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Abstract

Current strategies and logistics for seismic data acquisition impose restrictions on

the calendar-time temporal resolution obtainable for a given time-lapse monitor-

ing program. One factor that restricts the implementation of a quasi-continuous

monitoring program using conventional strategies is the time it takes to acquire a

complete survey. Here quasi-continuous monitoring describes the process of reser-

voir monitoring at short time intervals. This dissertation describes an approach that

circumvents the restriction by requiring only a subset of a complete survey data

each time an image of the reservoir is needed. Ideally, the time interval between

survey subset acquisitions should be short so that changes in the reservoir proper-

ties are small. The accumulated data acquired are used to estimate the unavailable

data at the monitoring time step, and the combined known and estimated data are

used to produce an image of the subsurface for monitoring.

Quasi-continuous seismic monitoring can be used to monitor geologic reservoirs

during the injection phase of a CO2 sequestration project. It can also be used to

monitor reservoir changes between injector and producer wells during the sec-

ondary recovery phase in an oil field. The primary advantage of a quasi-continuous

monitoring strategy over the conventional strategy is the high temporal resolution

of the reservoir changes obtainable. Naturally, the spatial resolution of the image

obtained using a subset of the data from a full survey will be worse than the spa-

tial resolution of the image obtained using the complete data from a full survey.

However, if the unavailable data are estimated perfectly, the spatial resolution is

not lost. The choice of estimation algorithm and the size of the known data play an

important role in the success of the approach presented in this dissertation.
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First, I demonstrate the practicability of my approach using synthetic and field

surveys. Second, I demonstrate its efficiency with crosswell traveltime data, and

full-trace surface-seismic data. For the crosswell traveltime data demonstration, I

show, with synthetic and field data, how quasi-continuous reconstructions of the

reservoir velocity model can be obtained. I use prediction-error filters (PEFs) in

estimating unavailable seismic traveltimes. For the surface-seismic data demonstra-

tion, I show how quasi-continuous migrated images can be obtained from partial

survey data. I use minimum-weighted-norm interpolation (MWNI) to estimate un-

available seismic traces.
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Chapter 1

Introduction

1.1 Problem Overview

In the petroleum industry and in other fields of earth science, earth vibrations

caused by sound wave propagation are measured. The measured signals can be

processed so that it provides information about fluid properties in geologic reser-

voirs in the earth. If we repeat these measurements, we can observe changes in the

fluid properties, provided sufficient time had elapsed between measurements. This

is the idea behind time-lapse seismic monitoring.

Subsurface monitoring is needed for geologic CO2 storage site licensing, assess-

ing reservoir operations, assessing hazards, and monitoring subsurface fluids in a

variety of applications. Time-lapse monitoring projects are designed to observe

changes in a reservoir over a period of time. Traditionally, this period can vary

from a few months to a few years (e.g. Landrø et al., 1999; Mathisen et al., 1995;

Koster et al., 2000; Arts et al., 2004), and significant changes would have occured

in the reservoir. Figure 1.1 is a synthetic example of traditional seismic time-lapse

monitoring. Cost and survey time often imposes restrictions on how frequently

time-lapse seismic surveys can be acquired. In some cases, particularly when mon-

itoring subsurface reservoirs for hazard assessment, it is important to have shorter

time-intervals between surveys. Short time intervals between time-lapse surveys

will allow early detection of hazards. In this dissertation, I propose a method that

1



2 1.1. PROBLEM OVERVIEW

makes monitoring at short time intervals, or quasi-continuous seismic monitoring,

practical. I define quasi-continuous monitoring as reservoir monitoring at a rate

consistent with the changes in the reservoir.

The time interval between consecutive time-lapse surveys in quasi-continuous

monitoring is significantly shorter than that in conventional monitoring. This time

interval is on the order of a few days to a few months. The quasi-continuous reser-

voir monitoring approach I present in this dissertation targets monitoring projects

where a good knowledge of the temporal changes in the physical properties of a

reservoir is important. These projects include monitoring reservoirs with structural

stability problems, geologic reservoirs used in storing CO2, and reservoirs where

management decisions have to be made as the project proceeds. My approach uses

data-estimation-based quasi-continuous seismic reservoir monitoring to take advan-

tage of the small changes expected to occur in a reservoir over a short time period.

Seismic imaging has played a large part in subsurface monitoring projects, espe-

cially in petroleum exploration (e.g. Harris et al., 1995; Rickett and Lumley, 2001).

This is partly because seismic signals can penetrate to the typical burial depth of

reservoirs in virtually any geologic setting to capture the changes that occur in

reservoir rock properties (Wynn, 2003), and partly because seismic data processing

theory is well developed and understood (see Yilmaz, 1987, 2001). In seismic time-

lapse reservoir studies, changes in reflection amplitudes are used to determine the

physical changes that have occurred in a reservoir (e.g. Burkhart et al., 2000; Arts

et al., 2004). The use of seismic imaging and inversion in time-lapse monitoring

takes advantage of the changes in the seismic properties of the reservoir rock during

the time interval under consideration.

The use of dedicated ocean-bottom cables (OBCs) in time-lapse reservoir moni-

toring has increased in recent years, e.g. at the Valhall Field (Barkved et al., 2005),

Clair Field (Foster et al., 2008), and the Chirag-Azeri Fields (Foster et al., 2008).

The ability to use embedded receivers makes the proposed quasi-continuous mon-

itoring approach even more appealing by eliminating the cost of repeated receiver

deployment. Oil fields with embedded instrumentation are called instrumented oil

fields (e.g. Ebrom et al., 2000; Hottman and Curtis, 2001; Maxwell and Urbancic,
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Figure 1.1: A synthetic example of time-lapse seismic monitoring. (a) Synthesized
image of the subsurface at an initial survey time. (b) Synthesized image of the
subsurface at a second survey time. (c) Difference between the image in (a) and
the image in (b), showing changes in the subsurface geologic units.
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2001).

The temporal frequency of time-lapse surveys is a key factor in designing a quasi-

continuous monitoring project; therefore the ability to vary the data acquisition fre-

quency is of the utmost importance. Attempts have been made to establish continu-

ous and quasi-continuous seismic monitoring scenarios which have been primarily

designed around quick turn-around of acquired conventional 3D survey sized seis-

mic data volumes (.i.e., fast delivery of the final image after the data are acquired,

as in Lumley (2001) and Clarke et al. (2005)). The difficulty in implementing a

truly continuous time-lapse seismic monitoring project using conventional data ac-

quisition parameters lies in the long time frame needed, i.e., the time it takes to

acquire the required data volume in the field, and the time it takes to process it.

If implemented in the field, my approach would involve acquiring less data than

required for conventional surveys but acquiring it more frequently. The recorded

data volume at each survey time could be an order of magnitude less than what

would be recorded for a conventional 2D or 3D survey, depending on the quasi-

continuous survey frequency. My approach is somewhat similar to the recently

developed concept of compressed seismic data acquisition (Candès and Romberg,

2007; Candès and Wakin, 2008; Herrmann and Hennenfent, 2008), in the sense

that sparse data are acquired and then used to estimate unrecorded data.

Figure1.2 is an illustration of the approach presented in this dissertation. With

a conventional time-lapse monitoring approach, large, complete datasets are ac-

quired at each survey. With the approach presented in this dissertation, only a

small subset of the conventional data is acquired at each incremental survey. Shot-

receiver pairs used in each incremental survey vary throughout one complete survey

cycle, such that the accumulated data acquired at the end of a cycle gives one full

survey. The unrecorded data at each incremental survey are estimated and later

combined with the sparse, recorded data to reconstruct geophysical images of the

subsurface.
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Figure 1.2: An illustration comparing the conventional time-lapse approach with
the proposed quasi-continuous approach. (a) Complete datasets from the conven-
tional acquisition strategy. (b) Sparse datasets from the proposed acquisition strat-
egy. (c) Estimated datasets from the proposed acquisition strategy.
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1.2 Background

Until now, seismic data estimation has involved computing unavailable or unknown

data between available or known data within the same dataset (e.g. Spitz, 1991;

Crawley, 2000; Abma and Kabir, 2006; Thomson et al., 2006; Zwartjes and Gisolf,

2007; Curry, 2008). I call this “single-dataset interpolation.” The results are con-

strained by information only available in the incomplete dataset. The approach I

present is based on multi-dataset interpolation, where a sequence of independent

and incomplete datasets collected over a slowly changing field is used to estimate

the unavailable data in the incomplete datasets. This is the strategy used in the

electronic image processing field, where high-resolution video images are produced

from a series of low-resolution images (e.g. Schultz and Stevenson, 1996; Hardie

et al., 1997). This approach benefits from information present in multiple datasets.

Since most time-lapse data changes occur in reservoirs and the reservoir makes up a

small percentage of the subsurface imaged, we can take advantage the redundancy

in the datasets.

In this dissertation, I apply the new strategy to time-lapse seismic data using ex-

isting data-estimation methods. I use two data-estimation methods that ignore the

physics of wave propagation, and therefore requires no knowledge of the velocity

field. These methods are described in Section 2.1.

Several techniques have been proposed for geophysical model reconstruction

from time-lapse sparse data. These include dynamic imaging techniques, for exam-

ple DynaSIRT (Santos and Harris, 2008), ensemble Kalman filter dynamic inversion

(Quan and Harris, 2008), and temporal regularization joint inversion (Ajo-Franklin

et al., 2005). DynaSIRT is a dynamic iterative reconstruction technique that uses

weighted data from other surveys together with the data from the survey of inter-

est to iteratively reconstruct a geophysical model for the survey of interest. On the

other hand, dynamic inversion with ensemble Kalman filtering updates the geo-

physical model obtained from the current sparse data using the computed Kalman

gain. The joint inversion approach presented by Ajo-Franklin et al. (2005) relies

on regularization along the slow-time dimension to account for the sparsity of the
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data.

The reconstruction techniques listed above rely on the inversion process to elim-

inate the effects of any changes in data acquisition patterns from one survey to

another. With my approach, differences in the data acquisition footprint are ac-

counted for in the data space prior to inversion or image processing. However, the

benefit of processing sparse time-lapse data directly, using regularization or oth-

erwise, is the small amount of data processed, thus requiring less computational

resources.

1.3 Notable Reservoir Catastrophes

The notorious collapse of the Baldwin Hills dam on the 14th of December 1963 is

thought to have been caused by oil production and injection of water for secondary

recovery in the Inglewood oil field in Los Angeles (Hamilton and Meehan, 1971).

These reservoir operations were responsible for an overall ground subsidence of 1.8

meters or more. Movement occurred along faults and surfaces of weakness that ex-

isted in the sediments below the dam once the accumulated strains were released.

This led to failure of the dam, which collapsed, releasing approximately 945 million

liters of water, along with mud and debris, onto the communities below the Baldwin

Hills, damaging over 250 homes. Fortunately, millions of lives were saved because

the communities were evacuated when indications of imminent failure were ob-

served. Besides the loss of the dam, the collapse caused an estimated $12 million

in property damage (Hamilton and Meehan, 1971).

The collapse of the Baldwin Hills dam makes a strong case for an efficient sub-

surface monitoring system, and more specifically, a quasi-continuous subsurface

monitoring system. A quasi-continuous reservoir monitoring system at the Baldwin

Hills dam would have provided an opportunity for early detection of the subsidence

below the dam, which could have spurred preemptive action, probably in the form

of a controlled release of the water in the dam long before the dam collapsed. Also,

appropriate management decisions regarding production from and water injection

to the oil field could have been made in response to the subsidence.
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One of the climate change mitigation options aimed at controlling greenhouse

gas contributions from anthropogenic activities is carbon dioxide capture and se-

questration in geologic reservoirs (Benson et al., 2005), a procedure that carries its

own possibilities for disaster. During the injection phase, when the reservoir pres-

sure changes rapidly, faults may be reactivated, creating fluid flow conduits that

can conduct CO2 from the reservoir elsewhere.

In the event of a massive CO2 leak to the surface in close proximity to human

settlement, lives could be at great risk. An illustration of the danger, though in

this case a natural disaster, is the 1986 Lake Nyos CO2 gas release in Cameroon.

About 1700 people and 3000 cattle are reported to have been killed by a sudden

release of CO2 gas from Lake Nyos, a crater lake, on August 21, 1986 (Kling et al.,

1987). Upwelling mantle material containing dolomite, undergoes partial melting,

releasing CO2 as pressure drops. The released CO2 from the degassed dolomitic

materials accumulates in near-surface sites and can be released to the atmosphere

instantaneously, as happened at Lake Nyos (Kling et al., 1987).

The Lake Nyos disaster provides a reference for potential effects of a failed CO2

sequestration project. The timing of the accumulation and release of the CO2 gas at

Lake Nyos could not have been predicted, since it occurred naturally and unexpect-

edly. For CO2 sequestration in geologic reservoirs, the timing of the accumulation

is known. An effective monitoring program, able to detect potential catastrophes

early, should be established before any sequestration project begins.

Seismic geophysical investigation methods can be used to detect changes in the

seismic properties of geologic units induced by accumulation of CO2 in the subsur-

face. For instance, unintended migration of buried CO2 along faults or fractures

into overlying geologic units, can be detected by seismic methods. Early detection

is of utmost importance. The time required to collect and process conventional seis-

mic surveys restricts how frequently the subsurface can be imaged. A continuous or

quasi-continuous monitoring strategy that requires less time than the conventional

approach is therefore needed.
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1.4 Terminology

I make the distinction between the two-way traveltime axis of a seismic trace, which

I call the fast-time axis, and the time axis of the surveys in a time-lapse data volume,

which I call the slow-time axis.

I refer to a completely sampled dataset, which would normally be recorded for

conventional seismic data studies, as a complete or full dataset, whereas a subset of

the complete dataset is a sparse, partial or incomplete dataset.

I use the term baseline to describe the field project site prior to the beginning of

the process being monitored. A baseline seismic dataset is the dataset acquired be-

fore monitoring began. The baseline image is the image obtained from the baseline

dataset, and the baseline velocity model is the velocity model built for the baseline

dataset.

I call the dataset collected from the time of the baseline survey to the time of a

monitor survey, including all intermediate monitor surveys, the accumulated dataset

of that monitor survey. This is different from the specific data subset collected at

that survey.

I use the term survey time to describe an instance in time when all recorded

data are collated. Accordingly, incremental survey times refer to consecutive survey

times.

I make a distinction between the image time and the estimation time. The image

time is the instant in time that a resulting processed seismic image or tomographic

image represents, whereas the estimation time is the time when the most recent

sparse dataset in the accumulated sparse dataset was acquired.

I refer to the difference between the image time and the estimation time as the

estimation slow-time lag. Since unavailable data at any time are estimated using

sparse data acquired at the time of interest, previously acquired sparse data, and

sparse data acquired at later times if they exist, there is a lag time between the time

of interest and the estimation time. Suppose I have six sparse datasets acquired at

two-week intervals, and I estimate unavailable data for all sparse survey datasets at

the sixth survey time; my estimation slow-time lag for survey three is six weeks.
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I distinguish the terms estimated traces and estimated traveltimes from the term

estimated data. Estimated traces or traveltimes are the previously unknown mea-

surements in the sparse data which have now been estimated, while the estimated

data are a combination of the estimated traces or traveltimes, and the true, known

traces or traveltimes.

1.5 Quasi-continuous vs Sparse Data Monitoring

As explained in previous sections, this dissertation presents a data-estimation-based

approach for time-lapse monitoring. This approach can be applied in one of two

ways; quasi-continuous monitoring, or time-lapse monitoring with sparse data. In

quasi-continuous monitoring, the time interval between successive survey times is

small relative to the reservoir changes of interest. This interval is on the order

of days or weeks or months, and acquired data are processed and interpreted as

full survey data subsets are acquired. In contrast, in time-lapse monitoring with

sparse data, the interval between successive surveys is large relative to the reservoir

changes of interest, on the order of months or years. In both cases, newly acquired

data are used to estimate unrecorded data at the current survey time as well as to

re-estimate unrecorded data at previous survey times.

1.6 Practicability

Standard 3D surveys over hydrocarbon reservoirs could take anywhere from a few

weeks to a few months to complete (e.g. MacLeod et al., 1999). Depending on

the kind of changes occurring in the reservoir, its physical properties may vary be-

tween the first shot-time and the last shot-time. These short-term changes, if de-

tected early, may provide useful information helpful in making decisions on reser-

voir project operations.

