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Abstract 

Interpreting the flow properties of saturated porous materials from their 

acoustic responses at low frequencies scale has been a goal of geophysics research for 

decades. This thesis describes Differential Acoustic Resonance Spectroscopy (DARS), 

a robust acoustic method we have developed for studying the flow properties of 

porous materials at a kilohertz frequency scale. The work is subdivided into five parts: 

Design and build of a low-frequency laboratory measurement system; Establish 

measurement quality control; Measure and analyze laboratory measurements; Develop 

an analytical model for dynamic diffusion in porous media; Verify the analytical 

model with a finite-element numerical approach. 

The primary contribution of this study is that we estimate the effective 

compressibility of fluid-saturated porous media under a low-frequency, dynamic fluid 

load; we construct an analytical model linking the flow properties with the effective 

compressibility; and we propose a robust way to estimate the permeability of earth 

materials under a transient flow condition. The method is applied to a broad range of 

rock types. 
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Chapter 1  

Introduction 

1.1 Motivation and research objectives 

Wave propagation through fluid-saturated earth materials creates complex interaction 

between the fluid and solid phases. The presence of pore fluid not only acts as a stiffener to 

the material, but also results in the flow of the fluid between regions of higher and lower pore 

pressure (Mavko et al., 1979; Murphy et al., 1986; Mavko et al, 1991; Norris, 1993; Dvorkin 

et al., 1995; Pride et. al., 2003). When a compressional wave squeezes the medium, local 

pressure gradients build up as a consequence of the matrix deformation and subsequent flow 

of the local pore fluid. The behavior of fluid in the pore space makes the elastic moduli of the 

rock frequency-dependent (Mavko et al., 1991). 1) At high frequencies, the fluid in the pore 

structures becomes isolated, causing the rock to be stiffer. 2) At median and low frequencies, 

the bulk moduli of the porous medium depend on not only the flow properties of the medium, 

but also the frequency of the passing wave; this frequency dependence of moduli is often 

connected with the attenuation of seismic waves (White, 1975; Norris, 1993; Dvorkin et al., 

1995; Winkler, 1995; Johnson, 2001; Pride et al., 2004). 

The local-fluid-flow mechanism was thought to be the only mechanism that could 

account for the observed variations of compressional and shear-wave attenuations with 

frequency in partially and fully saturated rocks (Jones, 1986; Bourbie et al., 1987; Sams, 

1997). However, no single theory can adequately describe the link between flow properties 

(permeability, porosity and saturation) and seismic properties, a goal which has been a target 

of rock-physics research for decades. 

This study is driven by laboratory research and based on rational rock physics and 

flow mechanics of porous media. The basic scientific contribution of this study is that, for the 
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first time, based on robust experimental results, it provides a specific link between flow 

properties and the effective compressibility of porous media. 

1.2 Chapter descriptions 

The goal of this thesis is to develop a reliable laboratory method to investigate the 

acoustic properties of porous media at a frequency scale close to that of field seismic studies, 

and to study the link between the acoustic properties and flow properties of earth materials. 

This thesis is organized as follows: 

Chapter 2 describes the construction of a bench top apparatus for measuring the 

acoustic properties of fluid-saturated porous media under a dynamic fluid-loading condition, 

mimicking the complicated fluid and solid interaction during wave propagation. In this 

chapter, I describe the principles of a Differential Acoustic Resonance Spectroscopy (DARS, 

Harris, 1996) to estimate the acoustic properties of porous media in a frequency range close to 

that of field seismic. I establish a resonance-spectrum-fitting procedure to automatically and 

precisely locate the peak resonance frequency and linewidth. I develop a program to calculate 

the effective compressibility of the sample from the perturbed frequency. This chapter also 

summarizes the measurement of a set of nonporous materials and porous materials. I estimate 

the compressibilities of these samples and find that the nonporous samples and real porous 

rocks demonstrate dramatically different behavior in DARS measurement. The porous 

materials appear softer in DARS than in the ultrasonic measurements. The derived 

compressibilities of the porous samples were larger than those given by ultrasonic 

measurements. However, the compressibilities of the nonporous samples quantified from 

DARS agree well with those obtained from ultrasonics. The overestimation of the 

compressibility of porous materials by DARS motivated us to investigate the interaction 

between the solid and fluid phases in porous media. 

Chapter 3 covers the analytical study and numerical simulation of dynamic diffusion 

in fluid saturated porous media. I derive an analytical compressibility model which connects 

the effective elastic moduli of fluid bearing porous materials with flow properties of the 

media. I propose to use this analytical model to interpret the DARS-measured compressibility 

of porous samples and to estimate the permeability of these materials. I use a finite-element 

model (COMSOL) to simulate the dynamic diffusion phenomenon in finite porous media and 
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compare the numerical result of the pressure inside the medium with that given by the 

analytical solution; the results agree well. I then use the numerical pressure distribution to 

calculate the dynamic-flow-related compressibility of the medium and compare the result with 

that derived from the analytical compressibility model; again, the results agree well. The 

numerical simulation provides the potential to study the flow properties of porous materials 

with irregular shapes the analytical solution cannot handle. It also provides a way to calculate 

compressibility under various conditions not possible by the analytical model, e.g., 

heterogeneity. 

