a simple variable grid is used to represent the x-z bore-
hole plane. The plane is partitioned into a near-field region, with fine grid spacing
to resolve borehole phenomena, a far-field, with a coarse grid spacing constrained by
numerical dispersion, and a transition region where the grid spacing smoothly varies
between these extremes (see Figure 6.2). This smooth grid refinement avoids the
artificial reflections associated with a sudden change in grid spacing.

For temporal discretization, a small timestep is used for the fine grid spacing
region and the transition zones, and a large timestep is used for the coarse grid
spacing zones (see Figure 6.2). The small and large timesteps are determined based
on local stability criteria.

The spatial derivatives in equation (6.1) are approximated by the optimized fourth-
order variable grid FD operator described in chapter 3. We pre-compute the coeffi-
cients for the stretched grid operators for all spatial locations. Since the mesh is only
distorted along the x- and z- axes, coefficients are invariant along grid lines, reducing

the memory required for stencil storage.
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Time derivatives are approximated using an explicit second-order central differ-
ence operator. However, different timesteps are used for the time stepping in different
domains (check chapter 3 for details). Although the implementation of the variable
timestep FD scheme in two dimensions is more complex than in one dimension, the

time stepping procedure for both one and two dimensions is the same.

6.3 Examples

Now we use the 2-D variable grid and time-step FD code for single-well experiment
study. Numerical modeling of two models is performed. The first model, composed
only of a vertical well and a simple sediment-salt interface, is used to explore the wide
range of wave phenomenon captured by our elastic modeling code. The second test
model incorporates a realistic geological structure more typical of the salt-flank plays
where single-well imaging is currently being applied. The results from both seismic
simulations show reflections from the primary targets which are partially obscured by
strong borehole modes over limited temporal windows.

In the first model (Figure 6.1) the borehole is uncased, 14 cm in diameter, and
water filled. The source function used to excite the model is a Ricker wavelet with a
central frequency of 500 Hz. Figure 6.2 shows the variable grid spacing and timesteps
used in the vicinity of the borehole. The lateral grid spacing smoothly increases from
0.01 m to 0.27 m with a factor of 3 over a transition region 0.36 m wide. The vertical
spacing is 0.27 m throughout the grid. A small timestep of 2.6 x 1073 ms is used
for the zone with fine grid spacing (inside the two red lines) and a large timestep
of 7.8 x 107 ms is used for the zones with coarse grid spacing (outside the two red
lines). The large timestep is three times greater than the small timestep.

The property contrast between the salt (V, = 4550 m/s, V; = 2630 m/s, p =
2160 kg/m?) and the surrounding sediments (V, =2500 m/s, Vs = 1527 m/s, p =
2050 kg/m?) produces high amplitude reflections. A snapshot of the 7., component
of the wavefield recorded at 21 ms, Figure 6.3, shows a multitude of active modes.
In addition to direct P- and S-waves (P, S) and a strong tube wave (T), salt flank
reflections (PPr: P-to-P reflection, PSr: P-to-S converted reflection, SPr: S-to-P
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Figure 6.1: Vertical salt flank model.

converted reflection) and transmitted waves (PPt: P-to-P transmission, PSt: P-to-S
converted transmission, SSt: S-to-S transmission) are visible.

Figure 6.4 shows the seismogram of the pressure component. We can see: although
the strong tube wave dominates the wavefield, reflections from the salt flank are
evident.

Our second model (Figure 6.5) incorporates a more complex geological structure,
including several dipping sediment layers and a pair of salt-bounded petroleum traps.
The borehole parameters used are identical to those described in the first example but
the central frequency of the source wavelet is 250 Hz. Table 6.1 provides the physical
properties of the model layers. Note that model components 7 and 8 are oil-saturated
sections of layers 5 and 3 respectively, while component 9 is a gas pocket in layer 2.

Figure 6.6 shows four 7,, component snapshots which clearly illustrate the wave-
field propagation and interaction in the complex media. With the aid of the snap-
shots, events in the pressure seismogram (Figure 6.7) can be identified: direct P- and
S-waves (P and S), strong tube wave (T), salt-dome reflection (PPj), layer reflec-

tions (PP, TT)), and converted layer reflections from salt-dome reflections (PPgS;).
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Figure 6.2: Grid spacing and timesteps in the vicinity of the borehole. The horizontal
grid spacing smoothly increases from 0.01 m to 0.27 m with a factor of 3 over 0.36 m
wide transition region. The vertical grid spacing is 0.27 m throughout the grid. A small
timestep of 2.6 X 10~ ms is used for the fine grid spacing zone (inside the two red lines)
and a large timestep of 7.8 x 1073 ms is used for the coarse grid spacing zones (outside
the two red lines).

This example reveals both the high level of wavefield complexity introduced by a
small number of lithological boundaries and the effectiveness of our variable grid and
timestep FD code in handling multiple-scale models.

For the two simulations, the use of the variable grid spacing saves 93% memory
and 98% CPU time for the first model, and saves 95% memory and 99% CPU time
for the second model; the use of the variable timestep scheme for the variable grid
further reduces the CPU time of 56% for the first model and of 48% for the second

model with almost the same memory requirements.