Designing a field survey for the approach presented in this dissertation could

be challenging. Figure 1.3 shows a possible source deployment scenario for quasi-
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Figure 1.3: (a) An idealized illustration of seismic shot-lines from a standard full
survey. (b) The survey shot-lines shown in (a) split into four groups based on shot
times.
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continuous imaging in a monitoring project over a period of three months. I have

assumed that the field is an offshore field; the receivers are dedicated OBCs; and

the airgun sources are towed by a source boat. With the conventional approach,

one image will be produced from this survey. However, if a slow-time temporal res-

olution of three weeks for the reservoir changes is good enough, the deployed shots

could be split into four groups as shown in Figure 1.3. Obviously, the approach can

also be applied to land/onshore surveys. In this case, the receivers are geophones

and can also be permanently installed.

Because each group is acquired within a period of three weeks, the slow-time

temporal resolution of interest, four images of the reservoir over the course of three

months can be produced. This strategy can be extrapolated to any time frame.

Figure 1.4 shows an acquisition map from an OBC survey at the Valhall Field (van

Gestel et al., 2008), with a time scale similar to that diagrammed in Figure 1.3.

Even though the project was not designed for the approach presented, it is obvious

that a field implementation of the approach described in Arogunmati and Harris

(2009, 2010) is possible using this dataset. In Chapter 5, I present results obtained

when my approach is applied to the Valhall time-lapse survey dataset as shown in

Figure 1.4.

The data acquisition pattern proposed in this dissertation is equivalent to pro-

longing a conventional seismic survey. Prolonging a standard seismic data acqui-

sition project to obtain quasi-continuous seismic data is attainable, since seismic

surveys today are not acquired instantaneously, even though the data are processed

as such.

A quasi-continuous seismic project is economically efficient if permanently in-

stalled seismic sources and receivers are used. This eliminates the equipment de-

ployment costs associated with each seismic survey. In addition, it makes repeatabil-

ity in the acquired data possible, and it favors flexibility in setting data-acquisition

intervals. Projects with dedicated receivers are now common. Examples are the

Valhall Field (Barkved et al., 2005) and the Clair Field (Foster et al., 2008), where

permanently installed OBCs are used. Also, the availability of fiber-optic networks

and broadband satellite systems (Houston and Grumman, 2003) means the data
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2003

2004

2005

2006

2007

2008

S1

S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

Table 1.1: Shot times for the first 11 surveys at the Valhall Field operated by BP.
The data acquisition times for the surveys range from three weeks to two months.

processing station need not be close to the survey location.

The offshore seismic data obtained for the Valhall Life of Field Seismic (LoFS)

project, a time-lapse reservoir monitoring project operated by BP at the Valhall Field

in the North Sea, can be used as an example. Figure 1.1 shows the shot times for

the first 11 surveys. The data acquisition times for the different surveys range from

three weeks to two months. However, a single image was produced for each survey,

as if it were an instantaneous seismic image of the subsurface.

1.7 Primary Contribution

In this dissertation, I present a seismic time-lapse monitoring strategy that allows

easy variability in slow-time temporal resolution. It has the potential to be the

foundation for continuous seismic reservoir monitoring. The strategy can be used

on seismic traveltime or seismic full-trace data. I show with examples that it can be

used to quasi-continuously monitor geologic CO2 storage reservoirs and hydrocar-

bon reservoirs. The approach presented in this dissertation accounts for differences

in the data acquisition footprint prior to imaging or inversion, in the data space. In

addition, because operations are in data space, bad data are easily identified and

can be removed prior to imaging or inversion. This makes quality control easier.
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1.8 Thesis Overview

In Chapter 2, I introduce the primary methods and algorithms used in this disserta-

tion for data estimation. These include data estimation using prediction-error filters

(PEFs), and data estimation using minimum-weighted-norm interpolation (MWNI).

I describe how the heterogeneity in the seismic data is overcome, and I use simple

synthetic examples to show the efficiency of the data estimation methods. I also

describe the error-analysis tool I developed for assessing the accuracy of my esti-

mated data. This new tool addresses the fact that when a missing seismic trace is

estimated, inaccuracies could exist in the form of amplitude errors or phase errors

(or both) relative to the true missing trace. For a synthetic test, the true trace is

usually known, and the estimation error can be established. For a field dataset with

missing traces, the true trace may not be known; however, an analysis of the perfor-

mance of the estimation algorithm on a synthetic dataset can provide insight into

how well missing field data are estimated.

In Chapter 3, I apply my approach to synthetic and field crosswell traveltime

data. I implement an iterative PEF/data estimation approach to the quasi-continuous

monitoring problem. I describe the benefits of estimating missing data using PEFs,

a stochastic approach. I illustrate my argument using a synthetic model simulat-

ing a monitored CO2 geologic storage site over a period of 140 weeks. I allow the

injected CO2 to leak from the intended reservoir into a shallower geologic unit to

show how quasi-continuous monitoring can be used in the early detection of the

leak. I use synthetic velocity models derived from inverted data from the McElroy

Field in West Texas, where CO2 was used as the injected fluid in secondary recovery.

In addition to showing results from synthetic examples, I also show results obtained

after applying my approach to the McElroy time-lapse field data.

In Chapter 4, I apply my approach to full-trace seismic data. I use MWNI to

estimate missing data from two unique synthetic time-lapse datasets. The first is

a time-lapse 2D dataset synthesized using velocity models that represent a CO2

sequestration site monitored over a period of 20 months at one-month intervals.

As I did with the example shown in Chapter 3, I allowed the injected CO2 to leak
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from the intended reservoir to a geologic unit above the reservoir. The ability of

my approach to track the changes caused by the CO2 shows its efficiency. The

second dataset is a time-lapse 3D dataset synthesized using velocity models that

represent a petroleum reservoir undergoing secondary recovery. In this example,

the injected water is monitored to ensure it travels in the intended direction. In

a real world scenario, a quasi-continuous project could be established to ensure

that the right injection rate and pressure are used, and operational decisions can be

made accordingly.

In Chapter 5, I introduce the Valhall Field dataset. I present two possible ap-

plications of my approach to the Valhall Field. In the first application, I subsample

and reorganize the dataset from surveys 9, 10, and 11 into three quasi-continuous

datasets and use my approach to monitor the changes in the reservoir during the

period over which surveys 9, 10, and 11 were acquired. In the second application,

I organize the dataset from survey 4 of the time-lapse data volume into three quasi-

continuous datasets and use my approach to monitor the changes in the reservoir

during the period over which survey 4 was acquired. In the first case, the monitor-

ing time-scale is the same as the time-scale in the original dataset. In the second

case, the monitoring time-scale is significantly smaller than the time-scale in the

original dataset. The time interval between images using my approach is 15 days,

and the average time interval between surveys in the original dataset is six months.

Finally, in Chapter 6, I conclude the thesis, bringing together the ideas presented

in the previous chapters and making recommendations regarding future directions

for the idea presented in this dissertation. I also summarize the strengths, weak-

nesses, and limitations of my approach.

1.9 3D seismic image and data display

In chapters 4 and 5, I illustrate the efficiency of my proposed approach using 3D

surface-seismic data. Unlike 2D data, 3D data volumes cannot be efficiently dis-

played in their entirety on paper. I display 3D data by showing selected 2D slices

from the data volume in the xy plane, xz plane, and yz plane. On each displayed
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Data volume with slice location

Displayed slices

Figure 1.5: Template for displaying 3D seismic data and velocity models used in
this dissertation. The 3D volume is shown using slices along all three planes.

slice, its intersection with the other two slices will be indicated. An illustration of

this template is show in Figure 1.5.

1.10 Assumptions

The quasi-continuous monitoring strategy presented in this dissertation assumes

that the slow-time temporal resolution of the changes in the physical properties of

the reservoir has a higher priority than the spatial resolution of the same changes

in the reservoir; therefore we can sacrifice some spatial resolution for a higher

slow-time temporal resolution. The spatial resolution is reduced relative to the

high resolution obtainable when completely sampled datasets are used in image

reconstruction. However, my approach uses missing data estimation to partially

restore the spatial resolution compromised by recording sparse data.

I also assume that a completely sampled baseline dataset exists. I make this

assumption because field project sites are studied extensively before being selected,
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and the seismic dataset used in site selection is often completely sampled. Since

the sparse data recorded at short time intervals are intended to track small changes

in the reservoir, the baseline dataset provides information on the non-changing

background structure of the subsurface.

Finally, I assume that the recorded data are repeatable from one time-lapse sur-

vey to the other within a very narrow error range. In other words, recorded seismic

data do not vary significantly from survey to survey if there are no physical changes

in the subsurface; therefore, any changes in the recorded data from one survey to

another are attributed to changes in the reservoir and not to inconsistencies in data

recording parameters.



Chapter 2

Time-Lapse Data-Estimation

Methodology

2.1 The Data-Estimation Problem

In this dissertation, I present a quasi-continuous seismic reservoir monitoring ap-

proach. I assume that a dataset can be recorded either completely or partially. I call

the partially acquired dataset a sparse dataset. A complete dataset is recorded over

a period of time, and at each incremental survey time, the recorded data subset can

be categorized as a sparse dataset.

For clarity, I will represent the spatial domain with number subscripts and the

slow-time temporal domain with number superscripts. Also, I will represent com-

pletely sampled data with the letter subscript c, sparsely sampled data with the

letter subscript s, and unrecorded data with the letter subscript u. Using these

rules, I can represent complete datasets from the first and second surveys as,

d1
c = [ d1

1 d
1
2 d

1
3 · · · d1

n ]T ; n = last sample number , (2.1)

and

d2
c = [ d2

1 d
2
2 d

2
3 · · · d2

n ]T ; n = last sample number , (2.2)

respectively. The sum of the sparse dataset and the unrecorded dataset gives the

19
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complete dataset; i.e.,

dkc = dks + dku , (2.3)

where dks is the sparse data recorded at time k, and dku is the unrecorded data at

time k. An example of sparse, unrecorded, and complete datasets at time k = 2 is

d2
s = [ d2

1 0 d2
3 d

2
4 0 0 d2

7 0 d2
9 ]T ,

d2
u = [ 0 d2

2 0 0 d2
5 d

2
6 0 d2

8 0 ]T , (2.4)

d2
c = [ d2

1 d
2
2 d

2
3 d

2
4 d

2
5 d

2
6 d

2
7 d

2
8 d

2
9 ]T .

By writing an identity equation for (2.3),

dkc = Sdkc + (I− S)dkc , (2.5)

we observe that

dks = Sdkc ; dku = (I− S)dkc , (2.6)

where S is a data selection operator that selects which data are recorded.

If the accumulated complete dataset consisting of data from k surveys is written

as,

tkc = [ d1
c d2

c d3
c · · · dkc ]T , (2.7)

then

tkc = tks + tku , (2.8)

where tks is the accumulated sparse dataset at time k, and tku is the accumulated

unrecorded dataset at time k. The quasi-continuous monitoring strategy requires

measuring sparse data at short time intervals, i.e., measuring tks . This implies that

we estimate the unrecorded tku using the measured tks . To estimate the unrecorded

data using the autoregressive model, I make the ergodicity assumption: I assume

that the statistics of the recorded seismic trace in space are equivalent to the statis-

tics of one repeatedly recorded trace. This assumption is fundamental to seismic

data estimation using prediction-error filters (PEFs). Since this assumption is valid
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only in small regions of space, I use the non-stationary formulation of the autore-

gressive data-estimation method. The goal of my estimation problem is to obtain,

by inversion (see Menke, 1984; Tarantola, 1987), an estimate of the accumulated

complete data, t̃kc , using the accumulated recorded sparse data, tks , at time k; that

is,

t̃kc = tks + t̃ku , (2.9)

where t̃ku is the estimate of the accumulated unrecorded data at time k.

2.1.1 Optimal Linear Prediction

My derivation for the optimal linear predictor follows that described in Gilgen

(2006). Let the series di, i = 1, 2, ..., n− 1, be a realization of the stochastic process,

Di, with a variance σ2, and letDn be a random variable for data measured at time n.

Also, let d̂n be a realization of the estimator D̂n = D̂n(D1, D2, ..., Dn−1). Then d̂n is

called a predicted value of Dn, and D̂n is a prediction of Dn. An optimal prediction

of dn minimizes the mean square of the prediction error, ên, where ên = Dn − D̂n.

The variance of ên, V ar ên, is defined as,

V ar ên = E{[Dn − D̂n]2} , (2.10)

where the symbol E is the expected value symbol.

Given the above definitions, we can write

D̂n = a1Dn−1 + a2Dn−2 + ...+ an−1D1 , (2.11)

D̂n =
n−1∑
k=1

akDn−k . (2.12)
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Equation (2.12) is called an optimal linear prediction if a = [a1, a2, · · · , an−1]T min-

imizes the prediction error defined in (2.10). From (2.12), we can deduce

d̂n =
n−1∑
k=1

akdn−k . (2.13)

Optimal linear prediction is the foundation of autoregressive data estimation. Au-

toregressive models have been applied in many data prediction and data estima-

tion problems (e.g. Takanami and Kitagawa, 1991; Schultz et al., 1998; Myers and

Schultz, 2000). A random sequence, dn, with zero mean is an autoregressive pro-

cess of order p when the most recent p outputs and the current input can be used

to recursively generate the next output (Jain, 1998). This can be stated as follows:

dn =
∑p

k=1 akdn−k + εn ,

E[εn] = 0; E{[εn]2} = β2; E[εnεm] = β2δn−m; E[εndm] = 0,m < n,

(2.14)

where εn is a zero-mean, stationary input sequence independent of previous out-

puts, and ak are the elements of a PEF. Based on only the past p samples, the

quantity

d̄n
∆
=

p∑
k=1

akdn−k (2.15)

is the best linear mean-square predictor of dn (Jain, 1998). This implies that

dn = d̄n + εn . (2.16)

We can rewrite (2.14) as

εn = dn −
p∑

k=1

akdn−k . (2.17)
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In matrix-vector form, (2.17) can be expressed as
ε1

ε2
...

εn

 =


d1

d2

...

dn

−


d0 0 · · · 0

d1 d0
. . . 0

...
... . . . ...

dn−1 dn−2 · · · dn−p




a1

a2

...

an

 (2.18)

or 

d0

ε1

ε2
...

εn


=



d0 0 0 · · · 0

d1 d0 0
. . . 0

d2 d1 d0
. . . 0

...
... . . . . . . ...

dn dn−1 dn−2 · · · dn−p





1

−a1

−a2

...

−ap


. (2.19)

If we assume that d0 = 0, and that di = 0 for i > n, we can write



ε1

ε2
...

εn
...

εn+p−1


=



d1 0 0 · · · 0

d2 d1 0
. . . 0

...
... . . . . . . ...

dn dn−1 dn−2 · · · dn−p

0 dn dn−1 · · · dn−p+1

0 0 dn · · · dn−p+2

...
... . . . . . . ...

0 0 0 · · · dn





1

−a1

−a2

...

−ap


. (2.20)

The right hand side of (2.20) is a convolution operation; therefore we can use the
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commutative property of convolution to rewrite (2.20) as



ε1

ε2
...

εn
...

εn+p−1


=



1 0 0 · · · 0

−a1 1 0
. . . 0

−a2 −a1 1
. . . ...

... −a2 −a1 · · · 1

−ap
... −a2 · · · −a1

0 −ap
... · · · −a2

...
... . . . . . . ...

0 0 0 · · · −ap





d1

d2

d3

...

dn


. (2.21)

Using boldface, uppercase letters to represent matrices and boldface lowercase let-

ters to represent vectors, (2.20) and (2.21) can be written as

ε = Da (2.22)

and

ε = Ad (2.23)

respectively. The matrix A contains row-shifted copies of the PEF coefficient vector

a, while the matrix D contains row-shifted copies of the data vector d.

While data prediction deals primarily with computing yet-to-be-measured data

samples from previously measured data samples, data estimation deals with com-

puting missing data samples in an incomplete set of data samples. To estimate

missing data using the autoregressive model, (2.22) and (2.23) are satisfied by

minimizing the prediction error, ε, according to (2.16).

Claerbout (1998) suggests a two-stage process for filling in missing data using

autoregression. In the first stage, the optimal PEF for the incomplete data is esti-

mated. In the second stage, the estimated PEF is used to estimate the missing data.

To compute the optimal PEF, we use a training dataset. This training dataset can be

the incomplete dataset with the missing data masked out or a different dataset with

similar statistical properties to the one we wish to estimate. The PEF is obtained
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with (2.22) by minimizing the residual (prediction error), rd:

0 ≈ rd = DKa + d . (2.24)

where K is a masking operator that ensures that the constrained filter coefficients

remain unchanged. These include the zero-lag coefficient of the filter, a, which has

a value of 1. K is similar to the identity matrix but has a value of zero at positions

corresponding to constrained filter coefficients. Equation (2.24) assumes that the

data vector, d, is stationary and can be described by a single PEF.