Chapter 4 compares the effective compressibility estimated by an analytical model 

with that given by DARS measurement for 17 porous samples. I calculate their effective 

compressibility from DARS and also estimate their compressibility with the analytical model, 

using porosity and permeability information measured with standard and routine rock-physics 

methods. The comparison shows good agreement, which confirms that the fluid and solid 

interaction in DARS measurement is a dynamic-diffusion process. Since the derivation of the 

analytical model in Chapter 3 demonstrated that the effective compressibility of porous media 

is a function of permeability and porosity, I propose an approach to estimate the permeability 

of porous media by combining the analytical compressibility model with DARS-quantified 

compressibility. 

Chapter 5 focuses on the potential applications of the DARS method, establishing a 

way to estimate the permeability of earth materials by combining DARS compressibility with 

the analytical effective compressibility model. I also propose an approach to estimate the 

Gassmann wet-frame bulk modulus (Gassmann, 1951) of porous materials at frequencies on 

the order of a kilohertz using an undrained DARS measurement. I estimate the permeability of 

17 samples and compare the estimated permeability with that given by direct gas-injection 

measurements. Permeability given by the two different methods agrees well for materials with 

intermediate values of permeability, e.g., tens of mD to several Darcies. However, for 

materials with ultra-low permeability, e.g., less than 1 mD, and ultra-high permeability, e.g, 

over 10 Darcy, the analytical-DARS approach may yield over- or under-estimation of 

permeability. 

Chapter 6 summarizes the potential sources of error in DARS method and how they 

affect DARS results. I conduct a numerical analysis of the affecting factors and the errors they 

produce in compressibility estimates. The uncertainty in the sample volume and the 

temperature drift during DARS measurement are the two dominant error sources. However, 



Chapter 1 – Introduction 

 

4

these two factors are controllable, and their effect can be reduced by adopting appropriate 

measurement practices. The other error sources, which are related to the accuracy of the 

DARS instrument and DARS perturbation theory, are inevitable, but their effects are relatively 

small compared to the other sources, and can be reduced using numerical models.  

Chapter 7 is a summary of the accomplishments and findings of this thesis. 

 



 

Chapter 2  

DARS concept and preliminary results 

2.1 Summary 

The interpretation of the acoustic properties of saturated porous materials from 

acoustic responses at field-seismic frequencies has been discussed for decades. For 

conventional travel time measurements, the frequency is constrained, by the size of the 

sample, to be in the ultrasonic range. For field sonic logs, the frequency is much lower than 

ultrasonic, in the kilohertz range. This disparity between routine acoustic and seismic 

measurement techniques makes it difficult to couple and interpret information at different 

frequencies. The goal of this project is to investigate the acoustic properties of porous media 

based on a Differential Acoustic Resonance Spectroscopy (DARS) technique, which works in 

kilohertz range. 

This chapter summarizes the DARS concept and presents measurements from a set of  

nonporous materials and rocks using a newly developed DARS setup. The compressibility of 

several nonporous samples as measured with DARS closely matches that obtained from 

ultrasonic experiments, confirming that the perturbation theory works reliably and the DARS 

setup can be used to quantify the bulk property of materials. However, the porous materials 

behaved differently. Porous materials were more compressible, according to DARS, than they 

were with ultrasound presumably because of free fluid flowing inside the pore structure, 

driven by the oscillating DARS pressure. 

2.2 Introduction 

The bulk modulus describes the resistance of the sample to volume change under 

applied hydrostatic stress. In rock mechanics, the standard way to estimate the bulk modulus 
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of a rock sample is to measure the density and the ultrasonic p- and s-wave velocities of the 

sample and then calculate the bulk modulus: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 22

3
4

sp ccK ρ , (2.1) 

where K  is the bulk modulus, ρ  is density, pc  and sc  are the p- and s-wave velocities of 

the material, respectively. This method is widely used for nonporous and dry porous materials. 

However, for fluid-saturated porous samples, the velocity measurement results are influenced 

by the effect of pore fluid inertia at high frequencies. The high-frequency effects of pore fluid 

on the bulk moduli of porous materials has been studied for decades, especially as it relates to 

the attenuation of seismic waves in fluid-saturated porous media. Biot (1956a, b; 1962a, b) 

established a model to describe the solid-fluid interaction in a porous medium during wave 

propagation. Research on Biot theory demonstrated that his prediction overestimated the bulk 

modulus and underestimated the measured attenuation at low-frequencies. Mavko and Nur 

(1975, 1979) and O’Connell and Budiansky (1974, 1977) proposed a microscopic mechanism, 

due to microcracks in the grains and/or broken grain contacts. When a seismic wave 

propagates in a rock having a grain-scale broken structure, the fluid builds up a larger pressure 

in the cracks than in the main pore space, resulting in a flow from the cracks to the pores, 

which Mavko and Nur (1975) called “squirt flow.” Therefore, the passing wave results in pore 

pressure heterogeneity in the porous medium, and the pore fluid is driven to flow at pore-scale 

distances to release the locally elevated pressure. A model to describe this mechanism, which 

can be applied to liquid-saturated rocks, was provided by Dvorkin et al. (1995). The squirt-

flow mechanism seems capable of explaining much of the measured attenuation in the 

laboratory at ultrasound frequencies. Pride, Berryman and Harris (2004) pointed out, however, 

that it does not adequately explain wave behavior in the seismic frequency range.  

The inertial effect of the pore fluid on the high frequency measurements, e.g., time of 

signal flight, of porous media limits their application in field seismic data interpretation. To 

evaluate the physical properties, e.g., the compressibility or bulk modulus, of earth materials 

at frequencies close to field seismic, Harris (1996) proposed a Differential Acoustic 

Resonance Spectroscopy approach.  
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The DARS idea is simple. The resonance frequency of a cavity is dependent on the 

velocity of sound in the contained fluid. The sound velocity can be easily determined in this 

way to an accuracy better than 0.05% (Harris, 1996; Moldover et al., 1986; Colgate et al. 