6.4 Conclusions

We have applied the variable grid and timestep FD method for single-well seismic

modeling. The use of a variable grid mesh enables us to include a properly scaled
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Figure 6.3: Snapshots of 7., component of the vertical salt flank model (Figure 6.1) at
21 ms. P, S, and T are direct P-wave, S-wave and tube wave; PPr is the P reflections;
PSr and SPr are P-to-S, S-to-P converted reflections; PPt and SSt are the P and S
transmissions, respectively; PSt is P-to-S converted transmission.
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Figure 6.4: Seismogram of pressure of the vertical salt flank model (Figure 6.1). P, S,
and T are direct P-wave, S-wave and tube wave; PPr and SSr are the P and S reflections,
respectively; PSr and SPr are P-to-S, S-to-P converted reflections, respectively.
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Figure 6.5: Realistic salt flank model. The material properties are presented in Table 6.1.
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No.| V, v, P

(m/s) | (m/s) | (kg/m?)
1 | 2900 | 1700 | 2050
2 | 3200 | 1880 | 2100
3 | 3700 | 2180 | 2130
4 | 3300 | 1940 | 2000
5 | 4500 | 2650 | 2200
6 | 4900 | 2630 | 2160
7 | 4300 | 2650 | 2100
8 | 3400 | 2190 | 2050
9 | 2200 | 1890 | 2000

Table 6.1: Material properties for the second model (Figure 6.5).

borehole within a larger computational domain; and the use of a spatially variable
timestep scheme that matches with the spatially variable grid further reduces the
CPU time. Excellent synthetic gathers of two single-well models demonstrate the
efficacy of the variable grid and timestep FD method. Although strong tube waves

obscure some temporal regions of the data, reflections from the salt flank are evident.
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Figure 6.6: Snapshots of 7,, components of the realistic salt flank model (Figure 6.5) at

6, 16, 26 and 36 ms.
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Figure 6.7: Pressure seismogram of the realistic salt flank model (Figure 6.5). P, S and
T are direct P-wave, S-wave and tube wave; PP; is the salt flank P-to-P reflection; PP,
and TT, are the P-to-P and T-to-T layer reflections; and PPS, is the converted layer
reflection from the P-to-P salt flank reflection.



Chapter 7
Modeling cross-well field data

—including tube waves and tube-wave-related arrivals

Cross-well seismic data often contain strong tube waves and tube-wave-related
arrivals due to the effects of the presence of two boreholes. A basic requirement for
accurate cross-well seismic modeling is the inclusion of these events associated with
fluid-filled boreholes.

In this chapter, we apply a parallel variable grid FD 2-D code for cross-well field
data modeling with inclusion of two perforated cased boreholes. The synthetics re-
semble the field observations in terms of arrival times not only on direct P- and
S-waves but also on tube waves and tube-wave-related secondary arrivals generated
by perforations in the receiver and source wells. This study demonstrates that in-
cluding boreholes into the modeling scheme can distinguish tube-wave-related events
on seismograms to better assist data analysis and to guide data processing and inter-

pretation.

7.1 Introduction

Cross-well seismic technology involves placing a seismic source in one well and a

hydrophone string in another well. This technique has been widely used for reservoir
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characterization and waste site detection because it can provide high resolution im-
ages about subsurface. However, the presence of two boreholes has significant effects
on cross-well seismic field data. Many of the strongest signals observed are modes
traveling within the borehole: these tube waves are often sufficient to cloak the lower
amplitude reflections and transmissions. Moreover, tube waves can re-radiate energy
into the formation at changes along the borehole to generate tube-wave-related ar-
rivals (Balch and Lee, 1984, White and Lessenger, 1988). To better understand wave
patterns observed in the field data and to guide data processing and interpretation,
accurate cross-well seismic modeling with inclusion of these events is required.

Full-waveform forward modeling is desirable for cross-well seismic experiments
since not only P-waves but also S-waves are observed in the data. We apply our
optimized variable grid FD method for solution of the 2-D velocity-stress elastic
wave equation for cross-well seismic modeling. The variable grid FD algorithm can
accommodate the two small boreholes in a large modeling scheme by using the grid
refinement around each borehole. Furthermore, a parallel version of the algorithm is
developed for more efficient calculations on a “Linux Beowulf” cluster.

The parallel variable grid FD code is used for modeling study of the cross-well field
data acquired from West Texas. First, a simple model is used to test the field data
analysis. Then the field data modeling is performed based on the survey geometry.
Comparison between the synthetic and the field data shows that a good agreement
has been achieved not only on direct P- and S-arrivals, but also on tube waves and

tube-wave-related events.

7.2 Methods

The 2-D velocity-stress elastic wave equation suitable for a staggered grid FD
scheme in both space and time (Virieux, 1984, 1986; Levander, 1988; Graves, 1996)
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We solve this equation on a variable grid mesh and apply the fourth-order opti-
mized variable grid FD operator developed in chapter 3 to approximate the spatial
derivatives. The temporal derivatives are approximated by a second-order central
difference operator.

Spatially discretizing a cross-well model involves applications of the grid refine-
ment technique used in single-well modeling (see chapter 6) in the vicinity of two
boreholes. The variable grid mesh is characterized with: (1) domains of fine grid
spacing for resolving boreholes with casing and cement, (2) domains of coarse grid
spacing constrained by the shortest wavelength in the medium, and (3) transition re-
gions where the grid spacing smoothly varies between these extremes (see Figure 7.1).
The use of the variable grid mesh greatly reduces the computer memory requirements

and CPU time thereafter compared to a constant fine grid mesh.