Guitton (2003) presented an approach for estimating PEFs for non-stationary

data. This approach allows the PEF coefficients to vary smoothly from one end of

the data to the other during the convolution operation. In this case, we solve for a

non-stationary PEF of the following form:

fns = [ a0 | a1 | a2 | · · · | an ]T , (2.25)

where

ak = [ 1 − a1,k − a2,k − a3,k · · · − ap,k ]T . (2.26)

We solve by minimizing the residual,

0 ≈ rd = D0Ka0 + D1Ka1 + · · ·+ DnKan + d = DnsKnsfns + d , (2.27)

where a0, a1, a2, · · · , an, are distinct stationary PEFs; fns is a non-stationary PEF

with the vertical lines separating distinct PEFs; and Dk contains the subset of d to

be convolved with ak. Dns and Kns are non-stationary representations of D and

K respectively. The objective functions for the least-squares minimization of (2.24)

and (2.27) are

Φ = ||rd||2 = ||DKa + d||2 (2.28)

and

Φ = ||rd||2 + α2||rr||2 = ||DnsKnsfns + d||2 + α2||RKnsfns||2 (2.29)
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respectively, where rr = RKnsfns, α2||rr||2 is a regularization term, R is a rough-

ening operator, and α is a scaling constant. The regularization term is used to

ensure that we obtain a smoothly varying, non-stationary PEF. Minimizing (2.28)

with respect to a and rearranging the terms give

a = −
(
K†D†DK

)−1
K†D†d , (2.30)

where the symbol, †, denotes the complex conjugate transpose. Minimizing (2.29)

with respect to fns and rearranging the terms give

a = −
(
K†nsD

†
nsDnsKns + α2K†nsR

†RKns

)−1
K†nsD

†
nsd . (2.31)

For a given image, a non-stationary PEF takes a longer time to compute than a

stationary PEF, because there are many more independent unknowns in the inverse

problem.

After computing the PEF, a, the missing data are estimated by minimizing the

residual:
0 ≈ ra = ASd + AHd ,

H = I− S ,
(2.32)

where S is a masking operator similar to the identity matrix, except that it has

values of 1 in the diagonal positions corresponding to known data and zeros in the

diagonal positions corresponding to missing data locations. I is the identity matrix,

and H is the masking operator for the unknown data. In the non-stationary case,

fns, the residual of the non-stationary convolution operation is used to estimate the

missing data:

0 ≈ rf = A0S0d0 + A0H0d0 + A1S1d1 + A1H1d1 + · · · = FnsSd + FnsHd , (2.33)

where Ak is a matrix representing convolution with ak, dk is the subset of d con-

volved with ak, and Fns is a matrix representing convolution with fns. The objective
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functions for the least-squares minimization of (2.32) and (2.33) are

Φ = ||ra||2 = ||ASd + AHd||2 (2.34)

and

Φ = ||rf ||2 = ||FnsSd + FnsHd||2 (2.35)

respectively. Minimizing (2.34) with respect to the data d and rearranging the

terms give
d = −

(
H†A†AH

)−1
H†A†r0 ,

r0 = ASd ,
(2.36)

where r0 is a constant vector that holds the output of the PEF convolved with the

known data, Sd. Minimizing (2.35) with respect to the data d and rearranging the

terms give
d = −

(
H†Fns

†FnsH
)−1

H†Fns
†r0 ,

r0 = FnsSd ,
(2.37)

where r0 is a constant vector that holds the output of the non-stationary PEF con-

volved with the known data Sd. Equations (2.36) and (2.37) are used to compute

the estimated data. I use the non-stationary form of the autoregression model to

compute t̃ku in (2.9).

Data covariance information (see Journel and Huijbregts, 1978; Cressie, 1993)

for a given dataset are approximated by its PEF. A PEF can be constructed in any

number of dimensions. Figure 2.1 shows PEF shapes in 1-, 2- and 3-dimensions.

Ideally we would like the filter to be causal. Notice that the leading values of

the 2- and 3-dimensional PEF shapes are not at the corners of the PEFs. This is

because we would like to predict as many slopes as possible in the incomplete data

being reconstructed with the PEF. Having the leading value at the corner limits the

number of slopes or trends predictable by the PEF.

In Chapter 3, PEFs will be used to estimate unavailable crosswell-seismic travel-

times in a quasi-continuous sparse dataset. Because a seismic arrival is deterministic

and is hyperbolic for horizontal layers, it cannot readily be described as a random
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(a) (b) (c)

Figure 2.1: Shapes of prediction-error filters. (a) 3-term 1-dimensional PEF. (b) 13-
term 2-dimensional PEF. (c) 63-term 3-dimensional PEF. This figure was modified
from Curry (2008).

sequence with zero mean. However, the arrival can be flattened by applying a

moveout correction (e.g. de Bazelaire, 1988; Castle, 1994; Tsvankin, 1995; Yilmaz,

1987) or by computing and subtracting the hyperbolic trend from the arrival. If the

mean is now removed from the picked flattened arrival traveltimes, the result can

be described as a random sequence with zero mean. This is illustrated in Figures

2.2 and 2.3.

2.1.1.1 Helical Coordinate

Seismic data used in geophysical studies are usually multidimensional, combining

one or more spatial dimensions and a fast-time dimension. Autoregressive methods,

on the other hand, are often used in one-dimensional problems. An efficient algo-

rithm for solving inverse problems is the conjugate gradient algorithm (Hestenes

and Stiefel, 1952). This algorithm requires computing forward and adjoint opera-

tions. Equations (2.20) and (2.21) show that the forward operation in estimating

missing data using autoregressive methods is convolution. The adjoint operation to
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Figure 2.2: (a) shot gather from a synthetic crosswell acquisition experiment show-
ing a direct arrival. (b) The shot gather in (a) with the direct arrival flattened. The
red lines in both images are the direct arrival traveltime picks.
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Figure 2.3: Picking-error histogram for the traveltimes shown in Figure 2.2(b) after
removing the mean traveltime value.

convolution is deconvolution. Convolution can be done in any number of dimen-

sions, but deconvolution is stable only in 1-dimensional computations (Claerbout,

1998).

Claerbout (1998) presented a helical coordinate system which allows the imple-

mentation of multi-dimensional convolution and deconvolution as one-dimensional

operations. For a multidimensional array, transformation into a helical coordinate

system is implemented by rearranging the elements along each dimension to form

a long one-dimensional vector. A visual illustration of the helical transformation is

shown in Figure 2.4. It starts with a matrix which is then wound to form a cylinder,

with the end of one column connected to the top of the next column. Finally, the

cylinder is unwound to form a strip. This strip is the helical coordinate transform
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of the initial matrix. For example, the two-dimensional array,
a d

b e

c f

 (2.38)

has the following helical coordinate transform:

M = [ 0 0 a b c 0 · · · 0 d e f 0 0 ] . (2.39)

The additional zeros in the array are used to remove edge effects introduced by

the coordinate transform. Claerbout (1998) showed that filtering on the helix is

equivalent to filtering in the multi-dimensional space.

2.1.1.2 PEF Estimation Example

Let us look an example of PEF estimation for simple images. I synthesized a

200x200-element, 2D image with two linear events having conflicting dips and dif-

ferent amplitudes. This image is shown in Figure 2.5. I estimated both stationary

and a non-stationary 5x5-element, 2D PEFs. For the non-stationary PEF, I allowed

the coefficients to vary smoothly over the image at every other pixel in both dimen-

sions. Figure 2.6 shows the residual norm, rd, after convolving the PEFs with the

synthetic image. From (2.24), the residual norm should be uncorrelated. It should

have a white spectrum and be approximately zero. The non-stationary PEF does a

better job at whitening the synthetic image.

Figure 2.7 shows the results obtained when a random, uncorrelated image is

divided by the stationary and non-stationary PEFs. From (2.24), the result of this

operation should be the original synthetic image. As expected, the stationary PEF

produces a homogeneous output different from the original image. Although the

image in its entirety is wrong, it contains linear events with the same slopes as those

present in the original image. The non-stationary PEF on the other hand, produces

an output similar to the original synthetic image. However, the amplitudes are
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(a) (b)

(c)

(d)

Figure 2.4: Conceptual steps involved in converting a 2-dimensional matrix to its
helical coordinate transform. (a) 2-dimensional matrix. (b) Matrix in (a) wound
into cylinder with the bottom of one column connected to the top of the next col-
umn. (c) Helix formed by stretching out the cylinder in (b). (d) Strip formed by
unwinding the helix in (c). The strip in (d) is the helical transform of the matrix in
(a). This figure was modified from Fomel and Claerbout (2003).
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Figure 2.5: 2D synthetic image with two linear events that have conflicting dips and
different amplitudes.

(a) (b)

Figure 2.6: The residual image obtained after convolving the 2D image in Figure
2.5 with its stationary PEF (a); and its non-stationary PEF (b).
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(a) (b)

Figure 2.7: The synthesized image obtained after dividing a random incoherent
image with (a) the stationary PEF of the image shown in Figure 2.5; and (b) the
non-stationary PEF of the image shown in Figure 2.5.

wrong. This is because PEFs do not store amplitude information.

2.1.1.3 Data Estimation Example

Now that we have seen an example where a PEF is estimated, let us look at an ex-

ample where missing data in an incomplete dataset are estimated. The first example

uses the two-slope synthetic image presented in Figure 2.5. Figure 2.8 shows a 90%

sparse subset of the complete image and the reconstructed images using a station-

ary PEF and a non-stationary PEF. The 90% sparse image is created by randomly

discarding 10% of the data points in the image. I used the same PEFs presented

in the previous section. With only 10% of the data missing, both PEFs do a good

job at reconstructing the complete image. However, if we subsample the image to

a 20% sparse image by discarding 80% of the data points, the reconstructed im-

ages (Figure 2.9) show significant differences. The reconstructed image with the

stationary PEF shows streaks not present in the original image. The streaks on each

event in the image have the same slope as the other event. As expected, the image
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(a)

(b) (c)

Figure 2.8: (a) A 90% sparse image subsampled from the image shown in Figure
2.5. (b) Reconstructed image using a stationary PEF. (c) Reconstructed image using
a non-stationary PEF.
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(a)

(b) (c)

Figure 2.9: (a) A 20% sparse image subsampled from the image shown in Figure
2.5. (b) Reconstructed image using a stationary PEF. (c) Reconstructed image using
a non-stationary PEF.
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reconstructed using the non-stationary PEF is closer to the true image. The events

are better resolved and are devoid of the streaks present in the image reconstructed

using a stationary PEF.

The second example is a black and white image of my friend’s car’s tire. This

image consists of smoothly varying features with sharp boundaries. As I did with

the previous example, I computed 5x5-element, 2D, stationary and non-stationary

PEFs using the complete image. The complete image and the images obtained by

dividing a random, incoherent dataset by the PEFs are shown in Figure 2.10. With

the stationary PEF, I obtained a smooth image that varies gradually from dark to

light gray, left to right. With the non-stationary PEF, I obtained an image that

is mostly similar to the original image. The non-stationary PEF does a good job

in reconstructing distinct features in the image, including small features such as

the grooves around the tire. After computing the PEF, I proceeded to estimate

missing data from subsampled images. Figure 2.11 shows 10% and 50% sparse

images. Reconstructed images using stationary PEFs are shown in Figure 2.12,

and reconstructed images using non-stationary PEFs are shown in Figure 2.13. The

reconstructed images obtained using the stationary PEFs are smoother than the true

images when the input data are highly subsampled.

In the third example, I examine the effect of using an imperfect PEF in recon-

structing missing data. I used the tire image presented in the previous example.

Before computing the PEFs, I scaled the image by a factor of -0.01. I computed

PEFs with the same size as those constructed earlier and used them to estimate the

missing data in the same sparse images shown in the previous section. Results are

shown in Figure 2.14. Simple inspection shows that they are in good agreement

with the results obtained when perfect training images are used. The difference

between the reconstructed images from the 10% and 50% sparse images using the

perfect and imperfect PEFs are shown in Figure 2.15. In general, PEFs are insensi-

tive to data amplitudes.
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(a)

(b) (c)

Figure 2.10: (a) A complete black and white image of a tire. (b) Synthesized image
produced by dividing an incoherent random image by the stationary PEF for the
image in (a). (c) Synthesized image produced by dividing an incoherent random
image by the non-stationary PEF for the image in (a).
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(a) (b)

Figure 2.11: (a) The car tire image subsampled to 10%. (b) The car tire image
subsampled to 50%.

(a) (b)

Figure 2.12: The reconstructed car tire image using a stationary PEF. (a) From 10%
sparse image. (b) From 50% sparse image.
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(a) (b)

Figure 2.13: The reconstructed car tire image using a non-stationary PEF. (a) From
10% sparse image. (b) From 50% sparse image.

(a) (b)

Figure 2.14: The reconstructed car tire image using an imperfect, non-stationary
PEF. (a) From 10% sparse image. (b) From 50% sparse image.
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(a) (b)

Figure 2.15: Difference between the images shown in Figure 2.13 and Figure 2.14
for (a) the 10% case; and (b) the 50% case. The color scale has range from minus
to plus 10% of the maximum values in Figure 2.13.

2.1.1.4 Time-lapse Data-Estimation Implementation

The proposed approach assumes that a completely sampled baseline dataset exists

in every time-lapse monitoring project. This dataset could be the one used in the

site-selection process for the project under study. To obtain an estimate of the ac-

cumulated unrecorded data at each time k, I use an iterative strategy. The strategy

begins with estimating the initial non-stationary PEF using a training dataset. I use

the completely sampled baseline dataset as an initial estimate of the completely

sampled dataset at each survey time. I then use the initial PEF to estimate the

accumulated unrecorded dataset from the accumulated sparse dataset.

In the second iteration, I use the resulting estimated accumulated dataset from

the first iteration to re-estimate the non-stationary PEF. This PEF is an improvement

over the PEF obtained in the first iteration, since the new sparse measurements

at each survey time are used. The updated PEF is then used to re-estimate the

accumulated unrecorded dataset. The resulting estimate is an improvement over

the previous estimate, because an improved PEF is used. I repeat this process until

convergence is reached, that is, until the improvement in the estimated PEF or

estimated data is negligible.
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I repeat the entire iterative process each time new sparse datasets, dks , are added

to the accumulated datasets, tks . By doing so, previously estimated unrecorded

datasets, d̃ku, are re-estimated. I repeat the iterative process because each additional

sparse dataset provides data to further constrain the estimates of unrecorded data

at previous times. Of course, after a certain amount of time, the improvement in

the estimates of previously unrecorded data becomes negligible.

The equations solved in each iteration are described below.

Iteration 1

At time k, I compute the PEF with

fk1 = −
(
Kk†T1†

c T1
cK

k + α2Kk†Rk†RkKk
)−1

Kk†T1†
c t1

c , (2.40)

where fk1 is the non-stationary filter computed in the first iteration, Kk is the con-

strained filter-coefficient masking operator at time k, Rk is the regularization op-

erator at time k, t1
c is the completely sampled data at time 1 (the baseline data),

and T1
c is the convolution matrix for t1

c . The subscript representing non-stationarity

used earlier, ns, has been removed for clarity.

I estimate the missing data with

t̃ku,1 = −
(
Hk†Fk†

1 Fk
1H

k
)−1

Hk†Fk†
1 Fk

1t
k
s , (2.41)

where t̃ku,1 is the estimated accumulated unrecorded data in the first iteration; and

Fk
1 is the convolution matrix for the non-stationary filter fk1 , at time k.

The estimated accumulated data is obtained using

t̃kc,1 = tks + t̃ku,1 , (2.42)

which can also be written as

t̃kc,1 = tks −
(
Hk†Fk†

1 Fk
1H

k
)−1

Hk†Fk†
1 Fk

1t
k
s . (2.43)
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Iteration 2

I compute the new PEF as follows:

fk2 = −
(
Kk†T̃k†

c,1T̃
k
c,1K

k + α2Kk†Rk†RkKk
)−1

Kk†T̃k†
c,1t̃

k
c,1 , (2.44)

where fk2 is the non-stationary filter computed in the second iteration, t̃kc,1 is the

estimated accumulated data obtained in iteration 1, and T̃k
c,1 is the convolution

matrix for t̃kc,1.

I estimate the missing data with

t̃ku,2 = −
(
Hk†Fk†

2 Fk
2H

k
)−1

Hk†Fk†
2 Fk

2t
k
s , (2.45)

where t̃ku,2 is the estimated accumulated unrecorded data in the second iteration,

and Fk
2 is the convolution matrix for the non-stationary filter fk2 at time k.