1992). In the DARS experiment, we first measure the resonance frequency of the fluid-filled 

cavity. Next, we introduce a small sample, i.e., rock, into the cavity and measure the change in 

frequency. Figure 2-1 illustrates an example of the cavity responses with and without the 

tested sample. Through a combination of calibration and modeling, we determine the 

compressibility of the sample from the frequency shift. Accurate frequency measurements can 

be implemented for acoustically small samples at frequencies as low as a few hundred Hertz in 

the laboratory, i.e., at seismic frequencies. 

In the following sections, I will discuss in detail DARS theory and the procedure to 

estimate the compressibility of fluid-saturated porous media. 
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Figure 2-1. DARS responses with and without a tested sample. Parameters 
0ω  and sω  are the resonance frequencies of the empty cavity and sample 

loaded cavity; W0 and Ws are the corresponding linewidths. 



Chapter 2 – DARS theory and preliminary results 

 

8 

2.3 DARS Perturbation theory 

A fluid-filled cylindrical cavity (Figure 2-2) with both ends open will vibrate with a 

fundamental resonance such that the fluid column length is one half the wavelength of the 

sound wave. In the ideal cavity, each end of the column must be a node for the fluid pressure, 

since the ends are open. 

 

Figure 2-2. A fluid-filled cylindrical resonator with a small sample inside. The 
resonance frequency will be measured with the sample at different locations 
in the cavity. 

For the fundamental mode, there is one velocity node at the center. The basic wave 

relationship leads to the frequency of the fundamental (Appendix A): 

 
0

0
0

L

cπ
ω = , (2.2) 

where 0c  is the acoustic velocity of the fluid that fills the cavity and 0L  is the cavity length.  

L0 

z
R

r 
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The introduction of the sample perturbs the resonance properties of the cavity. The 

angular resonant frequency shifts from 0ω  to sω , Figure 2-1. The frequency perturbation can 

be expressed as (Morse and Ingard, 1968; Harris, in press) 

 δρ
ρ

ωδκωωω
Λ⎟

⎟
⎠

⎞
⎜
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−
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002
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c

s
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where ( ) ss ρρρδρ 0−=  and ( ) 00 κκκδκ −= s . 

In Eqn (2.3), sω  and 0ω  are the resonance frequencies of the cavity with and without 

sample respectively; 2p  and 2v  are the corresponding “average” acoustic pressure and 

particle vibration velocity of the fluid inside the cavity; Λ  is a coefficient related to cavity 

structure; sV is the volume of the sample, and cV  is the volume of the cavity. The parameters 

0ρ  and sρ  are the densities of the fluid and the sample, respectively; 0κ  is the 

compressibility of the fluid, defined by ( ) 12
000

−
= cρκ ; and sκ  is the compressibility of the 

sample, given by ( )[ ] 122 3/4
−

−= spss vvρκ , where pv  and sv  are the p- and s-wave velocities 

of the sample. 

From Eqn (2.3), the frequency shift caused by the tested sample has two contributions: 

the compressibility contrast, δκ , and the density contrast, δρ , of the tested sample and the 

background fluid inside DARS cavity. Because most of the earth materials are harder and 

denser than the fluid inside the cavity; therefore, parameters δκ  and δρ  have opposite sign, 

or in other words, the compressibility and density contrasts between the tested sample and the 

background fluid contribute oppositely to the frequency shift. This indicates that at some 

particular locations inside the cavity, the frequency perturbation caused by the compressibility 

and density contrast may cancel each other. The frequency shift also depends linearly on the 

sample size, sV . 

To simplify the perturbation expression, I rewrite Eqn (2.3) as 

 δρ
ρ

δκξ
Λ

−
Λ

−=
2

00
2 vcp

, (2.4) 
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where ( )[ ]( )scs VV2
0

2
0

2 ωωωξ −= . 

Parameter ξ  in Eqn (2.4) is defined as the volume-normalized frequency 

perturbation, which we use to estimate the compressibility of the samples.  

2.3.1 Modulus contribution to frequency shift 

As shown in Eqn (2.3), the contribution to the mode shift by the interaction of the 

object depends on the acoustic contrast between the object and the fluid medium, and also on 

the relative position of the object inside the cavity because of the spatial distribution of 

acoustic pressure and velocity. The acoustic pressure distribution for the first mode inside a 

cylindrical cavity can be approximated as 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= r

c
Jl

c
pp r

0

0

0

0
0 cos

ωω
. (2.5) 

In Eqn (2.5), coefficient 0p  is the amplitude of the acoustic pressure fluctuation, 0c  is the 

acoustic velocity of the fluid medium filling the resonator, l  and r  are longitudinal and radial 

coordinate inside the resonator, respectively; 0ω  and rω  are the longitudinal and radial 

modes respectively. At low frequency, longitudinal resonance dominates the acoustic response 

in the cavity; consequently, the radial mode, a Bessel’s function in Eqn (2.5), will be constant, 

and the acoustic pressure is a sinusoid in the longitudinal direction. The acoustic velocity is 

proportional to the spatial derivative of acoustic pressure. Therefore, when a sample is 

introduced, the resonant frequency either increases or decreases, depending primarily on the 

velocity and density properties of the sample and also sample location in the cavity (Harris, 

1996; Harris etc, 2005).  