Figure 7.1: Variable grid mesh for a cross-well model. The horizontal grid spacing is
variable to accommodate small scale boreholes with casing and cement in a large model.
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Furthermore, a parallel version of the algorithm has been developed for more effi-
cient calculations on a “Linux Beowulf” cluster. The parallel implementation utilizes
spatial domain decomposition: different portions of the 2-D grid are allocated to dif-
ferent processors so that calculations within each subdomain take place synchronously.
Sufficient overlap between adjacent subdomains/processors must be provided so that
the fourth-order spatial FD operators can address all dependent variables at their
particular staggered grid storage locations. Interprocessor data communication is

based on the MPI (Message Passing Interface).

7.3 Field data analysis and modeling

The cross-well field data we are analyzing and modeling were collected in the
Permian Basin, West Texas. Figure 7.2 shows the survey geometry. Two cased
boreholes with 640 ft separation were used. The source well and receiver well have

perforations at the depth of 9000 ft and 8930 ft, respectively.
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Figure 7.2: Cross-well field survey geometry. The survey depth coverage is from 8190 to
9200 ft. The distance between the two cased boreholes is 640 ft. The source and receiver
wells have perforations at the depth of 9000 ft and 8930 ft, respectively.
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7.3.1 Field data analysis

Figure 7.3 shows a common-shot gather from this survey. The source is at depth
8695 ft with receiver sampling interval of 5 ft. The depth of the receivers ranges from
8190 to 9200 ft. In this data, in addition to direct P- and S-waves (P, S), strong tube
waves (PT, ST, TPT, TST) and tube-wave-related secondary P and S arrivals (TP,
TS) are observed. The tube waves and the secondary body waves observed in the
common-shot gather are caused by the borehole perforations (Mo and Harris, 1995).
Perforations act as impedance discontinuities in a borehole. Impedance discontinuities
in the source well cause tube waves to radiate body waves; impedance discontinuities
in the receiver well cause tube waves to be generated by body wave interactions (Balch
and Lee, 1984).
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Figure 7.3: A common-shot gather of the cross-well survey from West Texas. The source
depth is 8695 feet.

Figure 7.4 schematically illustrates the ray paths (Figure 7.4a) and the associated
arrivals in the seismogram (Figure 7.4b) of a common-shot gather. In the source well,

the source excites body waves (P, S), and also excites tube waves (T) propagating
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along the source well. When the tube waves hit the perforations in the source well,
they radiate energy into the formation to generated tube-wave-related body waves
(TP, TS). When the body waves (P, S, TP, TS) impinge upon the receiver well, strong
tube waves (PT, ST, TPT, TST) are excited at the perforations and propagate along

the receiver well to be recorded.

source-well receiver-well Common-shotgather

T PSS

%

A
T B 4
PT,ST,
TPT, TST

\ TP, TS
>A

@ (b)

Figure 7.4: Schematic diagram of waves in the cross-well survey: (a) Ray paths; (b)
Arrivals in the seismogram. P and S are the direct P- and S-waves, TP and TS are the
secondary P and S-waves radiated by the source tube waves (T) at the perforations in
the source well. PT, ST and TPT, TST are receiver tube waves generated by the direct
and secondary body waves at the perforations in the receiver well.

To test this data analysis requires including boreholes, casings and perforations
into the modeling scheme.

To clearly illustrate this, the following modeling study is performed using the 2-D
variable grid FD code.

First, we conduct the cross-well seismic modeling for a homogeneous model with-
out boreholes (Figure 7.5a). In the synthetic seismogram (Figure 7.5b), we only
observe the direct P-wave excited by a pressure source.

Then, we perform the modeling for the homogeneous model with two cased bore-

holes (Figure 7.6a). We can see both the direct P- and S-waves are observed in the



7.3 Field data analysis and modeling 79

0 0
R A
10} A 10
20f *S 20
E E
£ 30} 230
o o
[0) (9]
[a] [a]
40t 40
501 v, =3000m/s 50
Vs=2000m/s
60| p=2100kg/m® 60

15 20 25 30 35 40 45 50
Time (ms)

(@) (b)

e 50(m) —»

Figure 7.5: (a) Model: a homogeneous medium without boreholes; (b) Synthetic seismo-
gram of the left model: only direct P-wave is observed.

seismogram (Figure 7.6b). The direct S-wave is P-to-S converted transmission at the
contact between the source borehole and the formation.

Third, we add perforations in the source well (Figure 7.7a) and perform the sim-
ulation for this model. In addition to the direct P- and S-waves, tube-wave-related
P- and S-waves are observed in the seismogram (Figure 7.7b). The secondary body
waves are generated by the tube wave radiation at the perforations in the source well.

Finally, we add perforations in the receiver well too (Figure 7.8a), the simula-
tion result of this model (Figure 7.8b) shows that tube waves are generated at the
perforations in the receiver well.

This simple modeling study demonstrates the significant effects of boreholes, cas-
ings, and perforations on cross-well seismic data. Accurate field data modeling re-

quires the inclusion of all these small features into the modeling scheme.