The estimated accumulated data is obtained using

t̃kc,2 = tks + t̃ku,2 , (2.46)

which can also be written as

t̃kc,2 = tks −
(
Hk†Fk†

2 Fk
2H

k
)−1

Hk†Fk†
2 Fk

2t
k
s . (2.47)

Iteration 3

I compute the new PEF as follows:

fk3 = −
(
Kk†T̃k†

c,2T̃
k
c,2K

k + α2Kk†Rk†RkKk
)−1

Kk†T̃k†
c,2t̃

k
c,2 , (2.48)

where fk2 is the non-stationary filter computed in the third iteration, t̃kc,2 is the esti-

mated accumulated data obtained in iteration 2, and T̃k
c,2 is the convolution matrix

for t̃kc,2.
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I estimate the missing data with

t̃ku,3 = −
(
Hk†Fk†

3 Fk
3H

k
)−1

Hk†Fk†
3 Fk

3t
k
s , (2.49)

where t̃ku,3 is the estimated accumulated unrecorded data in the second iteration,

and Fk
3 is the convolution matrix for the non-stationary filter fk3 , at time k.

The estimated accumulated data is obtained using,

t̃kc,3 = tks + t̃ku,3 (2.50)

which can also be written as

t̃kc,3 = tks −
(
Hk†Fk†

3 Fk
3H

k
)−1

Hk†Fk†
3 Fk

3t
k
s . (2.51)

We can summarize the above iteration process as follows:

fki =


−
(
Kk†T1†

c T1
cK

k + α2Kk†Rk†RkKk
)−1

Kk†T1†
c t1

c ; i = 1

−
(
Kk†T̃k†

c,i−1T̃
k
c,i−1K

k + α2Kk†Rk†RkKk
)−1

Kk†T̃k†
c,i−1t̃

k
c,i−1 ; i > 1

(2.52)

t̃kc,i = tks −
(
Hk†Fk†

i Fk
iH

k
)−1

Hk†Fk†
i Fk

i t
k
s ; ∀i (2.53)

where the subscript i represents the iteration number.

2.1.2 Minimum-Weighted-Norm Interpolation

Minimum-weighted-norm interpolation (MWNI) (Liu, 2004; Liu and Sacchi, 2004),

like the algorithms presented in Spitz (1991) and Wang (2002), is a frequency-

domain estimation algorithm. With MWNI, missing data are estimated along spatial

dimensions, one temporal frequency at a time.
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Following the derivation in Liu (2004), let d be the frequency-domain represen-

tation of a completely sampled dataset, such that

d = [ d0 d1 d2 · · · dN−1 ]T ; N-1 = last sample number . (2.54)

We can define a sampling operator, S, that selects a set of measured samples from

a complete set of samples, such that

ds = Sd . (2.55)

where ds is the sparse, measured data. I define the set of unrecorded data samples,

du, that satisfies

d = ds + du . (2.56)

MWNI is used to compute the set of samples d̃u, that gives an estimate of the

completely sampled dataset d̃:

d̃ = ds + d̃u . (2.57)

Note that the slow-time indices have been excluded in (2.54), (2.55), (2.56), and

(2.57). This is because I begin by deriving the MWNI equation for the non-time-

lapse case. Slow-time indices will be included later in this section, when the MWNI

equation for the time-lapse case is given.

I define the discrete Fourier transform (DFT) of d as follows:

Dk =
1√
N

N−1∑
n=0

dne
−2πi kn

N k = 0, 1, 2, · · · , N − 1 (2.58)

and

D = [ D0 D1 D2 · · · DN−1 ]T . (2.59)
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I also define the inverse discrete Fourier transform (IDFT) of D as

dn =
1√
N

N−1∑
k=0

Dke
2πi kn

N k = 0, 1, 2, · · · , N − 1 . (2.60)

Using compact notation, I represent the DFT and IDFT in (2.58) and (2.60) as,

D = Fd (2.61)

and

d = FHD (2.62)

respectively, where F is the DFT unitary matrix, and the superscript H denotes the

complex conjugate transpose. The missing-data problem can be solved using the

method of Lagrange multipliers by minimizing

Φ = λT
(
Sd̃− ds

)
+
∣∣∣∣∣∣d̃∣∣∣∣∣∣2

W
. (2.63)

where
∣∣∣∣∣∣d̃∣∣∣∣∣∣2

W
is the weighted norm of d̃, and λ is a vector of Lagrange multipliers.

Equation (2.63) implies that we minimize∣∣∣∣∣∣d̃∣∣∣∣∣∣2
W

(2.64)

subject to

Sd̃− ds = 0 . (2.65)

The wave-number-domain norm used is defined as∣∣∣∣∣∣d̃∣∣∣∣∣∣2
W

=
∑
k∈K

D̃∗kD̃k

P 2
k

, (2.66)

where K represents the region of spectral support, and the coefficient Pk is the

spectral power at wave number k (Cabrera and Parks, 1991).
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We proceed with the derivation by introducing a diagonal matrix, Λ, with ele-

ments

Λk =


P 2
k , k ∈ K

0, k /∈ K
, (2.67)

and a pseudo inverse defined as

Λ†k =


1/P 2

k , k ∈ K

0, k /∈ K
. (2.68)

Combining (2.66) and (2.68), we get∣∣∣∣∣∣d̃∣∣∣∣∣∣2
W

= D̃HΛ†D̃ . (2.69)

Using (2.62) in (2.69), we get∣∣∣∣∣∣d̃∣∣∣∣∣∣2
W

= d̃HFHΛ†Fd̃ , (2.70)

= d̃HQ†d̃ , (2.71)

where Q† = FHΛ†F. Note that Q = FHΛF. Operators Q and Q† are band-limiting

operators, and they annihilate spectral components k /∈ K.

Now that the pieces of the puzzle are set, we restate (2.63) as

Φ = λT
(
Sd̃− ds

)
+ d̃HQ†d̃ . (2.72)

Minimizing (2.72) by differentiation with respect to d̃ and setting it to 0 gives

0 = STλ+ 2Q†d̃ . (2.73)

This implies

d̃ = −
(
2Q†

)−1
STλ = −1

2
QSTλ . (2.74)
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Substituting d̃ from (2.74) in (2.65), we obtain

λ = −2
(
SQST

)−1
ds . (2.75)

Substituting λ from (2.75) in (2.74), we obtain

d̃ = QST
(
SQST

)−1
ds . (2.76)

Equation (2.76) is the MWNI equation used to obtain a completely populated esti-

mated dataset, d̃, from a sparsely populated dataset, ds.

If the sparsely sampled data contain some noise, and we wish to obtain the

least-squares estimate of the missing data, the objective function minimized is

Φ =
∣∣∣∣∣∣Sd̃− ds

∣∣∣∣∣∣2 + α2
∣∣∣∣∣∣d̃∣∣∣∣∣∣2

W
, (2.77)

which can be rewritten as

Φ =
(
Sd̃− ds

)2

+ α2d̃HQ†d̃ , (2.78)

Φ =
(
Sd̃− ds

)T (
Sd̃− ds

)
+ α2d̃HQ†d̃ , (2.79)

where α2 is the trade-off parameter of the problem. We can write an equivalent

equation for the least squares MWNI equation:(
S

αW

)
d̃ ≈

(
ds

0

)
, (2.80)

where the matrix of weights W is expressed as

W = Λ†1/2F . (2.81)

In the numerical implementation of (2.80) we introduce a new variable: z = Wd̃.
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Equation (2.80) becomes (
SW†

α

)
z ≈

(
ds

0

)
. (2.82)

If we set the trade-off parameter to α = 0, we obtain

SW†z ≈ ds . (2.83)

I solve (2.83) for z using the conjugate-gradient method (Hestenes and Stiefel,

1952). By setting the trade-off parameter to α = 0, we allow the number of iter-

ations in the conjugate gradient method to serve as the regularization parameter

(Hansen, 1998).

Since the spectrum of the complete data is needed to compute the matrix of

weights, Λ, but the complete data is unknown, Λ is obtained iteratively, starting

with an initial guess. In my implementation, I start with an initial guess of Pk =

1, k ∈ K. I calculate P using the broad shape of the estimated spectrum. This is

done by convolving the estimated data spectrum in the frequency domain with the

DFT of a Hanning window. That is,

P = A⊗D , (2.84)

where A is the DFT of the Hanning window, a, and ⊗ denotes convolution.

In the time-lapse data-estimation problem, ds in (2.76) and (2.83) is a frequency

slice through the 1D Fourier transform (along the fast-time axis) of the accumulated

sparse dataset at time k. If we call this quantity tks , (2.76) and (2.83) for the time-

lapse data-estimation problem are

t̃kc = QkSkT
(
SkQkSkT

)−1
tks , (2.85)

and

SkWk†zk ≈ tks , (2.86)
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Figure 2.16: Complete 2D synthetic seismic section with linear events.

respectively. In (2.85), t̃kc is the corresponding frequency slice through the 1D

Fourier transform (along the fast-time axis) of the accumulated estimated dataset

at time k.

2.1.2.1 2D Synthetic examples

To demonstrate the efficiency of MWNI in reconstructing missing seismic traces, I

present two examples. In the first example, I show the method’s efficiency in recon-

structing linear events in a seismic section. Figure 2.16 shows a complete seismic

section with linear events of different slopes. The complete section is made up of

50 traces. I simulate incomplete data by discarding some traces from the complete

dataset to produce 90%, 70%, 50%, 30%, 20% and 10% sparse datasets. Both reg-

ularly spaced and randomly spaced missing traces were simulated. The resulting

incomplete datasets are shown in Figures 2.17 and 2.18. In the real world, we

might need to estimate regularly spaced missing traces when a completely sampled

dataset is needed for a processing step like migration. Likewise, we might need to

estimate randomly spaced missing traces in a situation where some receivers on a
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receiver cable had failed. To estimate the missing traces in Figures 2.17 and 2.18,

I first perform a Fourier transform along the time axes and use the results as input

into the MWNI algorithm, where estimation is done separately for each frequency.

Even though the input data for each reconstruction is two-dimensional, estimation

is done in one dimension, the spatial dimension. Figures 2.19 and 2.20 show the

corresponding interpolation results.

In Figures 2.21 and 2.22, I show the spectral weights, P 2
k , obtained at iterations

0 through 5 of the reconstructions for the 30% sparse dataset with linear events.

In Figure 2.21, the frequency is 5 Hz, and in Figure 2.22, it is 25 Hz. Notice how

the shapes of the spectral weights approach the shapes of the power spectra of the

true dataset at those frequencies. The flat shape at iteration 0 is a result of an

initial guess of 1. As the iteration continues and the weights are re-estimated, the

estimated shapes move closer to the true shapes.

In the second example, I show the efficiency of MWNI in reconstructing non-

linear events in a seismic section. Figure 2.23 shows a complete seismic section

with non-linear events. In this case, the complete section is made up of 100 traces.

As was the case with the first example, I simulated incomplete data by discarding

some traces from the complete dataset to produce 90%, 70%, 50%, 30%, 20% and

10% sparse datasets. Both regularly spaced and randomly spaced missing traces

were simulated. The resulting incomplete datasets are shown in Figures 2.24 and

2.25. Using the same data-estimation steps as in the first example, I obtain the

reconstructed sections shown in Figures 2.26 and 2.27.

Figures 2.19, 2.20, 2.26, and 2.27 show that MWNI does not adequately recon-

struct extremely sparse datasets like the 10% sparse data sections in my example.

This is not surprising, since reconstructing datasets that sparse would require some

prior information for improved accuracy. In addition, a comparison of the results

with linear events and hyperbolic events shows that MWNI does a better job at pre-

dicting linear events. This is evident in the signal-to-noise ratios of the resulting

reconstructed sections in both cases.
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Figure 2.17: Sparse seismic sections derived from the section shown in Figure 2.16
with regularly spaced missing traces. (a) 10% sparse data. (b) 30% sparse data.
(c) 50% sparse data. (d) 70% sparse data. (e) 90% sparse data.
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Figure 2.18: Sparse seismic sections derived from the section shown in Figure 2.16
with randomly spaced missing traces. (a) 10% sparse data. (b) 30% sparse data.
(c) 50% sparse data. (d) 70% sparse data. (e) 90% sparse data.
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Figure 2.19: Reconstructed seismic sections from the sparse sections shown in Fig-
ure 2.17 with regularly spaced missing traces. (a) Reconstructed section from 10%
sparse data. (b) Reconstructed section from 30% sparse data. (c) Reconstructed
section from 50% sparse data. (d) Reconstructed section from 70% sparse data. (e)
Reconstructed section from 90% sparse data.
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Figure 2.20: Reconstructed seismic sections from the sparse sections shown in Fig-
ure 2.18 with randomly spaced missing traces. (a) Reconstructed section from 10%
sparse data. (b) Reconstructed section from 30% sparse data. (c) Reconstructed
section from 50% sparse data. (d) Reconstructed section from 70% sparse data. (e)
Reconstructed section from 90% sparse data.
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Figure 2.21: The spectral weights P 2
k , obtained at iterations 0 through 5 for the 30%

sparse data section with linear events at 5Hz, compared to the power spectra of the
sparse data, final reconstructed data, and the true data at the same frequency.
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Figure 2.22: The spectral weights P 2
k , obtained at iterations 0 through 5 for the

30% sparse data section with linear events at 25Hz, compared to the power spectra
of the sparse data, final reconstructed data, and the true data at the same frequency.
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Figure 2.23: Complete 2D synthetic seismic section with non-linear events.

2.1.2.2 3D Synthetic examples

In order to reconstruct a dataset with many non-linear events, the patching tech-

nique (Claerbout, 2008) can be used. This technique involves splitting the dataset

into subsets, operating on those subsets, and then returning them to their original

positions. In this case, the dataset is split into subsets where events are close to

being linear. To illustrate this, I use the 3D quarter-dome synthetic dataset (Claer-

bout, 2008). Sections through the 3D complete, 30% sparse, and reconstructed

quarter-dome volume are shown in Figure 2.28. It is evident in Figure 2.28(c) that

the reconstruction in the regions with severe curvature is inaccurate. If we apply

the patching technique to the 30% sparse data volume, isolate a subset of the badly

reconstructed region and reconstruct the missing traces, we get the result shown in

Figure 2.29. Unlike the non-patched case, the reflectors in the patched reconstruc-

tion case are clearly visible.
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Figure 2.24: Sparse seismic sections derived from the section shown in Figure 2.23
with regularly spaced missing traces. (a) 10% sparse data. (b) 30% sparse data.
(c) 50% sparse data. (d) 70% sparse data. (e) 90% sparse data.
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Figure 2.25: Sparse seismic sections derived from the section shown in Figure 2.23
with randomly spaced missing traces. (a) 10% sparse data. (b) 30% sparse data.
(c) 50% sparse data. (d) 70% sparse data. (e) 90% sparse data.
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Figure 2.26: Reconstructed seismic sections from the sparse sections shown in Fig-
ure 2.24 with regularly spaced missing traces. (a) Reconstructed section from 10%
sparse data. (b) Reconstructed section from 30% sparse data. (c) Reconstructed
section from 50% sparse data. (d) Reconstructed section from 70% sparse data. (e)
Reconstructed section from 90% sparse data.
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Figure 2.27: Reconstructed seismic sections from the sparse sections shown in Fig-
ure 2.25 with randomly spaced missing traces. (a) Reconstructed section from 10%
sparse data. (b) Reconstructed section from 30% sparse data. (c) Reconstructed
section from 50% sparse data. (d) Reconstructed section from 70% sparse data. (e)
Reconstructed section from 90% sparse data.
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Figure 2.28: Reconstructing a sparse 3D quarter-dome. (a) A complete dataset. (b)
30% sparse dataset. (c) A reconstruction of the complete dataset from the 30%
sparse dataset shown in (b).
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Figure 2.29: Reconstructing a sparse 3D quarter-dome patch. (a) A complete
dataset. (b) 30% sparse dataset patch. (c) A reconstruction of the complete dataset
patch from the 30% sparse dataset patch shown in (b).
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2.1.3 Choice of Estimation Algorithm

In this dissertation, I use the two data estimation methods described in the previous

subsections. I use autoregression (prediction error filtering) as the estimation tool

in Chapter 3, and minimum weighted norm interpolation as the estimation algo-

rithm in Chapters 4 and 5. Data estimation with autoregression works best when a

very good training dataset exists. This is especially true when the incomplete data

is very sparse. The training data is used to compute the initial PEF in the iterative

estimation process. In Chapter 3, I apply the proposed approach to crosswell trav-

eltime tomography. The traveltimes extracted from the complete baseline datasets

is good training dataset for estimation missing data in time-lapse datasets. When

seismic arrival traveltimes are extracted from a full trace dataset, the traveltime

data size is significantly less than the full trace data size. Computation time in this

case, is reasonable.