If the sample is placed at a velocity node, where acoustic pressure is max, then the 

second term on the right hand side of Eqn (2.4) vanishes. The volume-normalized frequency 

perturbation, ξ , is linearly dependent on the contrast between the compressibility of the 

sample and that of the background fluid medium, and Eqn (2.4) can be simplified as follows: 
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 δκξ
Λ

−=
2p

. (2.6) 

Rearranging Eqn (2.6) yields a compressibility model: 

 ffs A κξκκ += , (2.7) 

where 2pA Λ−= . The coefficient A  can be obtained from calibrations using a reference 

sample. 

In Eqn (2.7), fκ , the compressibility of the fluid inside the cavity, is a given 

parameter in this study. Therefore, the compressibility of an unknown sample can be 

quantified by the perturbation it causes to the DARS cavity. The bulk modulus K  of the 

tested sample is simply the reciprocal of the compressibility; therefore, we have 

 
ffs A

K
κξκκ +

==
11 . (2.8) 

2.3.2 Density contribution to frequency shift 

If the sample is located at a pressure node, where the velocity is max, then the 

compressibility contrast term in Eqn (2.4) drops off, and ξ  is linearly dependent only on the 

density contrast between the sample and the background fluid medium. Consequently, Eqn 

(2.4) reduces to 

 δρ
ρ

ξ
Λ

−=
2

00 vc
. (2.9) 

For nonporous samples, the density is simply the bulk density, which is evaluated by the 

mass-to-bulk volume ratio. For porous media, however, the pressure gradient inside the fluid 

phase results in micro-scale fluid flow; therefore the density is affected by fluid inertia and is 
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no longer the simple bulk density of the sample. In this thesis, I focus on the compressibility 

of the tested samples, and only in the fundamental resonance mode.  

2.4 DARS apparatus 

The key component of the DARS apparatus is the cylindrical cavity resonator, which 

is immersed in a tank filled with fluid − silicone oil in our case. A schematic diagram of the 

DARS apparatus is shown in Figure 2-3. A pair of piezoceramic discs is used to excite the 

resonator. The disks are embedded in the wall at the longitudinal midpoint of the cavity, where 

the acoustic pressure is at its maximum for the fundamental mode, thus the disks can 

efficiently excite the first longitudinal mode. A high-sensitivity hydrophone on the inner 

surface of the cavity wall, that is also located at the midpoint of the cavity but separated by 

90° from the two sources, detects acoustic pressure. The sample is moved vertically along the 

axis of the cavity to test various conditions of pressure and flow. A computer-controlled 

stepper motor provides accurate and repeatable positioning of the sample. A lock-in amplifier 

 

Figure 2-3. Diagram of DARS setup. It includes computer controlled 
sample positioning and swept frequency data acquisition. 
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is used to scan the frequency, and to track and record a selected resonance curve. A typical 

scan uses frequency steps of 0.1 Hz from about 1035 – 1135 Hz to cover the first mode. The 

system is automated and controlled by a computer. 

The dimension of the cavity is 15 inches in length and 3.1 inches of internal diameter. 

The fluid being used in the current system is Dow 200 silicone oil whose nominal acoustic 

velocity and density, at 20 oC, are 986 m/sec and 918 kg/m3, respectively. The viscosity of the 

fluid is 5 cs. 

2.5 Experimental results 

The preliminary measurements involved four plastic materials (Table 2-1) and eight 

rock samples (Table 2-2). I chose aluminum as the reference sample and used the four plastic 

samples to test the perturbation theory. The raw DARS measurement results for the reference 

sample at the first mode are shown in Figure 2-4, with the sample at different locations inside 

the resonator. At the center of the resonator, the acoustic pressure dominates, and the sample’s 

smaller compressibility increases the frequency compared to that of the resonator without the 

sample. At the ends of the resonator, the acoustic velocity dominates, and the sample’s higher 

density reduces the frequency compared to that of the resonator without the sample. 



Chapter 2 – DARS concept and preliminary results 

 

14

 

Table 2-1. Acoustical properties of five solid materials. Parameter κultrasound is calculated with ultrasonic velocities. 

 ρ (kg/m3) vp (m/s) vs (m/s) κultrasound (GPa-1) 

Aluminum 2700 6320 3090 0.01334 

Teflon 2140 1404 750 0.3831 

Delrin 1420 2360 1120 0.1808 

PVC 1380 2293 1230 0.2237 

Lucite 1180 2692 1550 0.2096 
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Table 2-2. Acoustical properties of eight wet rock samples. Parameter κultrasound is calculated with ultrasonic velocities. 