7.3.2 Field data modeling

Now, we use the 2-D variable grid FD parallel code to model the common shot
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Figure 7.6: (a) Model: a homogeneous medium with two cased boreholes; (b) Synthetic
seismogram of the left model: both direct P- and S-waves are observed.

gather showed in Figure 7.3 with inclusion of the two perforated cased boreholes. The
model is based on the survey geometry (Figure 7.2). P-wave velocities of the formation
are obtained from the blocked P-wave velocity log in the source well (Figure 7.9a).
The corresponding S-wave velocities are calculated by Vs = V},/\/g The densities
are obtained by p = 0.23V,%?® (Gardner et al., 1974). Note in this latter equation,
the unit of p is g/cm® and the unit of V, is ft/s. Two perforated cased boreholes
are embedded in the layered formation. The parameters for the two boreholes are
the same: the diameter is 7.2 inch, water-filled, the thicknesses of the casing and
cement are 0.6 inch and 1.2 inch, respectively. Perforations are represented by a small
rectangular hole cut through the casing, cement and into the formation. Figure 7.1
schematically illustrates the computational mesh used for the model. In the vicinity
of the wells, the lateral grid spacing smoothly increases from 0.05 ft to 1 ft over a
transition region of 1.8 ft wide. The vertical spacing is 1 ft throughout the grid. The
total grid size for this variable grid mesh is NX x NZ = 742 x 1151, which is less
than 5% of the total grid size of a regular mesh with constant dx=0.05 ft in the entire
model (NX x NZ = 14980 x 1151); therefore, the computer memory requirements
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Figure 7.7: (a) Model: the source-well has perforations at 44 m; (b) Synthetic seismogram
of the left model: in addition to direct P- and S-waves, tube-wave-related P- and S-waves
are observed.

and CPU time thereafter are greatly reduced by the variable grid approach. Spectral
analysis reveals that the frequencies in the field data are from 400 Hz to 1200 Hz. We
use a Ricker wavelet with 800 Hz central frequency as the source function to excite
the model. The calculations were performed on a 16 processor distributed “Linux
Beowulf” cluster. One run of 110,000 timesteps for the 742 x 1151 size model takes
about 3 hours CPU time. If the simulation is performed using a serial code on a
single processor, it takes almost two days.

The synthetic seismogram of the common shot gather is shown in Figure 7.9b.
We see that all the identified arrivals in the field data (Figure 7.3): direct waves
(P, S), tube-wave-related arrivals (TP, TS) and strong tube waves (PT, ST, TPT,
TST) are observed in the synthetic seismogram. There is a good match between
the synthetic and the field observations for these events, especially in terms of the
travel times. The difference between the synthetic and the field observations on the
relative amplitude of some events (PT, ST, and interface reflections) may be due to

the intrinsic attenuation in the real earth. This modeling result supports the previous
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Figure 7.8: (a) Model: the source-well and the receiver-well have perforations at 44 m
and 48 m, respectively; (b) Synthetic seismogram of the left model: in addition to the
direct and secondary body waves, tube waves are observed.

data analysis and can be used to guide the later phase of data processing such as tube

wave attenuation.

7.4 Conclusions

A 2-D velocity-stress optimized variable grid FD parallel code has been used
for efficiently modeling the cross-well seismic field data from West Texas with the
inclusion of the two perforated cased boreholes in the modeling scheme. The synthetic
data not only match the direct P- and S-arrivals in the field observations, but also
fit the tube waves and tube-wave-related events generated by the perforations in the
source and receiver wells. This study demonstrates that inclusion of boreholes into
the modeling scheme can capture tube-wave-related phenomena on seismograms to

better assist data analysis and to guide data processing and interpretation.
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Figure 7.9: (a) Blocked V, log from the source well; (b) Synthetic seismogram generated
by 2-D variable grid FD elastic modeling.



Chapter 8

Modeling DARS

This chapter presents the application of the optimized variable grid FD method
for DARS (Differential Acoustic Resonance Spectroscopy) modeling. DARS is a new
technique to estimate the rock properties (velocity and attenuation) of a small sample
by measuring the changes in resonances of a cavity that is perturbed by the introduc-
tion of the sample. The variable grid FD method is well suited for DARS modeling
by giving fine discretization for the small sample and coarse discretization for the rest

of the large cavity.

8.1 Introduction

A new method of measuring the velocity and attenuation parameter (Q) of sound,
i.e., compressional waves, in small samples of rock has been proposed (Harris, 1997).
This method, called Differential Acoustic Resonance Spectroscopy (DARS), is based
on measuring the changes in resonances of a cavity that is perturbed by the introduc-
tion of the sample. From the changes of the resonance frequencies, we can estimate
the sound velocity of the sample; from the changes of the resonance-peak bandwidths,
we can estimate the (Q of the sample. The changes in resonances of the cavity depend
on the position of the sample along the cavity. One advantage of this method is that
rock properties can be measured at frequencies as low as a few hundred Hertz in the

laboratory, i.e., at seismic frequencies. Perhaps more importantly, small samples with

84
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irregular shapes such as borehole cuttings can be measured.

Based on the DARS approach, a basic apparatus has been set up in SWP (Stanford
Wave Physics Lab) at Stanford University. In this setup (Figure 8.1), a circular
cylindrical aluminum cavity with open-ends is suspended in a plastic tank filled with
silicone oil. The experiment is performed as follows: (1) measure the resonance of
the oil-filled cavity; (2) introduce a small sample of rock into the cavity and measure
the change in resonance. Measurements are made for each small sample at different
locations along the cavity. Lab data of some rocks and synthetic samples have been

collected from this setup.

Figure 8.1: Experiment setup for DARS measurement. The open-ends circular cylindrical
aluminum cavity is suspended in a plastic tank filled with silicone oil. A small sample can
be put into the cavity and placed at different locations along the cavity. Resonances of
the cavity with and without a sample are measured.

To better understand DARS theory, to guide experiment design, and to aid with
the interpretation of lab data, numerical modeling on DARS is desirable. A big issue
for DARS modeling is to handle a large-scale difference between a small sample and
a large cavity. The optimized variable grid FD method developed in chapter 3 is well

suited for solving this problem by giving fine discretization for the small sample and



8.2 Methods 86

coarse discretization for the rest of the cavity. The use of the variable grid spacing
can achieve both accuracy and efficiency in DARS modeling.