In Chapters 4 and 5, I apply my approach to full trace seismic data. Computa-

tion time of an autoregression estimation of missing data for an accumulated sparse,

full trace seismic data can be prohibitive. With MWNI, prior information used to

constrain the estimated data is obtained from the incomplete data even if the in-

complete data is very sparse. In addition, data estimation using MWNI is done in

the frequency domain. Computation time is often faster because full trace seismic

data can shrink significantly in size when converted from time domain to frequency

domain. For these two reasons, I use MWNI as my estimation algorithm for the full

trace seismic data examples presented in Chapters 4 and 5.

2.2 Error-Analysis Tool for Seismic-Trace Reconstruc-

tion

2.2.1 Introduction

Within the past few decades, several seismic data-estimation (interpolation and ex-

trapolation) techniques have been presented to the seismic geophysics community.
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These include time-domain techniques like autoregression (Claerbout, 1998) and

frequency-domain techniques like the f-x interpolation scheme (Spitz, 1991), and

the minimum-weighted-norm interpolation scheme (Liu and Sacchi, 2004). The

need for good data-estimation algorithms arise because in many cases, uncontrol-

lable circumstances prevent certain traces from being recorded in the field. How-

ever, some key seismic data-processing steps work optimally when traces are regu-

larly and densely spaced. In addition, smart seismic monitoring techniques such as

estimation-based quasi-continuous reservoir monitoring (Arogunmati and Harris,

2009) rely on data-estimation algorithms. The character of the recorded data used

to estimate the unrecorded data greatly influences the character of the estimated

traces.

The data-estimation-based quasi-continuous seismic monitoring method pro-

posed by Arogunmati and Harris (2009) uses time-lapse data from an additional,

survey in addition to sparse, recorded data at a survey of interest, to estimate un-

recorded data. In such a case, differences in the true and estimated data may result

from varied source signatures and recording fidelity in the different surveys. Once

the missing data have been estimated, it is not possible to differentiate errors due

to data-recording differences from shortcomings in the data-estimation algorithm

or scheme.

It is common practice to present data-estimation errors either by displaying the

true and estimated data and identifying portions of the data that are reconstructed

imperfectly, or by simply showing the difference between the two datasets (e.g.

Spitz, 1991; Crawley, 2000; Liu and Sacchi, 2004; Curry, 2008). With such repre-

sentations, one is limited by the number of plots that can be shown. Either the best

estimation or the worst estimation results may be shown. A single shot gather from

an entire seismic data volume may be shown. The data shown is often referred to

as the typical result. There is often no quantitative description summarizing the

estimation errors of all test cases.

In this section, I present a tool for assessing inaccuracies in estimated data. Us-

ing this tool, it is possible to efficiently demonstrate how effective an estimation
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Figure 2.30: An illustration of a true trace and its estimate. When an unknown
trace is estimated, the inaccuracies are expressed as amplitude errors and phase-
shift errors.

algorithm or scheme is in specific situations with quantities that have intuitive in-

terpretation. This tool assumes the true data is known and some traces have been

intentionally discarded and then estimated. While the ultimate goal of an esti-

mation algorithm or scheme is its application to field data with unknown missing

traces, it is important to have reference cases where the missing traces are in fact,

known. Quantifying the inaccuracies in these reference cases give an idea of how

effective the estimation algorithm is. I can relate errors in data estimation to er-

rors in a processed image. In the following sections, I describe the mathematical

background for the tool presented, and then I show an example of its use.

2.2.2 Methodology

When an unknown trace is estimated, it is intended to be as close to the true trace

as possible. Depending on the algorithm and the known data used in the estimation

process, this trace may or may not be a good representation of the true data. The

trace may be out of phase with the true trace, or its amplitudes may be incorrect.

Figure 2.30 illustrates this point.

Computing the difference between the amplitudes in two datasets is trivial.

However, if both datasets are out of phase, computing the difference directly is
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meaningless. Computing the phase-shift is an integral part of the proposed tool.

Methods such as cross-correlation (e.g. Knapp and Carter, 1976) and Taylor ex-

pansion (e.g. Hatchell et al., 2003; Naeini et al., 2009) are currently used to com-

pute phase-shifts between multiple datasets. The most commonly used are cross-

correlation based algorithms. In their simplest forms, these algorithms use the

discrete signal cross-correlation equation to compute the cross-correlation coeffi-

cients between segments of corresponding traces for each sample point, and locate

the position of the maximum cross-correlation coefficient. Cross correlation of two

discrete time signals is expressed as

h(τ) =
N∑

τ=−N

f(t)g(t+ τ) , (2.87)

where f(t) and g(t) are the input signals as a function of time t, h is the output cross-

correlation coefficient function as a function of the lag-time τ , and N is the length

of the input signal. The sample point under consideration is then moved to its

corrected position using the lag time of the maximum cross-correlation coefficient.

Naeini et al. (2009) noted that several issues may affect the efficiency of cross-

correlation based techniques. For example, when a very short time window is used

in computing the cross-correlation coefficients, the maximum cross-correlation co-

efficient may be biased towards the largest amplitudes in the trace. The bias can

easily be eliminated by using large enough computation windows, or by applying

automatic gain control (AGC) to the traces prior to computing the cross-correlation

coefficients. For speed and computational efficiency, cross-correlation may be im-

plemented in the Fourier domain. This is done using the equation

H(k) = F (k)G(k) , (2.88)

where F (k) is the Fourier transform of the first signal f(t), G(k) is the Fourier

transform of the second signal g(t), and F (k) is the complex conjugate of F (k).

In analyzing the estimation errors in the reconstructed datasets shown in this

dissertation, I used a cross-correlation-based method to compute phase-shifts.
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2.2.3 Synthetic Example

As an example, I use the migrated image from an estimated dataset. This dataset

was estimated from a sparse dataset with 80% of its traces missing. In Figure 2.31,

I show the true image, the image from the estimated data, the difference between

the true and estimated data before depth correction, and the difference between

the true and estimated data after depth correction. The computed depth-shifts are

shown in Figure 2.32.

Using these results, an assessment can be made of the gross error in the image.

This could be in the form of a mean shift or root-mean-square shift, along with the

corresponding amplitude measure. The advantage of this approach comes when

a large number of datasets are reconstructed. The error measures can be used to

track trends in the reconstructed dataset.
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Figure 2.31: An application of the error-analysis tool presented: (a) Migrated im-
age from complete true data. (b) Migrated image from combined 20% true and
80% estimated data. (c) The difference between the images in (a) and (b) before
depth correction. (d) The difference between the images in (a) and (b) after depth
correction.
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Figure 2.32: An application of the error-analysis tool presented: The computed
depth-shifts for the image shown in Figure 2.31(b).



Chapter 3

Quasi-continuous Monitoring with

Crosswell Traveltime Tomography

3.1 Introduction

In this chapter, I present an application of the quasi-continuous, seismic monitoring

approach to crosswell traveltime data for tomography. I show that it is an effi-

cient strategy for reconstructing seismic velocity changes in a reservoir. The data-

estimation tool I use is the iterative PEF/data scheme described in Section 2.1.1. I

apply the approach to both synthetic and field crosswell-seismic traveltime data. In

the synthetic example, I simulate a CO2 reservoir monitored over a period of 140

weeks. In the field example, I use data acquired at the McElroy Field in West Texas,

where a pilot project for enhanced recovery using CO2 was implemented. Only the

baseline dataset and one monitor dataset were available.

3.2 Synthetic Crosswell Traveltime Example

I use a synthetic baseline velocity model, as well as flow-simulation models to sim-

ulate a time-lapse monitoring study at a CO2 injection site. Beginning with a base-

line velocity model (Figure 3.1), I create additional 70 synthetic velocity models

72
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Figure 3.1: Synthetic baseline velocity model.

representing snapshots of the seismic velocity field between two wells at two week

intervals over a period of 140 weeks, starting January 1, 1993. I allow a leak to

occur after approximately 40 weeks of CO2 injection.

3.2.1 Conventional Time-Lapse Monitoring

To represent conventional time-lapse monitoring, I use only two velocity models,

with a time interval of 140 weeks between the baseline and monitor surveys. In

other words, I use the baseline and the 70th time-lapse velocity model. I compute

first-arrival traveltimes for a crosswell geometry using the finite-difference method

described in Hole and Zelt (1995). I use a source and receiver configuration that

mirror the McElroy Field configuration (Figure 3.2). Gaussian noise corresponding

to a picking error of 2 msec, is added to the synthetic traveltimes. Figure 3.3 shows

the computed baseline and time-lapse traveltime datasets. The traveltime datasets

are displayed on a grid with the x- and y-axes represented by the shot and receiver
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Figure 3.2: Crosswell data-acquisition configuration for the McElroy Field dataset.

depths, respectively.

To reconstruct the velocity models, I use the regularized tomography algorithm

described in Zelt and Barton (1998). The true and reconstructed velocity difference

models are shown in Figure 3.4. The rms error shown in Figure 3.4 is the rms error

between 800 m and 900 m depth. Although the time-lapse velocity difference is well

resolved, the leak is first detected long after it started. In a real CO2-sequestration

project, that could be catastrophic.

3.2.2 Quasi-Continuous Time-Lapse Monitoring

For each of the 70 time-lapse velocity models synthesized, I compute first-arrival

traveltimes for a crosswell-seismic geometry. I use the same source and receiver

configuration as the conventional example described in the previous section, which

mirrors the configuration used in the McElroy Field. Gaussian noise, corresponding

to a picking error of 2 msec, is added to the synthetic traveltimes. I then sub-

sample the synthetic datasets following the quasi-continuous monitoring strategy

described. This is accomplished by discarding large portions of each dataset.



CHAPTER 3. CROSSWELL TRAVELTIME TOMOGRAPHY EXAMPLE 75

700

750

800

850

900

950

R
e

c
 D

e
p

th
 (

m
)

700 800 900

Shot Depth (m)

15-JAN-1993

(a)

700

750

800

850

900

950

R
e

c
 D

e
p

th
 (

m
)

700 800 900

Shot Depth (m)

8-SEP-1995

(b)

-4 -3 -2 -1 0 1 2 3 4

msecs

-0.3 -0.2 -0.1 0.0

msecs

700

750

800

850

900

950

R
e

c
 D

e
p

th
 (

m
)

700 800 900

Shot Depth (m)

Difference

(c)

Figure 3.3: (a) Synthetic baseline traveltime dataset. (b) Monitor traveltime
dataset. (c) The difference between (a) and (b). The data shown in (a) and (b)
have been reduced by a constant velocity of 5800m/s.
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Four groups of subsampled (sparse) datasets are created: 1%, 2%, 5%, and

10% of the original data volume. For comparison, I ensure that the cumulative

sizes of the sub-sampled datasets at the end of the two-year period are equal. For

the 1% case, I sample 1% of each of the 70 synthetic datasets, discarding 99% of

the dataset; for the 2% case, I sample 2% of every other dataset, discarding 98%

of the data from alternating datasets and 100% of the others; for the 5% case, I

sample 5% of every 5th dataset, discarding 95% from every 5th dataset and 100%

of the others; and for the 10% case, I sample 10% of every 10th dataset, discarding

90% from every 10th dataset, and 100% of the others. Both random and regular

sampling scenarios are tested. I also test both selection without replacement and

selection with replacement.

Figure 3.5 shows selected true velocity-difference models alongside models re-

constructed from complete, true synthetic datasets. Reconstructing velocity mod-

els from the sparse subsampled datasets produces geologically unreasonable mod-

els, showing significant artifacts. This is because the inverse problem is severely

underdetermined. A first-order fix for a severely underdetermined problem is to

reduce the number of model parameters estimated in the inverse problem. The

consequence of this action is that the smallest model feature recoverable becomes

significantly larger. In geophysical reconstructions, that means reducing spatial res-

olution. Estimating unrecorded data helps to retain spatial resolution.

I construct time-lapse data volumes by concatenating datasets from different

surveys along the slow-time axis. This produces 3D data volumes having two spa-

tial dimensions and one slow-time dimension. I then use the iterative PEF/data

approach described in Section 2.1.1 to estimate the discarded data for the 3D, time-

lapse, sparse traveltime data volumes. As the starting guess for the iterative process,

I use an initial data volume that assumes that the traveltimes do not change within

the period of interest. I then estimate a PEF from the resulting time-lapse data

volume. I use this PEF to estimate the missing data. This process is repeated un-

til convergence, or until a tolerance measure is met as described in Section 2.1.1.

Sample estimated and true datasets are shown in Figure 3.6. It is obvious in Figure

3.6 that the approach presented is an effective approach in estimating the discarded
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Figure 3.5: (a) Selected true synthetic velocity-difference models. The model dates
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from complete true synthetic traveltimes. These represent the best images that can
be reconstructed from the synthetic traveltimes. The model rms errors are shown
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data.

Figure 3.7 shows the rms errors obtained when a complete data-estimation cycle

is implemented as new data become available. In Figure 3.7, N is the number

of sparse time-lapse datasets (surveys) used in the estimation process. One key

observation is that the errors are similar, regardless of the sparsity of datasets. This

implies that the same level of model accuracy can be obtained with a smaller data

size using the approach presented in this dissertation (i.e., by acquiring less data

more frequently). In addition, by sampling more frequently, we increase the slow-

time temporal resolution.

The error plots in Figure 3.8 show that the accuracy of the reconstructed velocity

models improves as the number of iterations increases. This shows a convergence

towards the true model shown in Figure 3.7. Finally, we see a decrease in rms error

as data size increases. As more data are acquired, the accuracy of the estimated

data increases. The improvement, however, decreases as data are accumulated.

In Figures 3.7 and 3.8, it is obvious that after some time, adding new datasets

does not improve the estimation error for previously estimated datasets. For these

estimated datasets, convergence has been reached. This implies that a smaller,

moving estimation-window can be used instead of estimating all data volumes at all

times. If a moving estimation-window is used, the first indication of abnormalities

may warrant expanding the time-window backward in time for confirmation. Also,

a converged dataset can be used instead of the baseline dataset as the initial guess

in the iterative process, since we expect it to be more similar to the most recent

dataset than the baseline dataset is.

To examine the benefits of calculating a new PEF when new sparse datasets are

added, I reconstruct the synthetic velocity models using previously estimated PEFs

and then compare them to the results obtained when a new PEF is recalculated. In

Figure 4, I show rms slowness errors obtained after the second and third iterations

when the estimated traveltime data used in the reconstruction process are from 1%

true data. The rms errors are lowest when the PEF used is calculated from a time-

lapse data volume that includes all available datasets. In addition, the rms errors of

the slowness model reconstructed from the data estimated using the PEF calculated
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Figure 3.7: RMS error plots of the reconstructed slowness models from estimated
traveltime datasets grouped by the size of the original sparse datasets; only the third
iteration results are shown. The dashed line in each plot shows the result obtained
using true complete data. (a) 1% true data. (b) 2% true data. (c) 5% true data.
(d) 10% true data. The plots are color-coded by the number of sparse, time-lapse
datasets (N) used in the estimation of missing data.
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Figure 3.8: RMS error plots of the reconstructed slowness models from estimated
traveltime datasets grouped by the size of the original sparse datasets, showing all
three iteration results. Data are estimated using (a) 1% true data, and (b) 2% true
data. The plots are color-coded by the number of sparse, time-lapse datasets (N)
used in the estimation of missing data.
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from the first 10 datasets are worse than those using the PEF calculated from the

first 20 datasets, and so on. The errors are seen to shrink with data completeness,

implying convergence. This shows that as the reservoir properties evolve and more

data are acquired, the estimated PEF gets closer to the true PEF. From the plots, we

also see that convergence is faster in the third iteration than in the second iteration.

In Figures 3.10 and 3.11, I compare a series of reconstructed velocity models

using the estimated datasets from different sparse datasets. The selected velocity

models represent the period around the time the leak started, i.e. 22nd October

1993 (21st velocity model). Because the slow-time sampling rate of the recon-

structed velocity models from data estimated using 2% true data is higher than the

sampling rates of the velocity models reconstructed using data estimated from 5%

and 10% true data, the leak is detected much earlier in the 2% case than in the

5% or 10% cases. In addition, because the data sparsity of the 1% case is very

high, the leak is not detected early. This shows that using the right data sparsity is

as important as obtaining the right slow-time resolution. Although this approach

to continuous time-lapse monitoring is effective, the fact that the error shrinks as

more datasets are acquired gives it the property of delayed accuracy. Because the

data are estimated from future and past data, accuracy increases as more data are

acquired.