 ρ (kg/m3) φ (%) k (mD) vp (m/sec) vs (m/sec) κultrasound (GPa-1) 

SSE1 2152 28.3 4200 3115 1411 0.06588 

YBerea7 2398 28 6000 3425 1733 0.05397 

SSF2 2210 24.9 1850 3265 1641 0.06398 

Berea15 2287 20.85 370 3530 2008 0.06172 

Boise8 2419 12 0.9 3593 1852 0.04957 

Chalk5 2088 34.5 2.1 3125 1650 0.078 

Coal 1133 1.9 0.1 2075 890 0.2717 

Granite 2630 0.1 0 5280 2903 0.02284 
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The frequency profiles of the reference aluminum and the four plastic samples are 

shown in Figure 2-5a. We can see that the profiles of the moderately compressible materials 

are systematically distributed between those of the hardest material (Aluminum) and the 

softest one (Teflon). The soft materials produce less frequency perturbation than the hard 

ones. The frequency profiles of six rocks are shown in Figure 2-5b. The order of the data 

traces also shows the same behavior as that of the nonporous samples, the harder and denser 

materials always show larger perturbation. The general behavior of both the porous and 

nonporous samples matches the prediction of the perturbation theory. 
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Figure 2-4. Frequency spectrum of the acoustic system with an aluminum 
sample placed at different locations. The shaded sine shape is the perturbed 
resonance frequency profile. The red line is the power spectrum 
corresponding to the case when the sample was centered in the cavity. The 
two green lines are the power spectra with the sample placed near the two 
ends of the cavity. The two similar sections labeled A and B are the resonance 
frequencies with the sample far outside the cavity. 
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Figure 2-5. Resonant frequency profiles recorded by DARS. (a): Nonporous 
materials. (b): Porous materials. 
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2.6 Compressibility results 

To estimate the compressibility of the tested samples, we record the frequency data 

with the sample placed at the center of the cavity, where the frequency shift is mainly due to 

compressibility contrast between the sample and the background fluid medium. The frequency 

results of the five solid materials and eight porous materials are listed in Tables 2-3 and 2-5 

respectively. Also, we need to know the coefficient A in the perturbation model in advance. 

Normally, we use aluminum as the reference sample to quantify the coefficient A, as follows.  

By rearranging Eqn (2.7) we get 

 
fr

frA
κξ
κκ −

= . (2.10) 

In Eqn (2.10), the subscript r  indicates the reference sample, aluminum, in this case. The 

compressibility of the reference sample can be quantified by using the ultrasound p- and s-

wave velocity measurements and density measurement with Eqn (2.1). To get the parameter 

rξ , we first measure the resonance frequency of the DARS setup with and without the 

reference aluminum, written as 0ω  and sω , respectively. Then, from the definition of ξ , 

equation (2.4), we can compute rξ , immediately. Substituting rξ  and rκ  of the reference 

aluminum into Eqn (2.10), we can solve for coefficient A. Plugging the frequency information 

of the aluminum sample (Table 2-4) into Eqn (2.10) we get the value of A as -0.5936. This 

value will be held constant over all of the other tested samples. 

To obtain the compressibility of the other tested samples, the procedures are as 

follows: we first calculate the perturbation quantity, ξ , of each sample, then substitute ξ  into 

Eqn (2.7) and (2.8) to calculate the compressibility of the sample. The results of 

compressibility of the four plastic samples and eight rock samples are listed respectively in 

Tables 2-4 and 2-6. 

The errors in the DARS compressibility estimates of both the nonporous and porous 

samples are attributed to the uncertainties in the sample volume and temperature drift in 

DARS experiments (details reference chapter 6, section 6.3.1 and 6.3.4). From Eqn (2.7), 

DARS compressibility is estimated from the frequency shift caused by the tested sample, and 
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the frequency shift is a linear dependent of the sample volume. Therefore, the uncertainty in 

the sample volume will directly affect the accuracy of the compressibility estimate. The 

sample volume in this thesis is calculated from the sample’s length and diameter (listed in 

Tables 2-3 and 2-5), both of which are an average of five measurements at different locations 

and orientations. The uncertainties in the length and diameter and thus the calculated volume 

of the nonporous and porous materials are listed in Tables 2-3 and 2-5, respectively.  

Temperature drift used in this thesis refers to the possible temperature change between 

the two consecutive measurements: DARS empty cavity and sample-loaded cavity 

measurements. Temperature drift affects DARS observation by affecting the fluid acoustic 

velocity and thus the resonance frequency. The acoustic velocity of the background fluid 

inside DARS cavity shows linear dependent on temperature, 

8.105181.20 +−= Tc , 

where 0c  is the acoustic velocity of the background fluid and T  is ambient temperature. 

In the current DARS apparatus, the temperature is loosely controlled at about 22 oC by 

a room air conditioner, and a slow temperature drift with time always exists in the 

measurement. The typical rate of temperature change with time is about ±0.5 oC/12hr. The 

time interval between the empty cavity and sample-loaded cavity measurements is about 5 

minutes; therefore, the possible temperature change between the two consecutive 

measurements is about ±0.007 oC. Transferring into frequency through equation (2.2), this 

temperature change may result in ±0.026 Hz frequency shift.  

Combining the errors in the samples volume and the uncertainty of temperature drift, 

the possible errors in the compressibility estimates of the nonporous and porous samples are 

calculated and listed in Tables 2-4 and 2-6, respectively. 

To better understand the DARS measurements of compressibility for both nonporous 

and porous materials, we also take ultrasonic velocity measurements on these materials and 

use Eqn (2.1) to calculate the compressibility of both the plastics and the porous samples (in 

fully saturated condition). The results for plastics and wet rocks are listed in Tables 2-1 and 

2-2, respectively. 
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Table 2-3. Dimensions of the five solid materials. 