We apply the optimized variable grid FD method for solution of 2.5-D acoustic
and visco-acoustic wave equations in cylindrical coordinates for DARS modeling. We
conduct DARS methodology study, sensitivity prediction, and lab data modeling.

The following sections present the method and the modeling results in detail.

8.2 Methods

To conduct the DARS modeling based on the experiment setup shown in Figure
8.1, we solve 2.5-D acoustic and visco-acoustic wave equations in cylindrical coordi-

nates. The wave equations are:

1. Acoustic wave equation with variable density

0?p 0 ,10p 10p O ,10p
a2 =5 0 T e T5,Ga) (8.1)

where p is the pressure, p and c are the density and the sound velocity of the medium.

2. Visco-acoustic wave equation with variable density

0%p F(?p 0 10p 10p 0  10p

gp , po e Y 2
8t2+ ot [ar(par)+rp8r+8z(paz)]’ (82)

where I' = w/Q is the damping constant for unit mass, and w and Q are the resonant
frequency and the quality factor.

Spatial derivatives in equation (8.1) and (8.2) are approximated using the fourth-
order optimized variable grid FD operator (see chapter 3), and time derivatives are
approximated using an explicit second-order central difference operator. With the
spatial variable grid FD scheme, we can discretize the model with fine grid spacing
for a small sample and coarse grid spacing for the rest of the cavity. The use of the
variable grid spacing significantly reduces the computational time in the modeling,

especially for DARS sensitivity study.
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8.3 DARS modeling

In this section, we use 2.5-D acoustic and visco-acoustic codes for DARS modeling.
First we conduct modeling for DARS methodology and sensitivity study. Then we
perform DARS lab data modeling.

The numerical modeling is performed on a model based on the aluminum cavity
in the lab (see Figure 8.1). In the modeling, we assume that the wall of the cavity
is rigid and we represent the cavity’s open-ends using the free boundary condition
(pressure equals to zero). In the experiment, the pressure at the ends of the cavity is
not zero; therefore we use a equivalent length in the modeling to model the cavity in
the lab. The equivalent length is obtained through the calibration of the lab measured

resonances of the cavity without the sample.
7 4

E] Sample

e > > D> ¥

440mm

R
}47 66mm 4>‘

Figure 8.2: A oil-filled circular cylindrical cavity model. A small sample can be placed at
any locations along the cavity.

Figure 8.2 shows the model. The circular cylindrical cavity with a diameter of 66
mm and a length of 440 mm is filled with silicon oil. The silicon oil has density of 913
kg/m?® and acoustic velocity of 984 m/s. A small sample can be placed at different

positions along the cavity for the modeling. We put a point source close to the top of
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the cavity and put receivers along the cavity. The source function used to excite the
model is a sinc function with the amplitude of 1 for a frequency range of 400-7400
Hz (Figure 8.3). The simulation duration is 5 ms. In space, the model is discretized
with fine grid spacing for the small sample and coarse grid spacing for the rest of the
cavity. In time, a constant timestep of 0.0002 ms is used for the entire model. A

number of tests have been carried out on this model.
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Figure 8.3: The source wavelet and its spectrum.

8.3.1 Methodology study

The DARS method is based on the perturbation theory (Appendix B) which states
that the introduction of a small sample into a cavity causes the perturbation of the

resonances of the cavity. Here we use numerical modeling to illustrate this.

1. Frequency shift

To show the resonance frequency shift due to a small sample, we perform the
acoustic modeling for the cavity shown in Figure 8.2 with and without a sample. The
sample has a dimension of 36 mm in diameter and 36 mm in length and has velocity

of 2000 m/s and density of 1460 kg/m?. For the modeling with the sample, the model
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is spatially discretized with variable grid spacing in z direction: a small grid spacing
of 2 mm is used for the small sample and a large grid spacing of 4 mm is used for the
rest of the cavity. The simulation total length is 1000 ms. We do Fourier transform

for the pressure response of a receiver at z=20 mm in the cavity.
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Figure 8.4: Pressure spectra of acoustic modeling. (a) Pressure spectrum of the cavity
without the sample. The resonance frequencies of the 1°* to 5 harmonics are 1118,
2236, 3354, 4472, and 5590 Hz. (b) Pressure spectra of the cavity with and without the
sample. The resonance frequency shifts caused by the sample for the 1%¢ to 5 harmonics
are 21, -19, 59, -29, and 87 Hz.

The pressure spectrum for the cavity without the sample (Figure 8.4a) shows the
resonance frequencies of the 1% to 5* harmonics are 1118, 2236, 3354, 4472, and 5590
Hz. These are exactly the same as those calculated from the theoretical formulation
fn = ¢/2L (Appendix B) with ¢=984 m/s and L=440 mm. Figure 8.4b shows the
comparison of the pressure spectra of the cavity with and without the sample. We
can see the resonance frequency shift due to the small sample. The frequency shift
depends on the acoustic velocity of the sample. Therefore, we can estimate the

velocity of the small sample by measuring the resonance frequency shift of the cavity.
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For the simulation of the cavity with the sample, the use of the variable grid
spacing saves 40 % computer memory and 49 % CPU time compared to the use of a

constant fine grid spacing for the entire model.