3.3 Reservoir Monitoring at the McElroy Field

A time-lapse monitoring project was conducted in the McElroy Field in Texas with

crosswell acquisition geometry. The baseline dataset was acquired in 1993, and a

monitor dataset was acquired in 1995 (Harris et al., 1995; Lazarotos and Marion,

1997). Selected shot gathers are shown in Figure 3.12. The project was executed as

a pilot study to monitor changes in the reservoir in response to CO2 injection into

the reservoir. I use data collected between wells JTM-A and JTM-C. In the 1993

survey, JTM-C was the source well and JTM-A was the receiver well. The reverse

was the case in the 1995 survey. The wells are separated by about 180 m. A total of
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Figure 3.9: RMS error plots of the reconstructed velocity models from estimated
traveltime datasets. The plots are color-coded by the number of datasets used in
estimating the PEFs applied (a) after the second iteration, and (b) after the third
iteration.
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Figure 3.10: Selected reconstructed velocity-difference models from the data esti-
mated from (a) 10% datasets, (b) 5% datasets, and (c) 2% datasets. These models
are sampled around the beginning of the leak. Because the data space is sampled
more frequently in time, the leak is detected earlier with estimated data using 2%
data than with the estimated data using 5% or 10% data.
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Figure 3.11: Selected reconstructed velocity-difference models from the data esti-
mated from 1% datasets. Because of the sparsity of the data, the velocity models
reconstructed using data estimated with 1% data do not capture the leaked CO2.
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Figure 3.12: Common-source gathers from the 1993 and 1995 surveys in the McEl-
roy Field. The thick, white curves are first-arrival traveltimes picked on the gathers.

201 sources and 191 receivers were deployed in the first survey, while 200 sources

and 192 receivers were deployed in the second survey.

3.3.1 Conventional Time-Lapse Monitoring

To reconstruct a 2D, p-wave velocity model between the two wells, I pick first-arrival

traveltimes on the seismic sections. The traveltime data are shown in Figure 3.13.

The axes of the data grids in Figure 3.13 represent shot and receiver depths. As ex-

pected, we observed the largest traveltime differences at the depths corresponding

to the location of the reservoir. The traveltime increase is caused by a decrease in

reservoir seismic velocity. The decreased velocity is a result of the injection of CO2

into the reservoir. I reconstruct velocity models using the tomography algorithm

described in Zelt and Barton (1998). Figure 3.14 shows the difference between
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the 1993 model and the 1995 model. The reduction in velocity can be seen in the

velocity-difference model.

3.3.2 Time-Lapse Monitoring with Sparse Data

After successfully applying the proposed time-lapse monitoring approach to syn-

thetic data, I apply it to the McElroy Field data. In this case, I use 5% of the 1995

monitor dataset. The results are shown in Figure 3.15. Without data estimation,

the reservoir velocity change resulting from the injection of CO2 is grossly under-

estimated. Using the complete baseline dataset and the sparse monitor dataset, I

estimate the discarded data. The velocity model reconstructed using the estimated

data is good. This result shows the efficiency of the proposed approach for cross-

well traveltime field data. An ideal field implementation of our approach will utilize

more than two surveys for optimal results.

3.4 Summary

To examine the effectiveness of my approach, I created synthetic time-lapse travel-

time datasets from field datasets recorded in the McElroy Field in Texas. The field

data were recorded to monitor a reservoir flooded with CO2 for secondary recovery.

I created 70 synthetic time-lapse velocity models representing the state of the field

every two weeks from the date of first data acquisition, and I also create their cor-

responding traveltime datasets. The synthetic models showed CO2 being injected

into the reservoir and leaking into a shallower reservoir 10 months after injection

began.

I kept the total size of the data at the end of the surveys constant while varying

both the size of the sparse data acquired at each time and the length of the time

interval between datasets. I used 1%, 2%, 5%, and 10% of the individual complete

datasets as my sparse datasets. The data intervals in these datasets were 2, 4, 10,

and 20 weeks, respectively. After the unrecorded datasets were estimated, travel-

time tomography was used to reconstruct the velocity models. The errors in the
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Figure 3.13: Traveltime data grids picked from the baseline (1993) and monitor
(1995) surveys, and the difference between the two datasets.
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itor (1995) surveys, and the velocity-difference model. The velocity models are
reconstructed using the datasets shown in Figure 3.13. 1-D velocity logs shown are
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reconstructed models were then analyzed.

The synthetic example showed that only a small number of iterations are needed

to produce reliable reconstructed velocity models; in my case, only three iterations

were needed. As more sparse datasets are acquired, estimates of previously ac-

quired sparse datasets improve in accuracy. The accuracy improves because the

newer sparse datasets continue to add information to the older datasets.

Because the reconstructed time-lapse models converge after some time, a mov-

ing estimation window can be used to reduce computational time. Furthermore,

because total data size increases with time, once a certain reconstructed velocity

model has converged, its data need not be re-estimated when new data are avail-

able. In the synthetic data example, the CO2 leak is detected two weeks after it

occurred. However, this time delay is much smaller than the conventional time-

lapse data acquisition interval.

I also applied the proposed approach to field data. Here, I use the baseline and

monitor data from the McElroy Field. I discarded 95% of the monitor dataset and

then estimated the discarded data from the baseline data and the sparse monitor

data. The results show the efficiency of this approach on crosswell field data. With

only the baseline and the sparse monitor dataset, the reconstructed reservoir veloc-

ity change is underestimated. With the baseline and estimated monitor datasets,

the reconstructed reservoir velocity change is close to the true model.



Chapter 4

Quasi-continuous Monitoring with

Surface-Seismic Data: Synthetic Data

Example

4.1 Introduction

In the preceding chapter, I presented an application of the quasi-continuous seis-

mic monitoring approach to crosswell-seismic traveltime data. I showed that my

approach is efficient at tracking small changes in the velocity model of a reservoir

at short time intervals. To estimate the unrecorded traveltime data at each incre-

mental survey time, I used non-stationary PEFs as my data estimation tool.

In this chapter, I shift my focus to surface-seismic data. Surface-seismic reser-

voir monitoring is common practice today. Surface-seismic exploration is less in-

vasive than crosswell-seismic exploration from the reservoir point of view, which

makes it a better option in projects where the integrity of the reservoir is very

important. An example is CO2 sequestration in geologic reservoirs, where an abun-

dance of wells penetrating the reservoir might compromise its containment capa-

bility. Furthermore, surface-seismic survey configurations provide more flexibility

for source-receiver distribution than crosswell-seismic survey configurations, and

survey boundaries can be extended with minimal cost.

93
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I present two synthetic tests of quasi-continuous surface-seismic monitoring.

The first is a 2D CO2-sequestration example designed to ensure that the injected gas

remains contained within the reservoir, and the second is a 3D enhanced-recovery

example designed to verify that the injected fluid flows in the direction intended.

4.2 2D surface-seismic Synthetic Example

The monitoring scenario in this example is similar to that presented in Chapter 3,

although the geologic setting is different. The reservoir here is a layered sedimen-

tary unit overlain by a chalk layer and underlain by layered sedimentary units. It is

separated from the geologic units below by an unconformity. The baseline velocity

model is perturbed to produce 20 time-lapse velocity models. The perturbation is

defined by velocity decrease in the reservoir. The velocity decrease represents the

injected CO2 in the reservoir (see Mavko et al., 1998). I let a leak occur in the reser-

voir after the 11th month, and allow the leaked CO2 to accumulate in a reservoir

above the containment reservoir. One of the benefits of a quasi-continuous moni-

toring strategy is that it may detect the leak as soon as it occurs so that remedial

steps can be taken.

I use the elastic wave equation algorithm described in Wu (2005) to simulate the

synthetic seismic data with velocity and density models created for this example. I

use a source wavelet with a peak frequency of 25Hz. Although computationally

time-consuming, the elastic wave equation algorithm allows the simulation of a

more realistic seismic dataset with primary- and secondary-wave arrivals.

4.2.1 Survey Setup

I simulate 2D seismic data using 31 receivers measuring data from 481 shots. The

shots are spaced 25 m apart, while the receivers are spaced 400 m apart along the

survey line. To demonstrate a conventional survey, I use data from all sources and

all receivers. To demonstrate a quasi-continuous survey, I use data from about 96

evenly spaced shots for each partial survey. The quasi-continuous survey is designed
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Figure 4.1: An illustration showing the 2D acquisition pattern described in Section
4.2 as an extraction from a 3D survey. The rectangle with the thick red border
indicates the extracted 2D line.

in such a way that five partial surveys produce the same data volume and coverage

as one complete survey.

The source-receiver distribution described in this 2D example can be viewed as a

2D slice through an 3D survey, where the receivers are ocean-bottom cables (OBCs)

and the sources are airgun shots distributed on a regular grid as shown in Figure

4.1. In the quasi-continuous monitoring case, some shot-lines are skipped in each

partial survey.
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4.2.2 Conventional Time-Lapse Monitoring

In today’s industry, conventional time-lapse monitoring surveys may occur as infre-

quently as every two years. I adopt a time interval of 20 months for my conventional

survey. Figure 4.2 shows the baseline velocity model, the velocity model after 20

months, and the time-lapse change between the two velocity models. Figure 4.3

shows wavefield-propagation snapshots from one of the shots through the baseline

velocity model, overlain on a background image of the baseline velocity model. The

primary and mode-converted waves can be seen propagating through the velocity

model. In Figure 4.4, I show sample shot gathers from the baseline survey, the

time-lapse survey, and the difference between them. We can easily identify the pri-

mary reflectors, and the mode converted arrivals on the shot gathers. The mode

converted waves are identified by their moveouts and their significantly reduced

amplitudes at zero offset.

I use a source-receiver migration algorithm (see Biondi, 2007) to produce seis-

mic images from the shot gathers. These images are shown in Figure 4.5, together

with the difference between them. Because I migrated both datasets with the base-

line velocity model, as is the industry practice, the reflectors below the injected CO2

are not located at the right depth. This effect can be removed by calculating the

reflector depth-shifts and relocating the reflectors to the correct depths. The com-

puted shifts are shown in Figure 4.7, and the corrected images are shown in Figure

4.6.

4.2.3 Quasi-Continuous Time-Lapse Monitoring

We saw in Section 4.2.2 that the conventional time-lapse monitoring strategy is not

ideal for all monitoring scenarios, especially in cases where a late discovery of an

abnormality can be catastrophic. A more appropriate strategy allows short time

intervals between surveys. To facilitate data acquisition, we acquire subsets of the

entire survey at each survey time, as described in Chapter 1, until a full survey has

been completed.

If we assume that a slow-time resolution of one month is good enough for this
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lapse difference image. Notice the reflector depth errors introduced by using the
baseline velocity model in migrating the image.
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Figure 4.6: Computed depth-shifts for the migrated image after 20 months.

2D seismic time-lapse monitoring simulation, we can assess the ability of the mon-

itoring approach described in this dissertation to detect the leak shortly after its

occurrence. I assume that 20% of the data described in the previous section can be

acquired and processed within a month. The objective now becomes using 20% of

the synthesized datasets for each of the 20 synthetic velocity models to estimate the

discarded 80%.

In creating the sparse datasets, I use realistic seismic source-receiver distribu-

tions (see Section 4.2.1 on page 94). The synthetic sparse datasets consist of reg-

ularly spaced traces. Four in five consecutive traces from the original complete

dataset are discarded. The selected traces vary from survey to survey so that a com-

plete survey is acquired after five surveys. Figure 4.8 shows sparse receiver gathers

from two different surveys.

In order to perform time-lapse data estimation, I create time-lapse data volumes

by concatenating receiver gathers along the slow-time dimension, producing 3D

data volumes from 2D sections. At each incremental survey time, I add receiver

gathers from the current sparse dataset to the accumulated time-lapse data vol-

ume for each receiver. Accordingly, all unknown traces in the accumulated sparse

datasets are estimated at each incremental survey time. I use, as the input to the
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Figure 4.7: The baseline image, the corrected image after 20 months, and the time-
lapse difference image. Notice that the reflectors have been relocated to their cor-
rect depths.
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Figure 4.8: 20% sparse receiver gathers from the same receiver location for surveys
2 and 5.

minimum-weighted-norm interpolation (MWNI) algorithm, the 1D Fourier trans-

form of overlapping 3D window patches, with 700 samples in the frequency dimen-

sion and 16 samples in the x-dimension. The number of samples in the slow-time

dimension depend on the number of surveys in the accumulated dataset. In Figure

4.9, I show a selected sparse receiver gather; the corresponding true and estimated

receiver gather; and the difference between the true and estimated datasets. MWNI

does a good job at reconstructing the unknown traces.

I migrate the estimated datasets using the source-receiver migration algorithm

mentioned earlier to produce corresponding seismic images. Figure 4.10 shows

the subsurface image for the 12th month, obtained by estimating 80% unknown

data from 20% known data accumulated up to the 14th month, together with time-

lapse difference images. Here, I compare the time-lapse difference images from the

estimated datasets to the true time-lapse difference images. Before computing the

difference images, I relocate the reflectors to their correct depths using the cross-

correlation algorithm described in Chapter 2.

By migrating the sparse data without estimating unavailable traces, an image

close enough to the true image is produced. However, the time-lapse image ob-

tained by subtracting the monitor image from the baseline image is less than ad-

equate for monitoring the changes in the reservoir (Figure 4.11). The inadequacy
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Figure 4.10: (a) The 12th-month subsurface image obtained from complete true
data. (b) The 12th-month subsurface image obtained from the estimated data com-
puted in the 14th month. (c) The 12th-month subsurface time-lapse difference
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lapse image obtained from the estimated data computed in the 14th month. (e)
The estimation error computed by taking the difference between the image in (a)
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(b) The 15th-month time-lapse difference image obtained by subtracting the image
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results because images obtained from data with different number of seismic traces

are differenced. By estimating the unavailable data, we compensate for the differ-

ence in data size.

Images obtained using the complete true data show that the CO2 leak can be

detected in the 11th month. Figure 4.12 shows the time-lapse images obtained us-

ing complete true data for months 10 through 15. The leak can be seen to increase

in size starting from the 11th month. Figures 4.13, 4.14, and 4.15 show the time-

lapse images obtained from the 10th to 15th using the estimated data with ESLs

of 0, 1 and 2 months respectively. The leak is detected with the 11th-month data,

but not until the 12th month; in other words, the leak is detected with the 11th-

month data when there is a one-month estimation slow-time lag. We can compare

Figure 4.13(b) and Figure 4.14(b) to see the improvement in our ability to detect

the leak by using data from a later time than the time of interest in the estimation

process. In this example, the quasi-continuous monitoring strategy presented in this

dissertation can detect the leaked CO2 one month after it occurs.
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Figure 4.12: Time-lapse difference images obtained from complete data for the (a)
10th month, (b) 11th month, (c) 12th month, (d) 13th month, (e) 14th month, (f)
15th month.
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Figure 4.13: Time-lapse difference images obtained from estimated data with an
ESL of 0 months for the (a) 10th month, (b) 11th month, (c) 12th month, (d) 13th
month, (e) 14th month, (f) 15th month.
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Figure 4.14: Time-lapse difference images obtained from estimated data with an
ESL of 1 month for the (a) 10th month, (b) 11th month, (c) 12th month, (d) 13th
month, (e) 14th month, (f) 15th month.
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Figure 4.15: Time-lapse difference images obtained from estimated data with an
ESL of 2 months for the (a) 10th month, (b) 11th month, (c) 12th month, (d) 13th
month, (e) 14th month, (f) 15th month.
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Figure 4.16 shows time-lapse difference images obtained for month six using

estimated data from accumulated sparse datasets in months 6, 8, 10, 12, 15, and

20. In general, we see a reduction in imaging artifacts, caused by data-estimation

errors, with time. The same can be said for Figure 4.17, which shows time-lapse

difference images obtained for month 11 using estimated data from accumulated

sparse datasets in months 11, 13, 15, 17, 19, and 20. As I explained in Chapter

3, estimation errors (artifacts) may be introduced when long estimation windows

are used. This occurs because real features which exist in later datasets but are

not present in earlier datasets are introduced into earlier datasets. Short, moving

estimation windows can be used to avoid this problem.

It should be noted that the estimation error introduced by features present in

sparse datasets at later times in estimated datasets at earlier times do not affect de-

cisions made at earlier times, because of the irreversibility of time. The interpreter

of the images obtained using estimated data must take this into account. The inter-

preter must be able to distinguish between a real feature and an introduced feature.

Figure 4.18 shows the ratio of the sum of the absolute amplitudes in the estimated-

data images to the sum of the absolute amplitudes in the true-data images. Figure

4.19 shows the average reflector depth-shifts in the estimated-data images respec-

tively. These are measures obtained with the estimation-error tool described in

Section 2.2. The plotted curves are color-coded by the estimation slow-time lag

(see Section 1.4 on page 9 for definition).