 L (in) Error in L (%) D (in) Error in D (%) Vs (in3) Error in Vs (%) 

Aluminum 1.5000 ±0.056 0.9988 ±0.045 1.1762 ±0.145 

Delrin 1.4983 ±0.030 0.9979 ±0.055 1.1692 ±0.140 

Lucite 1.4972 ±0.094 0.9989 ±0.131 1.1699 ±0.356 

PVC 1.5078 ±0.076 0.9956 ±0.071 1.1721 ±0.218 

Teflon 1.4960 ±0.067 0.9984 ±0.071 1.1718 ±0.209 
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Table 2-4. DARS results of the five solid materials 

 ωs (Hz) ω0 (Hz) ξ κDARS (GPa-1) Uncertainty in κDARS  

Aluminum 1091.5079 1082.1850 1.6669 0.01351 Reference sample 

Delrin 1090.0310 1082.0728 1.4263 0.3788 ±2.58% 

Lucite 1089.4041 1081.6104 1.3956 0.1838 ±3.32% 

PVC 1089.2622 1081.5922 1.3728 0.2257 ±2.45% 

Teflon 1088.0883 1081.5785 1.1671 0.2096 ±1.37% 
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Table 2-5. Dimensions of the eight rock samples 

  L (in) Error in L (%) D (in) Error in D (%) Vs (in3) Error in Vs (%) 

SSE1 1.4907 ±0.169 0.9935 ±0.041 1.1555 ±0.252 

YBerea7 1.4585 ±0.109 0.9995 ±0.044 1.1444 ±0.198 

SSF2 1.4696 ±0.042 0.9903 ±0.333 1.1318 ±0.710 

Berea15 1.4940 ±0.195 1.0000 ±0.067 1.1736 ±0.330 

Boise8 1.4802 ±0.174 1.0008 ±0.027 1.1644 ±0.230 

Chalk5 1.4855 ±0.115 0.9940 ±0.138 1.1614 ±0.391 

Coal 1.3575 ±0.07 0.9965 ±0.056 1.0588 ±0.182 

Granite 1.5285 ±0.149 0.9962 ±0.019 1.1914 ±0.188 
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Table 2-6. DARS results of the eight rock samples 

  ωs (Hz) ω0 (Hz) ξ κDARS (GPa-1) Uncertainty in κDARS 

SSE1 1089.3487 1082.8674 1.1763 0.3449 ±1.5% 

YBerea7 1089.3099 1082.8004 1.1931 0.3343 ±1.4% 

SSF2 1089.5475 1082.8674 1.2378 0.3092 ±2.9% 

Berea15 1090.2563 1082.6706 1.3568 0.2334 ±2.5% 

Boise8 1091.1208 1082.6054 1.5356 0.1137 ±4.8% 

Chalk5 1091.1545 1082.6059 1.5571 0.0995 ±7.2% 

Coal 1089.1558 1082.6419 1.2907 0.2598 ±1.9% 

Granite 1092.1532 1082.6337 1.6785 0.0229 ±6.1% 
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We compared the DARS-estimated compressibilities of the four plastic materials with 

those obtained from the ultrasound measurements. The results are shown in Figure 2-6. The 

data points of the compressibility cross plots all fall approximately along a 45° line passing 

through the origin, indicating a strong agreement of the results obtained by the two different 

methods. Within the error of measurement, applying the same approach to the porous rocks, 

the cross plots of the compressibility obtained by the two different methods are shown in 

Figure 2-7. Samples with low permeability and porosity (coal and granite, e.g) demonstrate 

similar behavior to that of the nonporous materials ⎯ the DARS-predicted compressibility 

agrees with that obtained by ultrasonic measurements, which indicates that the compressibility 

given by both techniques are comparable for these particular rocks. However, for the materials 

with high permeability and porosity, the cross points all fall off the 45° line, and the 

magnitude of deviation shows permeability and porosity dependence. This behavior is due to 
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Figure 2-6. Comparison of compressibility estimated by DARS and 
calculated by ultrasound velocity and density measurements for five 
nonporous samples. The short vertical bars crossing the data points 
represent the uncertainty range in DARS compressibility estimates. 
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the acoustic-pressure-induced fluid flow through the open flow surface of the samples, which 

implies that DARS measurements may be useful for interpreting flow properties of porous 

materials.  We will address this phenomenon in Chapters 3.  
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Figure 2-7. Comparison of compressibility interpreted by DARS measurement 
and those calculated by ultrasound velocity and density measurements for the 
eight rocks. The rocks are 100% fluid saturated. The short vertical bars 
crossing the data points represent the uncertainty range in DARS 
compressibility estimates. 
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2.7 Conclusions 

A custom-designed Differential Acoustic Resonance Spectroscopy (DARS) apparatus 

was built based on a resonance perturbation theory. The DARS operates on the principle that 

the introduction of a compressible sample into an acoustic resonator causes perturbation in the 

resonance modes. By analyzing the difference between fundamental modes with and without a 

sample, we can characterize the acoustic properties of the sample.  

Our methodology for nondestructive measurement allows for rapid, accurate 

measurement of the compressibility of small samples, based on this newly developed DARS 

system. The measurement results from four routine plastic samples validated the perturbation 

theory. The compressibilities estimated from the measurement of these four plastics agree with 

those derived from ultrasonic velocity and density measurements.  

The DARS results from a set of real rocks show that, for low permeability and low 

porosity materials, the compressibility estimated from DARS agrees with that derived from 

the ultrasonic velocity measurement. However, for materials with high porosity and 

permeability, DARS yields higher compressibility than the ultrasonic measurement. This 

phenomenon motivated us to study fluid and solid interactions in DARS experiment of porous 

materials. 