2. Attenuation effect

The above acoustic modeling on frequency shift study is based on an ideally lossless
system, therefore we see spike-like resonances on the pressure spectra in Figure 8.4.
In a lossy system, a resonance peak has a bandwidth which is related to the quality
factor QQ, the most common measure of attenuation, of the system. The introduction
of a small sample into the cavity not only causes the resonance frequency shift but
also causes the change in the resonance-peak bandwidth or linewidth. To illustrate
this, we perform visco-acoustic modeling on the above two models with a given Q of

120 for the oil in the cavity and of 10 for the small sample.

(@)
400 w

300

- JthJtJLL

0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

Amplitude

(b)
400 ‘

—— without the sample

— with the sample
300+ B

200 ‘
|

100 ‘ ’
O jL ” L

0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

Amplitude

Figure 8.5: Pressure spectra of visco-acoustic modeling. (a) Pressure spectrum of the
cavity without the sample (Q of oil Q, = 120). (b) Pressure spectra of the cavity with
and without the sample (Q of oil Q, = 120, and Q of the sample Qs = 10).

The pressure spectrum of the cavity without the sample of the visco-acoustic

modeling is shown in Figure 8.5a. Unlike the spike-like resonances of the acoustic
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modeling (Figure 8.4a), each resonance of the visco-acoustic modeling has a band-
width. A resonance-peak bandwidth Af, is defined as the frequency range between
those values for which amplitude is 3 dB lower than the resonance peak amplitude.
The quality factor Q can be estimated by Q = f,/Afx.

The comparison of the pressure spectra of the cavity with and without the sample
of the visco-acoustic modeling is shown in Figure 8.5b, which illustrates that the small
sample not only causes the resonance frequency shift but also causes the resonance-
peak bandwidth change. It is hard to see the quantitative change in the resonance-
peak bandwidth in Figure 8.5b because the frequency range for the display is too
large. We plot the spectra shown in Figure 8.5b with the frequency ranges of the 1%
and 2" normal modes in Figure 8.6 which clearly shows the change in the resonance-
peak bandwidth, especially for the 1** mode resonance (Figure 8.6a). The change of
the resonance-peak bandwidth depends on the Q of the sample. Therefore, we can
estimate the Q of the small sample by measuring the changes in the resonances of the

cavity.
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Figure 8.6: Comparison of resonances of the cavity with and without the sample: (a) The
1% mode; (b) The 2" mode. Af? and Af! are the resonance-peak bandwidth for the
cavity without and with the sample, respectively.
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3. Position dependence

We have demonstrated the introduction of a small sample into a cavity causes the
changes in the resonances of the cavity. These changes also depend on the position of
the sample along the cavity. To illustrate this, we perform the visco-acoustic modeling
for the same cavity with the sample at different locations.

Figure 8.7 shows the pressure spectra of the cavity for the frequency range of
500-6500 Hz. We can see that the changes in the resonances, especially of the higher
modes, depend on the position of the sample. To clearly show the position dependence
for the lower mode resonances, we plot the spectra with the frequency range of the
1" mode (1050-1200 Hz) in Figure 8.8. We also plot the resonance frequency and
the resonance-peak bandwidth versus the sample position in Figure 8.9a and 8.9b,
respectively. The resonance-peak bandwidth versus the resonance frequency is shown
in Figure 8.10 in which the Q of the system can be estimated by fitting the data.

For this position dependence study, we performed simulations for the cavity with
the small sample at 44 different locations. The use of the variable grid spacing in

spatial discretization saves a great amount of computational time in the modeling.

8.3.2 Sensitivity study

The DARS method is based on the perturbation theory (Appendix B); there-
fore it is more sensitive when the contrast of the properties (velocity and Q) of the
small sample and the fluid in the cavity is not very large. Now we study the DARS

sensitivity on measuring the velocity and Q using numerical modeling.

1. Sensitivity on velocity measurement

To study the DARS sensitivity on measuring the velocity of a small sample, we
first assume that the sample has the same density as the silicon oil in the cavity.
Then we smoothly change the velocity of the sample from 984 m/s (the same velocity
of the silicon oil in the cavity) to 6000 m/s. The simulations are performed with the
small sample at the center of the cavity.

Figure 8.11 shows the 1%* mode resonance frequency versus the velocity ratio of the

small sample to the oil in the cavity (cs/c,). We can see that the resonance frequency
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increases with the velocity faster when the velocity ratio is less than 2.5 (cs/c, < 2.5).
This indicates that the DARS method is more sensitive on measuring the velocity of
a small sample when the ratio of the velocity of the sample to the fluid in the cavity
is less than 2.5.

2. Sensitivity on Q measurement

The modeling of DARS sensitivity on measuring Q is performed by assuming the
sample with the same velocity and density as the oil in the cavity but with different
Q. We keep the Q of 120 for the oil, and we smoothly change the Q of the sample
from 1 to 360.

Figure 8.12 shows the Q of the system versus the ratio of (Q between the small
sample and the oil in the cavity (Qs/Q,). We can see that the Q of the system changes
with the Q of the sample faster when the ratio of Q is less than 0.7 (Qs/Q, < 0.7).
This indicates that the DARS method is more sensitive on measuring the  of a small
sample when the ratio of Q between the sample and the fluid in the cavity is less than
0.7.

The predicted DARS sensitivity through numerical modeling can aid in the design
of the experiment in the laboratory.

We have performed more than 200 simulations for the sensitivity study on either
velocity or Q. The variable grid FD method makes this done in 5 days rather than
10 days required by a constant grid FD method on a 1.4 GHz Athlon computer with
1 GB DDR RAM.