In addition to showing that estimation errors in this example are very small, the

plots show that the most accurate estimates do not occur when the estimated data

of interest is most recently acquired data, i.e. when the estimation slow-time lag is

zero months. The most accurate estimates occur, in general, when the estimation

slow-time lag is two months. Before and after two months of estimation slow-time

lag, the estimates are less accurate. This is more apparent in the amplitude ratio

plots than in the depth-shift error plots. Unlike the amplitude ratio, the depth-shift

error for an estimation slow-time lag of zero months does not conform to this rule.

This may be because the estimated traces at zero months of estimation slow-time lag

are extrapolated in the slow-time direction, and as such, are not fully constrained
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Figure 4.16: Time-lapse difference images obtained for month six using data es-
timated from accumulated sparse datasets in (a) month six, (b) month eight, (c)
month 10, (d) month 12, (e) month 15, and (f) month 20.



CHAPTER 4. SYNTHETIC SURFACE-SEISMIC EXAMPLE 113

0

1

2

3

4

D
e
p
th

 (
k
m

)

0 4 8 12

X Position (km)
(a)

0 4 8 12

X Position (km)
(b)

0

1

2

3

4

D
e
p
th

 (
k
m

)

0 4 8 12

X Position (km)
(c)

0 4 8 12

X Position (km)
(d)

0

1

2

3

4

D
e
p
th

 (
k
m

)

0 4 8 12

X Position (km)
(e)

0 4 8 12

X Position (km)
(f)

Figure 4.17: Time-lapse difference images obtained for month 11 using data esti-
mated from accumulated sparse datasets in (a) month 11, (b) month 13, (c) month
15, (d) month 17, (e) month 19, and (f) month 20.
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Figure 4.18: The ratio of the sum of the absolute amplitudes in the estimated-data
images to the sum of the absolute amplitudes in the true-data images, color-coded
by estimation slow-time lag (see Section 1.4 on page 9 for definition). Notice how
the highest ratios occur, in general, at two months of estimation slow-time lag.

to follow a pattern.

Knowledge of the optimal estimation slow-time lag is useful when interpreting

images obtained using data-estimation-based time-lapse monitoring. For a field

project, where the true data are unknown and errors cannot be determined, a syn-

thetic test, with acquisition parameters and noise level similar to those of the field

data, can be used to determine the optimal estimation slow-time lag.

4.3 3D Surface-Seismic Synthetic Example

In this section, I apply my approach to a 3D synthetic model that simulates an oil

field during enhanced recovery by water injection. Continuous monitoring during

water injection would be required if decisions on injection rate and pressure must

be made on the fly, which could happen if uncertainties exist regarding pressure

gradients or structural integrity within the reservoir. The reservoir in this synthetic

velocity model is a folded and partially faulted unit overlain by two folded and
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Figure 4.19: The average reflector depth-shift errors in the estimated-data images,
color-coded by estimation slow-time lag.

completely faulted units. The baseline velocity model is perturbed to produce four

time-lapse velocity models. The perturbation in these models consists of an increase

in velocity, caused by water injection (see Wang and Nur, 1988; Mavko et al., 1998).

The injected water is made to flow radially in the reservoir from a hypothetical well.

The size of the radial patch indicating injected water increases from the first time-

lapse velocity model to the fourth time-lapse velocity model. Slices through the

baseline and time-lapse difference velocity models are shown in Figure 4.20 and

Figure 4.21 respectively.

The goal of this synthesized time-lapse seismic monitoring project is to observe

the flow pattern of the injected water as it comes in contact with the fault. It is

expected that there will be no flow across the boundary, therefore any deviation

will force a change in management decisions.

4.3.1 Survey Setup

The 3D synthetic survey is simulated using a 107 x 107 shot grid with 12 m inline

and crossline shot spacing, and both 10 x 10 and 11 x 11 staggered receiver grids



116 4.3. 3D SURFACE-SEISMIC SYNTHETIC EXAMPLE

0.0

0.5

1.0

D
e

p
th

 (
k
m

)

0.0 0.4 0.8 1.2

X Position (km)

0.0 0.4 0.8 1.2

Y Position (km)

0.0

0.4

0.8

1.2

Y
 P

o
s
it
io

n
 (

k
m

)

0.0 0.4 0.8 1.2

3.50 3.75 4.00 4.25 4.50

km/s

Figure 4.20: The baseline velocity model synthesized for the 3D example.

with 120 m inline and crossline spacing. I simulate a complete survey in the baseline

case and partial (sparse) surveys in the time-lapse cases. The quasi-continuous

partial surveys are acquired over a period of 20 months. The data size for the

simulated complete survey is four times larger than for the simulated partial survey.

Combining the data from all four synthetic time-lapse partial surveys produces a

dataset with the same size as the complete survey for a conventional monitoring

design. An illustration of the complete shot-receiver spatial distribution and the

partial survey patterns are shown in Figure 4.22 and 4.23 respectively.

I assume that a seismic-receiver cable is used, therefore data sparsity in the par-

tial surveys exists in the crossline direction but not in the inline direction. The

quasi-continuous monitoring design is set up with four shot-grid patterns with 12

m spacing in the inline direction and 48 m spacing in the crossline directions; how-

ever, each pattern is shifted 12 m from the previous one in the crossline direction.

The partial surveys represent time intervals of five months. Using the conventional

strategy, the complete dataset composed of data from the four partial surveys will
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Figure 4.21: Time-lapse velocity changes in the synthetic velocity models. (a) After
five months. (b) After 10 months. (c) After 15 months. (d) After 20 months.
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Figure 4.23: Individual survey patterns for the partial surveys.
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be used to produce one image of the reservoir, whereas the quasi-continuous strat-

egy described in this dissertation will be used to produce four time-lapse images of

the reservoir, allowing operational and management decisions to be made sooner.

In Figure 4.24, I show a sample receiver gather from the baseline survey.

4.3.2 Conventional Time-Lapse Monitoring

In Chapter 1 I showed how a conventional 3D seismic survey is acquired over a pe-

riod of time rather than instantaneously. If we apply this knowledge to the synthe-

sized time-lapse data described in the previous section, we produce a complete sur-

vey composed of partial surveys acquired as the reservoir changes occurred. Even

though there are changes in the reservoir, there appear to be no discontinuities in

the main reflectors in the combined data. A sample section through this combined

dataset is shown in Figure 4.25.

I migrate the baseline and the combined time-lapse datasets using the base-

line velocity model and move the reflectors in the monitor image to their correct

positions with the cross-correlation method described in Chapter 2. Figure 4.26

shows the common mid-point (CMP) fold map of the input data to the migration

algorithm. With a maximum fold of 36, a good-quality migrated image is pro-

duced. Sections through the migrated image and the time-lapse difference image

are shown in Figure 4.27. A comparison of the time-lapse difference image and the

last time-lapse velocity model (i.e. Figure 4.21d) shows that the shape and lateral

extent of the injected water boundary is accurate; however its lower boundary is

not well resolved. The high amplitude of the upper boundary occurs because of

the constructive summing effect caused by the fixed position of the upper bound-

ary. On the other hand, the lower boundary is not fixed, so there is no constructive

summing effect.

If we choose to simulate current acquisition techniques, where surveys are ac-

quired as quickly as possible, such that a complete survey can be acquired within six

weeks, we obtain a more instantaneous image of the reservoir 20 months after in-

jection began. Figure 4.28 shows the resulting instantaneous time-lapse difference
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Figure 4.24: (a) Slices through a receiver gather from the baseline dataset. (b) The
same dataset in (a) after muting the direct arrival.
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Figure 4.25: Slices through a receiver gather from the complete dataset obtained
after combining all four partial datasets.
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Figure 4.26: The fold map of the migrated datasets.

image. This strategy does not provide the best opportunity to detect what happens

as the injected water reaches the fault. Figure 4.29 shows a 3D visualization of the

top of the injected water flood.

4.3.3 Quasi-Continuous Time-Lapse Monitoring

If we use a quasi-continuous monitoring strategy in tracking the injected water, we

are able to observe the reservoir changes at a better slow-time temporal resolution.

At each survey time, I create 25% sparse datasets. In this example, the time interval

between survey times of interest is five months. Sample sparse datasets are shown

in Figure 4.30. I create accumulated, sparse, time-lapse seismic volumes at each

survey time by concatenating receiver gathers along the slow-time dimension. The

1D Fourier transforms (along the fast-time axis) of these sparse seismic gathers are

the inputs to the MWNI algorithm. To reduce the effect of event curvature on the

estimation results, I use overlapping windows; the dimensions of the windows are

150 samples in the frequency dimension, 10 samples in the x-dimension, 10 samples

in the y-dimension, and all available samples in the slow-time dimension.
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Figure 4.27: (a) Slices through the baseline image. (b) Slices through the image
obtained by migrating the combined partial data. (c) Slices through the resulting
time-lapse difference image.
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Figure 4.28: Time-lapse difference image obtained if we assume instantaneous data
acquisition 20 months after water injection begins.
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Figure 4.29: 3D visualization of the interpreted top of the injected water flood,
based on the time-lapse difference images obtained from the instantaneous com-
plete true data after 20 months.
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Figure 4.30: Slices through the partial datasets from (a) Pattern 1, (b) Pattern 2,
(c) Pattern 3, and (d) Pattern 4.
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Example estimated datasets for the first survey are shown in Figure 4.31. Dif-

ference estimated datasets, showing estimation inaccuracies, are shown in Figure

4.32. Comparing the results at each incremental survey time to the true dataset, we

notice that the estimation errors reduce as the number of individual sparse datasets

increase from one to two. This happens because of the added constraints intro-

duced by the additional datasets. With three and four sparse datasets, we notice

amplitude errors in the lower reflector. This occurs because the lower reflectors in

the added datasets have significant amplitude differences from the lower reflectors

in the dataset for the first survey. For this example, results show that an estimation

window of one previous and one later time-lapse sparse dataset (or 10 months of

accumulated datasets) produces the optimal estimation results.

Each estimated dataset is migrated using the same parameters as the conven-

tional monitoring example, and the computed time-lapse difference images are

shown in Figure 4.33. Compare these images with the time-lapse difference ve-

locity models shown in Figure 4.21. It is obvious that the quasi-continuous moni-

toring strategy does a good job at tracking the incremental changes in the reservoir.

Whereas the conventional strategy gives a result that sums up all the changes occur-

ring in the reservoir throughout the data-acquisition period, the quasi-continuous

strategy shows the incremental changes during the data acquisition process.

Figure 4.34 shows a 3D visualization of the interpreted top of the injected water

flood based on the time-lapse difference images. The figure shows the water flood

expanding during the 20-month monitoring period. It also shows the water flood

making contact with the fault surface without leaking through the fault surface.

For comparison, the true time-lapse images are shown in Figure 4.35. Note

that the primary difference between the images occurs in the shallow layers. This

difference is a result of errors introduced by inaccurate estimation of the high-

amplitude direct arrivals, as well as the near-offset data-estimation errors visible in

Figure 4.32. The shapes and sizes of the boundaries of the reservoir changes are

delineated correctly in the images from the estimated datasets.

Computed absolute amplitude ratios and depth-shift errors in the images ob-

tained from the estimated data are shown in Tables 4.1 and 4.2. Only two of the 10
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Figure 4.31: (a) Slices through a receiver gather with complete true data. (b)
Slices through an estimated receiver gather from a 25% sparse receiver gather. (a)
and (b) show receiver gathers from the same receiver position.
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Figure 4.32: Section showing the estimation errors for the estimated dataset after
5 months at (a) estimation slow-time lag of zero months, (b) estimation slow-time
lag of five months, (c) estimation slow-time lag of 10 months, and (d) estimation
slow-time lag of 15 months.
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Figure 4.33: Time-lapse difference images computed for the images obtained us-
ing estimated data from 25% sparse datasets. (a) The time-lapse image after five
months and estimation slow-time lag of zero months. (b) The time-lapse image
after 10 months and estimation slow-time lag of zero months. (c) The time-lapse
image after 15 months and estimation slow-time lag of zero months. (d) The time-
lapse image after 20 months and estimation slow-time lag of zero months.
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Figure 4.34: 3D visualization of the interpreted top of the injected water flood based
on the time-lapse difference images obtained from the estimated datasets. (a) After
five months. (b) After 10 months. (c) After 15 months. (d) After 20 months.
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Figure 4.35: Time-lapse difference images computed for the images obtained using
complete datasets. (a) After five months. (b) After 10 months. (c) After 15 months.
(d) After 20 months.
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Month 5

Month 10

Month 15

Month 20

0 Months 5 Months 10 Months 15 Months
ESL

IT

 ESL - Estimation Slow-time Lag

 IT - Image Time

0.951

0.919

0.907

0.913

0.920

0.909

0.916

0.910

0.918

0.919

Table 4.1: Absolute amplitude ratios for the estimated-data images (see Section 1.4
on page 9).

images obtained from the estimated time-lapse datasets have absolute amplitude

ratios less than 0.91. The error values in Table 4.2 show that depth-shift errors in

the images obtained from the estimated time-lapse datasets are very small. Overall

the estimated datasets compare well with the true datasets, even though I use only

25% of the true datasets.

4.4 Summary

In this chapter, I applied the quasi-continuous strategy introduced in Chapter 1 to

two surface-seismic synthetic examples. In the first example, I simulated a CO2 ge-

ologic reservoir where the injected CO2 had leaked. I showed how my proposed

method can be used in the early detection of such a leak. In the second exam-

ple, I simulated a faulted hydrocarbon reservoir undergoing secondary recovery. I

showed how my proposed approach can be used to monitor the injected water to

ensure that the predicted flow patterns actually occur. Also, I show that the estima-

tion errors computed using the method described in Section 2.2 are very small.
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Month 5

Month 10

Month 15

Month 20

0 Months 5 Months 10 Months 15 Months
ESL

IT

 ESL - Estimation Slow-time Lag

 IT - Image Time

x10-1m

0.788

1.604

1.908

2.140

1.530

1.790

1.970

1.601

1.696

1.533

Table 4.2: depth-shift errors in the estimated-data images.



Chapter 5

Quasi-continuous Monitoring with

surface-seismic Data: Field-Data

Example

5.1 Introduction

In this chapter, I apply the methodology presented in previous chapters to the BP

partnership’s Valhall Life of Field Seismic (LoFS) project 4D dataset. I start by intro-

ducing the dataset, describing the acquisition process and parameters, and explain-

ing the reason for implementing the Valhall LoFS project. I follow by showing the

results obtained for a data-estimation-based quasi-continuous monitoring project

at Valhall with the same survey time intervals as the Valhall LoFS project. In this

case I subsample data from three consecutive time-lapse surveys to mimic one full

survey acquired over the time interval for all three surveys. I then show results

obtained after applying the methodology in a strict sense to one of the surveys. For

this example, the quasi-continuous monitoring data are extracted from the Valhall

LoFS dataset by splitting one full 3D survey into three time-lapse surveys to monitor

changes in the reservoir over the data acquisition period of that survey.

135
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5.2 The Valhall Time-Lapse Monitoring Project

The Valhall Field, operated by BP Norge AS, is located off the coast of Norway in

the North Sea. Water depth at the Valhall Field averages 70 m (van Gestel et al.,

2008). The reservoir at the Valhall Field is a highly porous, low-permeability, Cre-

taceous chalk layer at a depth of about 2400 m, with a thickness of 0 m to 70 m.

The chalk layer has porosity values of 35-50% and matrix-permeability values of 1-

10 mD under initial reservoir conditions (Barkved and Kristiansen, 2005). Overall,

the reservoir is complex, with gas-charged sediments in the overburden (Munns,

1985). Gas within the overburden has formed a gas cloud above the crest of the

field, creating an imaging challenge. Because of the the high porosity of the reser-

voir, there is significant compaction during pressure depletion (van Gestel et al.,

2008). This compaction causes subsidence in the overburden. As a result, reservoir

depletion creates significant 4D responses in time-lapse seismic data. The current

rate of subsidence is 0.25 m/yr and overall subsidence has exceeded 5.4 m since

production started (Barkved and Kristiansen, 2005).

Production at the Valhall Field began in 1982. In 2003, the Life of Field Seis-

mic project (LoFS) was implemented to monitor production and water injection

using permanently installed ocean-bottom cables (OBCs) (van Gestel et al., 2008).

The Valhall LoFS project was designed to monitor water injection because of the

horizontal orientation of the injectors and producers. Monitoring the interaction

between the horizontal wells was a top priority. Another reason for implementing

the Valhall LoFS project is the dynamic nature of the overburden units. Areas with

large lateral changes in pore pressure and stress had to be avoided during well

planning.

A total of about 120 km of cable was installed with approximately 2500 receiver

stations. The receivers are separated by a nominal distance of 50 m in the inline

direction and 300 m in the crossline direction. About 50,000 shots were deployed

in each survey, with a nominal spacing of 50 m in both the inline and crossline

directions. A 1976 interpretation of the chalk reservoir-top structure (Munns, 1985)

is shown in Figure 5.1.
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Figure 5.1: A 1976 interpretation of the chalk reservoir-top structure at Valhall
(Munns, 1985).