 



 

 

Chapter 3  

Dynamic diffusion process 

3.1 Summary 

Wave propagation in a fluid-saturated porous medium results in complex interactions 

between the saturating fluid and the solid matrix. The presence of fluid in the pore space 

makes the elastic moduli frequency-dependent. The compressibility of a porous medium 

involves information about the flow properties of the medium. Because the micro-flow 

associated with acoustic wave does not involve mass transportation of the pore fluid, we call it 

dynamic flow to distinguish it from conventional flow. In this chapter, I derive a dynamic 

diffusion model, which relates the effective compressibility to the permeability, and we 

propose to apply this approach to interpret the DARS experimental results. To verify the 

analytical solution, I use COMSOL, a finite-element tool, to study the diffusion pressure 

distribution inside a finite, homogeneous porous medium. I estimate the dynamic-flow-

dependent compressibility of the medium from the numerical pressure calculation, and 

compare the numerically calculated compressibility with an analytical solution for a simple 

case.  

3.2 Introduction 

In physical terms, when a fluid-saturated porous material is subjected to stress, the 

resulting matrix deformation leads to volumetric changes in the pores. Since the pores are 

fluid-filled, the fluid not only acts as a stiffener of the material, but also flows (diffuses) 

between regions of higher and lower pore pressure. Therefore, the effective compressibility of 

the material—the reciprocal of its dynamic bulk modulus—will be a combination of the 
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compressibility of the solid matrix and an additional compressibility due to the fluid-occupied 

pore spaces and its ease or difficulty to flow. Similarly, when a passing pressure wave 

squeezes the rock, local pressure fluctuations develop as a consequence of the matrix 

deformation and subsequent flow of the local pore fluid.  

Within any porous system subject to dynamic flow with a given pore structure and 

saturating fluid, there is a frequency below which the system is said to be drained.  In other 

words, within the period of the propagating wave, the fluid in the pore space can flow far 

enough to relieve the local pressure gradients. At low frequencies, fluid loss from high-

pressure zones to low-pressure zones reaches a maximum, so that the bulk volume of the high-

pressure undergoes maximum shrinkage and demonstrates maximum compressibility. On the 

other hand, at high frequencies, the time for fluid flow is insufficient for significant flow, and 

the pressure gradients persist. This latter regime is called an undrained state. Local 

compressibility is a minimum under undrained conditions, and the rock demonstrates stiffer 

elastic response. For waves with intermediate frequencies, the compressibility of the rock will 

be between these two extremes, and will depend on the frequency. 

Many theories have been developed to describe the fluid-solid interaction caused by 

wave propagation, yet no single one fully explains this complex phenomenon (Norris, 1993). 

Gassmann (1951) derived a simple expression relating the saturated rock bulk modulus to the 

dry rock bulk modulus and the bulk modulus of the saturating fluid. This theory makes it 

convenient to estimate the wet bulk modulus of porous materials with different fluids. 

However, the application is limited to static rather than dynamic cases, frequency-dependent 

effects need not be considered. Biot (1956a, b, 1962a, b) developed a theory to describe wave 

propagation in fluid-saturated porous rocks, but his theory is limited to homogeneous 

materials and is not easily extended to spatially non-uniform media. Furthermore, his model 

underestimates the observed seismic velocity at high frequencies (Mavko, 1991, Winkler, 

1985, 1986). Experiments (Murphy et al., 1984; Wang and Nur, 1988) and models (Mavko 

and Nur, 1979; O’Connell and Budiansky, 1974, 1977, 1990) suggest that the limitation of 

Gassmann and Biot at high frequencies is related to neglecting grain-scale microscopic fluid 

flow induced by the passing wave. Mavko et al. (1991) summarized how heterogeneities, such 

as variations in pore shape, saturation, and orientation, are likely to produce pore pressure 

gradients and flow on the scale of individual pores, when a section of rock is excited by a 

passing wave. The rock appears stiffer in both bulk and shear moduli under unequilibrated 
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pressure than under equilibrated pressure. However, this mechanism is not considered in 

Biot’s model.  

To compensate for the inadequacy of Biot and Gassmann theory, patchy saturation 

(White, 1975, 1983; Dutta and Ode, 1979a, b; Dutta and Seriff, 1979; Brie et al., 1995; Knight 

et al., 1998), squirt flow (Mavko and Nur, 1975; Mavko and Nur, 1979; Palmer and Traviolia, 

1980; Murphy, et al., 1986; Dvorkin et al., 1993; Dvorkin and Nur, 1993; Dvorkin et al., 

1995) and grain-scale microscopic fluid flow (Mavko and Jizba, 1991) mechanisms have been 

proposed, but still, no single theory is considered sufficient to explain the complex fluid-solid 

interaction at all frequencies. 

The dynamic bulk modulus reflects the elastic wave propagation in fluid-saturated 

porous media (Lemarinier et al., 1995; Johnson, 1990, 2001; Johnson et al, 1994). Chapter 2 

introduced a way to estimate the compressibility or dynamic bulk modulus of nonporous and 

porous materials using Differential Acoustic Resonance Spectroscopy (DARS). I used DARS 

to estimate the compressibilities of both nonporous and porous materials and compared the 

results with those derived by ultrasound measurements.  The compressibilities obtained by the 

two different methods are comparable for nonporous materials (Figure 2-6), but not always for 

porous samples (Figure 2-7). For samples with extremely low permeability, such as coal and 

granite, the compressibilities obtained by the two different techniques are close to each other. 