8.4 Lab data modeling

Lab data of some rocks and synthetic samples have been measured from the ex-
periment setup shown in Figure 8.1. We have performed FD acoustic modeling on
some of these data. Here we present the modeling results for a plastic sample and a
sample of Berea. In data modeling, the dimension of the cavity and the properties
of the enclosed silicon oil are the same as those used for the DARS methodology and

sensitivity study.
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1. Modeling the lab data of a plastic sample

The lab data of a plastic sample were measured with the plastic sample at 39
locations along the cavity. The plastic sample has a dimension of 38 mm in diameter
and 36 in length. The density of the plastic sample is 1460 kg/m?® measured directly
in the lab. For FD modeling, the model is discretized with variable grid spacing in z
direction: dz;=1 mm for the small samples and dz,=2 mm for the rest of the large
cavity.

Since we do not know the velocity of the plastic sample, modeling with different
velocities has been performed. We found that the modeling with the velocity of 2200
m/s for the plastic sample best fits the lab data.

Figure 8.13 shows the comparison of the modeling results (the velocity of the
sample is 2200 m/s) and the lab data on the frequency shifts of the 1%, 2"¢ and 37
normal modes. We can see that good agreement between the data and the modeling

results on the three normal modes is achieved.

2. Modeling the lab data of a sample of Berea

The Berea lab data were measured with the Berea sample at 39 location along
the cavity too. The dimension of the Berea sample is 25 mm in diameter and 75 mm
in length. Berea has density of 2370 kg/m3. Again FD modeling is performed on a
spatially variable grid mesh with a fine grid spacing of 1 mm for the Berea sample and
a coarse grid spacing of 2 mm for the rest of the cavity. Using numerical modeling to
fit the lab data, we estimate a velocity of 3300 m/s for the Berea sample.

Figure 8.14 shows the comparison of the modeling results (the velocity of the
Berea sample is 3300 m/s) and the lab data on the frequency shifts of the 1%, 24,
and 3¢ normal modes. The agreement between the data and the modeling results on
the three normal modes is excellent.

These two examples of the lab data modeling demonstrate the efficacy of our
variable grid FD method for DARS modeling.
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8.5 Conclusions

We have conducted numerical modeling to study DARS methodology, sensitivity
and lab data using the variable grid FD method. The use of the variable grid spacing,
which accommodates a small sample in a large cavity, greatly saves computational
time in the modeling, especially for the DARS sensitivity study.

The DARS methodology study shows the changes in resonances of a cavity caused
by the introduction of a small sample. The study also shows that the changes in res-
onances depend on the position of the small sample along the cavity. The sensitivity
modeling study predicts that the DARS method is more sensitive on measuring: (1)
the velocity of a small sample when the velocity ratio of the sample to the fluid in the
cavity is less than 2.5; (2) the Q of a small sample when the Q ratio of the sample
to the fluid in the cavity is less than 0.7. Lab data modeling achieves the excellent
agreement between the numerical results and the lab data on resonance frequency
shift. These studies demonstrate the efficacy of the variable grid FD method for
DARS modeling.

Future work involves applying the visco-acoustic modeling for the lab data to fit
not only the resonance frequency shift but also the resonance-peak bandwidth change.

From this, we can invert Q of the sample from the lab data.
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Figure 8.7: Pressure spectra of the cavity with the sample at different locations for the
frequency range of 500-6500 Hz. we can see that the changes in the resonances depend

on the position of the cavity.
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Figure 8.8: Pressure spectra of the cavity with the sample at different locations for
the frequency range of 1050-1200 Hz. We clearly see that the change in the 1%* mode

resonance depends on the position of the cavity.
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position; (b) Resonance-peak bandwidth versus sample position.
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Figure 8.11: The 1 mode resonance frequency versus the velocity ratio of the sample to
the oil in the cavity. The resonance frequency increases faster when the velocity ratio is
less than 2.5 (cs/c, < 2.5).
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Freq. shift vs. the sample position (Plastic——cs=2200 m/s, ps=1460 kg/n?)
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Figure 8.13: Comparison of the modeling results and the lab data of a plastic sample on
frequency shift of the 1%¢, 2"¢ and 3¢ normal modes.
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Freq. shift vs. the sample position (Berea——cs=3300 m/s, pS=2370 kg/n‘?)
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Figure 8.14: Comparison of the modeling results and the lab data of a Berea sample on
frequency shift of the 1%¢, 2"¢ and 3¢ normal modes.



Appendix A
Fracture symmetric wave modes

In chapter 5, the comparison of numerical results between the TLM (thin-layer
model) and the LSM (linear-slip model) is made on a model with a symmetric source-
fracture geometry (Figure 5.3), therefore only symmetric wave modes along the frac-
ture will be excited. In theory, the TLM supports a family of symmetric modes and
the LSM supports only one symmetric mode. However, we only observe a slow guided
wave in the TLM. To explain this, we present the analysis of fracture symmetric modes
in this appendix.

Following Ferrazzini and Aki (1987), the symmetric modes existing along a frac-

ture describe by the TLM are given by the following dispersion equations:

F =" coth wagh + &R(S) =0, for(>1/Vy, (A-1a)
qr 2 dp
h  ps
PrLeot 2% _ Pspiey =0, for 1)V, <&<1/V;, (A-1b)
qr 2 g

where § is the phase slowness of the mode, p; and p, are the density of fluid and

solid, respectively, h is the fracture aperture, w is the angular frequency, and R is the
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Rayleigh slowness relation
R= (2‘/5252 - 1)2 - 4Vs4§2qIJan

with the Rayleigh slowness of R = 0. The definition of the ¢’s is:

p = \/ ‘52_1/‘/;)2‘7
g = V& = 1/V?|.