To date, 11 surveys have been acquired (see Table 1.1 on page 14 for survey

dates). The baseline survey was acquired in September 2003, and the 11th survey

was acquired in October 2008. Dedicated water injection started in early 2006,

before the 7th survey. Van Gestel et al. (2008) noted that data from production

logging tools were in agreement with time-lapse changes observed in seismic data.

The time interval between consecutive surveys varies from one to seven months. For

a conventional time-lapse project, this temporal resolution is high. The duration of

individual field surveys vary from three weeks at the shortest to two months at

the longest. This large variation in the data-acquisition duration is in large part

due to varying weather conditions. Sometimes, the weather is conducive to field

operations, and sometimes it is not. Finally, I use the baseline velocity described in

Sirgue et al. (2010) to migrate the Valhall Field data. Sections through this velocity

model are shown in Figure 5.2.
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Figure 5.2: The Valhall LoFS project baseline velocity model (Sirgue et al., 2010).
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5.3 Survey Setup

To demonstrate the efficiency of the method presented in this dissertation on field

seismic data, I used data from subsets of the full Valhall LoFS surveys. These subsets

consist of data from about 470 receivers, covering the lower portion of the survey

map (geographically the south-eastern end). Each receiver gather consist of traces

from shots within a 5 km radius from the receiver position. The portion of the field

covered by the data subsets is unaffected by the gas clouds in the overburden sedi-

mentary layers. The primary reason for selecting this subset is that the complexity

involved in imaging sedimentary layers below a gas cloud is beyond the scope of

this dissertation.

In the inline direction, both shots and receivers are separated by a nominal dis-

tance of 50 m; in the crossline direction, shots are separated by 50 m, but receivers

are separated by a nominal distance of 300 m. The original survey map and the

survey subset maps are shown in Figures 5.3 and 5.4. In the first quasi-continuous

monitoring simulation, I use every third shot-line in the inline direction from sur-

veys 9, 10, and 11. I change the first shot-line preserved in each survey. A sum of all

the data subsets gives one complete dataset. Data sparsity occurs in the crossline

direction but not in the inline direction. Sparsity in the inline direction would

imply the some shot points are skipped during a survey, despite the fact that the

source boat arrives at their locations. Skipping shot points in the inline direction

while acquiring offshore seismic data is an inefficient acquisition strategy. In the

second quasi-continuous monitoring simulation, the distribution of the receivers is

left unchanged, but the distribution of the shots is varied depending on the shot

time. I separate the shots into three groups representing 15-day shot intervals (see

Figure 1.4 on page 13).

5.4 Conventional Time-Lapse Monitoring

The Valhall time-lapse LoFS project has unusually short time intervals between sur-

veys, even though the monitoring strategy is conventional. On average, the interval
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Figure 5.3: The original complete survey map of the Valhall LoFS project.
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Figure 5.4: The survey map for the Valhall LoFS project data subsets used in this
dissertation.
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is six months. This is short by today’s standards; however there are changes within

the reservoir with a time scale far shorter than six months. These changes cannot

be delineated using the conventional strategy. Sample datasets from surveys 1, 4,

9, 10, and 11 are shown in Figures 5.5, 5.6, 5.7, 5.8, and 5.9. As I did with the

synthetic examples, I migrated the data with source-receiver wave equation migra-

tion. 2D slices through the baseline and monitor images are shown in Figures 5.10,

5.11, 5.12, and 5.13, and the time-lapse difference images are shown in Figures

5.14, 5.15, and 5.16. The reservoir top is easily identified in the images by a high-

amplitude reflector around 2700 m depth in Figures 5.10 through 5.13. We see on

the time-lapse difference images the amplitude changes in the reservoir reflector

caused by the injected water from the time of the 9th survey to the time of the 11th

survey in Figures 5.14 through 5.16.
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Figure 5.5: Sample receiver gather from the baseline survey. Direct arrivals have
been muted.
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Figure 5.6: Sample receiver gather from survey 4. Direct arrivals have been muted.
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Figure 5.7: Sample receiver gather from survey 9. Direct arrivals have been muted.
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Figure 5.8: Sample receiver gather from survey 10. Direct arrivals have been muted.
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Figure 5.9: Sample receiver gather from survey 11. Direct arrivals have been muted.
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Figure 5.10: Valhall LoFS project migrated baseline image obtained using the subset
dataset.
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Figure 5.11: Valhall LoFS project migrated image for survey 9.
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Figure 5.12: Valhall LoFS project migrated image for survey 10.
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Figure 5.13: Valhall LoFS project migrated image for survey 11.
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Figure 5.14: Valhall LoFS project time-lapse difference image for survey 9.
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Figure 5.15: Valhall LoFS project time-lapse difference image for survey 10.
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Figure 5.16: Valhall LoFS project time-lapse difference image for survey 11.
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5.5 Quasi-Continuous Time-Lapse Monitoring 1

To demonstrate the efficiency of my data-estimation-based time-lapse monitoring

approach on field data I use data subsets from Valhall LoFS surveys 9, 10, and 11.

These are the 33% sparse datasets described in Section 5.3. Prior to estimating the

discarded datasets, I create 4D sparse time-lapse data volumes by concatenating

receiver gathers from the different surveys along the slow-time direction. I use the

1D Fourier transforms of these sparse time-lapse data volumes as the input to the

MWNI algorithm. Sample estimated datasets are shown in Figures 5.17 through

5.19. Compare the estimated datasets in Figures 5.17 through 5.16 with the true

datasets shown in Figures 5.7 through 5.9. The differences between the estimated

and true datasets are shown in Figures 5.20 through 5.22. Estimation errors oc-

cur primarily in the form of incoherent noise, which implies that the reflectors are

reconstructed with a high degree of accuracy.

The time-lapse difference images obtained by migrating the estimated images

and computing the time-lapse amplitude changes are shown in Figures 5.23 through

5.25. Comparing the images from the estimated datasets (Figures 5.23 through

5.25) to the images obtained from the complete true datasets (Figures 5.14 through

5.16), we see that the approach does a good job at delineating the true time-lapse

reservoir changes.

I present the data absolute amplitude ratio and depth-shift errors for the esti-

mated datasets in Tables 5.1 and 5.2. Unlike in the synthetic examples, some of

the absolute amplitude ratios for the estimated field data are larger than 1. This is

caused by an overestimation of noise amplitudes in the estimated field data. Table

5.2 shows that the depth-shift errors are very small. The error estimates shown in

Tables 5.1 and 5.2 indicate that the data reconstruction approach used does a good

job at estimating the discarded traces.
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Figure 5.17: Slices through the estimated data obtained for a receiver gather from
survey 9 using data estimated from an accumulated time-lapse data volume con-
sisting of 33% sparse data from surveys 9 and 10.
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Figure 5.18: Slices through the estimated data obtained for a receiver gather from
survey 10 using using data estimated from an accumulated time-lapse data volume
consisting of 33% sparse data from surveys 9, 10, and 11.
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Figure 5.19: Slices through the estimated data obtained for a receiver gather from
survey 11 using using data estimated from an accumulated time-lapse data volume
consisting of 33% sparse data from surveys 9, 10, and 11.
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Figure 5.20: Slices through the difference between the true and estimated data
obtained for the receiver gather from survey 9 shown in Figure 5.17.
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Figure 5.21: Slices through the difference between the true and estimated data
obtained for the receiver gather from survey 10 shown in Figure 5.18.
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Figure 5.22: Slices through the difference between the true and estimated data
obtained for the receiver gather from survey 11 shown in Figure 5.19.
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Figure 5.23: The time-lapse difference image obtained for survey 9 using data esti-
mated from an accumulated time-lapse data volume consisting of 33% sparse data
from surveys 9 and 10.
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Figure 5.24: The time-lapse difference image obtained for survey 10 using data
estimated from an accumulated time-lapse data volume consisting of 33% sparse
data from surveys 9, 10 and 11.
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Figure 5.25: The time-lapse difference image obtained for the survey 11 using data
estimated from an accumulated time-lapse data volume consisting of 33% sparse
data from surveys 9, 10 and 11.
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Survey 9

Survey 10

Survey 11

0 Months 6 Months 12 Months
ESL

IT

 ESL - Estimation Slow-time Lag

 IT - Image Time

1.063

1.166

1.119

0.997

1.008

0.917

Table 5.1: Absolute amplitude ratios for the estimated-data images (see Section 1.4
on page 9).

Survey 9

Survey 10

Survey 11

0 Months 6 Months 12 Months
ESL

IT

 ESL - Estimation Slow-time Lag

 IT - Image Time

x10-1m

-6.565

-4.626

-7.061

-5.613

0.093

-3.191

Table 5.2: depth-shift errors in the estimated-data images.
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5.6 Quasi-Continuous Time-Lapse Monitoring 2

An ideal quasi-continuous monitoring acquisition strategy at the Valhall Field will

extend the acquisition time of each survey, such that data subsets can be used for

monitoring at smaller-scale survey times. I simulate this scenario with data from

the fourth Valhall LoFS survey by splitting the complete dataset into three groups

of partial surveys, as shown in Figure 1.4. Figure 5.26 shows a receiver gather from

the fourth Valhall LoFS survey, and Figures 5.27 through 5.29 show the data in

Figure 5.26 split into three data subsets, based on shot times. Since the source boat

travels continuously in the inline direction, data sparsity occurs primarily along the

crossline direction.

I create 4D sparse time-lapse data volumes by concatenating receiver gathers

from different surveys along the slow-time direction. I use the 1D Fourier trans-

forms of these time-lapse data volumes as the input to the MWNI algorithm. Esti-

mated data sections are shown in Figures 5.30 through 5.32. After estimating the

unavailable traces for each subset, I migrate the estimated dataset. The resulting

time-lapse difference images are shown in Figures 5.33 and 5.34. No observable

time-lapse changes in the images are seen in the reservoir over the 45-day time-

interval considered. This could occur if injection or production operations did not

affect the portion of the reservoir imaged, or if data-acquisition parameters such as

source-receiver spacing or data-sampling frequency are not adequate to detect any

reservoir changes.

5.7 Summary

In this chapter, I applied the quasi-continuous strategy introduced in Chapter 1 to

field surface-seismic data. I used the Valhall LoFS dataset provided by BP. The

Valhall LoFS project was implemented to monitor injected water during secondary

recovery at the Valhall Field off the coast of Norway. I presented a case for quasi-

continuous monitoring using my approach with two example cases. In the first

case, I subsampled data from three Valhall LoFS surveys to produce sparse datasets



CHAPTER 5. FIELD SURFACE-SEISMIC EXAMPLE 167

0

1

2

3

4

T
im

e
 (

s
e
c
)

4 6 8 10 12

Y Position (km)

4 6 8 10

X Position (km)

4

6

8

10

X
 P

o
s
it
io

n
 (

k
m

)

4 6 8 10 12

Figure 5.26: Sample complete receiver gather from the fourth Valhall LoFS survey.
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Figure 5.27: The first subset from the data shown in Figure 5.26.
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Figure 5.28: The second subset from the data shown in Figure 5.26.
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Figure 5.29: The third subset from the data shown in Figure 5.26.
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Figure 5.30: Estimated receiver gather from the sparse receiver gather in Figure
5.27. I estimate the unknown data using the baseline data and the monitor data
shown in Figure 5.27.
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Figure 5.31: Estimated receiver gather from the sparse receiver gather in Figure
5.28. I estimate the unknown data using the baseline data and the monitor data
shown in Figures 5.27 and 5.28.
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Figure 5.32: Estimated receiver gather from the sparse receiver gather in Figure
5.29. I estimate the unknown data using the baseline data and the monitor data
shown in Figures 5.27, 5.28, and 5.29.
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Figure 5.33: The time-lapse difference image obtained after 30 days of the fourth
Valhall LoFS survey. There are no delineated reservoir changes in the portion of the
reservoir studied during this time.
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Figure 5.34: The time-lapse difference image obtained after 45 days of the fourth
Valhall LoFS survey. There are no delineated reservoir changes in the portion of the
reservoir studied during this time.
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at each survey time. I estimated the discarded traces using accumulated sparse

data. The estimated datasets were then migrated to produce images of the subsur-

face. Results show that the estimated datasets worked as well as the complete true

datasets in delineating the spatial extent of changes in the reservoir. In the sec-

ond case, I split a conventional 3D seismic volume into three partial data volumes,

based on seismic shot times. The grouping represents data collected within 15-day

intervals. I estimated the unavailable data in each partial dataset with accumulated

datasets and migrated the results. An assessment of the estimation inaccuracies

using the method described in Section 2.2 shows that estimation errors are very

low.
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Chapter 6

Conclusions

This dissertation addresses the problem of quasi-continuous reservoir monitoring

with seismic data. It tackles the problem by recognizing the impact of crew mobi-

lization and equipment deployment, during seismic data acquisition, on reservoir

monitoring frequency. The time it takes to acquire a complete 3D survey imposes

a limit on the time interval between surveys in a time-lapse monitoring project. In

addition, more time is used to preprocess large amounts of data, thereby prolonging

the time interval between data acquisition and data interpretation.

I circumvent this problem by proposing that a combination of recorded and es-

timated data be used to produce an image of the subsurface at a particular time.

This is done by recording survey subsets in small slow-time intervals and using

all accumulated data to estimate unavailable data. Recording in this manner con-

stitutes sparse spatial sampling. This provides the freedom to vary the slow-time

sampling interval. Naturally, reducing the spatial sampling leads to reduced spatial

resolution. This is the trade-off for the increased slow-time temporal resolution.

By reconstructing unavailable data at each survey time, I can improve the spatial

resolution of the data. With a small slow-time sampling interval, a more accurate

reconstruction of the unavailable data is possible.

I noted in Chapter 1 that my approach trades spatial resolution for slow-time

temporal resolution. In general, seismic images of the subsurface are produced so

that they can be interpreted. While it is important for an estimated dataset to be as
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close as possible to its corresponding true dataset, the ultimate test of efficiency is in

interpreting the resulting images. Do we get the same interpretation from estimated

datasets as we would get from complete, true datasets? The examples presented in

this dissertation show that, using my approach, the answer to that question is yes.

The primary contribution of this dissertation is the presentation of a seismic

time-lapse monitoring strategy that allows easy variability in slow-time temporal

resolution. It has the potential to be the foundation for continuous seismic reservoir

monitoring. The proposed approach can be applied to traveltime and full-trace

seismic data. In Chapter 2, I present a new error-analysis tool that provides a way

to quantitatively measure the estimation inaccuracies in estimated seismic datasets

whose true values are known. This tool is particularly useful in tracking trends in a

series of estimation results obtained using different input parameters.

In Chapter 3, I show an example of an application of the quasi-continuous mon-

itoring strategy to synthetic and field crosswell traveltime data. I use the synthetic

examples to illustrate how my method can be used in a CO2 sequestration project

to monitor the buried CO2 plume and to detect leaks. Although it is not an ideal

field dataset for this approach, I show an application of my proposed approach for

time-lapse monitoring with sparse data using the McElroy Field crosswell-seismic

data. In Chapter 4, I show 2D and 3D synthetic surface-seismic examples. As in the

crosswell traveltime example, I use the 2D example to illustrate how surface-seismic

surveys can be used to quasi-continuously monitor a CO2 sequestration reservoir. I

use the 3D example to illustrate how the quasi-continuous approach can be used to

monitor a reservoir during secondary recovery.

In Chapter 5, I apply my approach to BP’s Valhall LoFS project data. This is a

field-data example illustrating how the approach can be used to monitor a reservoir

during enhanced recovery. I present two examples. The first uses a time-scale on

the order of months and is an argument for the implementation of this approach at

the Valhall Field. The second uses a time-scale on the order of weeks and shows

that the time-scale of the reservoir changes should be taken into consideration when

designing a quasi-continuous reservoir monitoring project.

For the approach presented in this dissertation to be practical, surveys should
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be repeatable, since the slow-time axis is used in the data-estimation process. Per-

manent installation of seismic sources and receivers facilitates repeatability. It also

shortens turn-around time, since equipment deployment time is eliminated.

In this dissertation, I implemented the data-estimation-based approach using

static missing-data estimation schemes. This is definitely a first step toward proving

the practicality and efficiency of the approach. The next step should be an imple-

mentation with dynamic missing-data estimation schemes. Of special interest is the

Kalman filter algorithm (Kalman, 1960), which updates previous estimates of the

model parameters as new data become available. Such an algorithm is well suited

for my approach, since data are acquired at increments and are used to estimate

unavailable data at previous survey times.
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