The solution of the equation (A-la) is the fundamental mode, which exists for
all frequencies. The phase velocity of this mode is lower than the fluid velocity for
all frequencies and decreases as the frequency decreases. Ferrazzini and Aki call this
mode “very slow waves”.

Solutions of the equation (A-1b) are a family of normal modes, which exist with
ascending series of low cut-off frequencies at coth (whgs/2) = —(psqr)/(prgp) with
¢ = 1/Vs. The phase velocities of these modes start from the S-wave velocity of the
solid at the cut-off frequencies and approach the fluid velocity at high frequencies.

Theoretically, the linear-slip interface (the LSM) has only one symmetric mode
which has the dispersion relation (Haugen and Schoenberg, 2000; Pyrak-Nolte and
Cook, 1987):

|- YENPs piey =, (A-2)
2 g
where Zy is the normal fracture compliance.
This symmetric interface wave, like the first normal mode in the TLM, has a low
frequency cut-off, which is at w = 2, /1/V2 —1/V2/(ps;Zx), corresponding to a phase
velocity of V;. But unlike the first normal mode in the TLM, the phase velocity of

this symmetric mode approaches to Rayleigh wave velocity at high frequencies.
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Figure A.1 shows the dispersion curves of the slow wave (the fundamental sym-
metric mode) and the first symmetric normal mode in the TLM, and the symmetric
mode in the LSM with the material parameters of the fracture model in chapter 5
(Figure 5.3). We can see that the slow wave in the TLM exists for all frequencies,
while the first normal mode of the TLM and the symmetric mode of the LSM have
low cut-off frequencies of 29.1 kHz and 20.4 kHz, respectively. For this model, a
source pulse with central frequency of 3 kHz which is far below the cut-offs only ex-
cites the slow wave in the TLM. The numerical simulations in the paper confirm this
theoretical prediction.

The slow wave observed in the snapshots of the TLM is traveling with a velocity
around 1210 m/s. From equation (A-1la), we obtain a formula to theoretically predict

the slow wave group velocity:

_ OF 1
vg——awF— DT (A-3)

At 3 kHz frequency, the slow wave phase velocity is 810 m/s (from Figure A.1),
then its group velocity calculated from equation (A-3) is 1213 m/s, which is very close
to that estimated from the numerical results. This further verifies the observed slow

wave in the TLM and the used variable-grid FD modeling code.
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Figure A.1: Phase velocity as a function of frequency for the slow wave (the fundamental
symmetric mode) and the first symmetric normal mode of the TLM, and the symmetric
mode of the LSM, respectively. The material properties used are those for the fracture
modeling in the text. V5 is the Rayleigh wave velocity.



Appendix B

DARS theory

In this appendix, we briefly review the quantitative analysis on the changes of the
resonant frequencies of a cavity caused by the introduction of a small sample. This
will help us better understand the DARS modeling study in chapter 8.

For a closed long and thin fluid-filled circular cylinder (a cavity) with rigid walls,

(Figure B.1), the resonant frequencies of the longitudinal modes can be expressed as:

C
fn:n_

= (n=1,2,3..), (B.1)

where c is the sound velocity of the enclosed fluid in the cavity and L is the length
of the cavity. The lowest frequency is called the fundamental frequency or the 1%
harmonic. Integer multiples of the 1 harmonic are labeled as the 27¢, 3", etc.,
harmonics.

With the introduction of a small sample into this cavity (Figure B.2), the resonant
frequencies of the system are perturbed to f, = f, + Af,. The perturbation of
the resonant frequencies can be quantitatively analyzed by considering scattering by
the small sample (Morse and Ingard, 1968). From this analysis, the amount of the

perturbation can be determined by:

wIQNwQ—w—g(E) 5p(|pocovnl” — 8kp2) dv (B.2)
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Figure B.1: A closed long and thin fluid-filled circular cylinder (r << L) with rigid walls
has resonances f, (n=1,2,...).

where w], = 27 f] and w, = 27 f,; dp and 0k are the relative density and compress-

ibility of the sample to the fluid in the cavity:
Ps — Po 5,{:%3—%0

op = ;
Ps Ko

Y

co = 1/pokyg is the sound speed of the fluid in the cavity; Vs and V are the sample
volume and the cavity volume, respectively; v,, and p,, are the velocity and the pressure
inside the sample.

For V; < V, equation (B.2) can be simplified to:

, w2 |V, wy Vs
2t = () ()= 2 (42) () (B3

where

= ff

is the RMS field (velocity and pressure) inside the sample.
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Figure B.2: The fluid-filled circular cylinder with a small sample has perturbed resonances
fo+Af (n=1,2,..).

From equation (B.3), we see that the change of the resonant frequencies propor-
tional to the ratio of the sample volume to the cavity volume. A part of the change
is proportional to the perturbation in the density times the mean-square velocity of
the unperturbed wavefield. A second part of the change is proportional to the per-
turbation in the compressibility times the mean square of the pressure at the sample.
Furthermore, we see that the change in frequency depends on the location of the
sample.

In DARS, we measure the change of the resonant frequencies and estimate the
sound velocity of the sample. This theory can be applied to porous media or attenu-
ating media, therefore DARS provides a method for measuring (Q and the permeability

of the sample.
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