However, for samples with intermediate and high permeability, such as the two Berea 

sandstones and the Boise sandstone, the estimates do not agree, and the samples with higher 

permeability disagree most. Porosity does not have this effect, or at least the effect is not 

obvious. For instance, the chalk has high porosity; but its compressibility given by the two 

different measurements are comparable. Another interesting observation in Figure 2-7 is that 

the DARS-estimated compressibilities of the samples are larger than those derived by 

ultrasound measurement of both the dry and wet materials, except in coal and granite, which 

have nearly zero porosity. This phenomenon indicates that the compressibility derived by 

DARS measurements is apparently not the compressibility usually quantified by other 

techniques, e.g., ultrasound method.  

This observation motivated us to investigate the mechanism of the fluid and solid 

matrix interaction in the DARS measurements. Because DARS works in kilohertz frequency 

range, we expect this fluid dynamic study may lend insight into how pore fluid and solid 

matrix interact during seismic wave propagation in earth materials. 
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3.3 Theory 

In DARS, a standing wave inside the cavity provides a spatially varying but harmonic 

pressure field in the cavity. In a fluid-saturated porous medium that is subjected to this small-

amplitude oscillatory pressure gradient, the pressure fluctuation will cause micro-scale fluid 

flow through the surface of the sample to release the differential pressure across the surface 

boundary. The net mass transport of the pore fluid is zero; therefore, this micro-scale flow 

behaves differently from conventional fluid flow. This dynamic flow phenomenon can be 

described as a quasi-static diffusion process. If the porous medium is homogeneous, the 

dynamic flow can be understood through use of a 1D diffusion model (see details in Appendix 

D): 
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with diffusivity D  given by φηβ/kD = . Here, p  is the acoustic pressure in the fluid, φ  and 

k  are porosity and permeability of the porous sample, respectively, η  is the viscosity of the 

fluid, and β  is the compressibility factor involving both the fluid and the solid matrix 

simultaneously.  

Furthermore, if acoustic pressure is harmonic in time, tiexptxp ω)(),( = , we can 

rewrite Eqn (3.1) as 
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A general solution of Eqn (3.2) is 

 xAexp α=)( . (3.3) 

Here, Diωα = in which ω  is angular frequency written as fπω 2= . 
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In our particular case, the dynamic flows are in and out the sample at the two open 

ends when the exciting mode has longitudinal pressure variations; therefore, the pressure 

distribution inside the pore space is a superposition of two opposite pressure profiles, with 

boundary conditions 0)( pLp =  and 0)( pLp =− , respectively, when the sample is at the 

center of the cavity. 

Applying the two boundary conditions, we get the solution of the pressure field inside 

the porous sample, 

 ( ) ( ) 021
pee
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+
= . (3.4) 

3.3.1 Effective compressibility 

The effective compressibility of fluid-saturated porous materials under a periodic load 

can be expressed by the ratio of the net volumetric strain of the material to the applied stress 

on the sample. The net volume change of the sample consists of contributions from the solid 

matrix and the pore fluid. Therefore, the effective compressibility of the porous sample can be 

written as 

 ( )
0

1
p

VV
V

fm

s
e

Δ+Δ
−=κ , (3.5) 

where sV  is the bulk volume of the sample. mVΔ  is the volume change of the frame (the wet 

frame in this case, because the sample is saturated), and fVΔ  is the volume of the extra 

amount of fluid flowing in and out the pore space; 0p  is the amplitude of pressure change.  

Here we assume the compressibility of the wet matrix is uκ , hence, mVΔ  can be 

expressed as 

 0pVV sum κ−=Δ . (3.6) 
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The parameter uκ  is defined to be the undrained wet-frame compressibility for fluid-saturated 

porous materials. This parameter is also recognized as the reciprocal of the Gassmann wet 

frame bulk modulus. This topic will be discussed in Chapter 5. 

In a cylindrical porous sample with a jacketed side surface, diffusion happens only at 

the two open ends. The volume of the free-flowing fluid can be quantified as follows (details 

in Appendix E):  

 ∫ ∫−=−=Δ dxxprdVxpV fff )()( 2
0 κφπφκ . (3.7) 

Rewriting Eqn (3.5) by substituting (3.4), (3.6) and (3.7) into it, we get the final expression for 

the effective compressibility, 
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The second term on the right hand side of equation (3.8) is named as the dynamic flow 

component of compressibility. 

Equation (3.8) shows that the effective compressibility of a fluid-saturated porous 

material under periodic loading is simply the superposition of the wet-frame compressibility 

and a nominal contribution from the amount of fluid flowing into and out of the sample, in this 

case longitudinally. This model also indicates that micro-scale fluid flow induced by wave 

propagation in fluid-saturated porous media has a softening effect that exists at any frequency 

scale, although the magnitude of the effect varies with frequency. Moreover, the dynamic flow 

contribution to compressibility is a function of porosity, permeability and fluid viscosity; 

therefore, this effective compressibility model provides a way to analyze the effect of these 

flow properties by studying effective compressibility.  

3.3.2 Effective compressibility at pressure equilibrium 

When the ratio of frequency to diffusivity is small, 1/ <<Dω , e.g., low frequency or 

high permeability, the exponential term on the right hand side of Eqn (3.8) can be 

approximated by a Taylor expansion as follows: 
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 Le L αα 212 +≈ . (3.9) 

We can further approximate Eqn (3.8) as 
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Because 1<<Lα , we get a simplified expression for the effective compressibility at low 

frequencies: 

 fue κφκκ += . (3.11) 

3.3.3 Effective compressibility in the undrained state 

When the ratio of 1>>Dω , in other words in high frequency or low permeability 

situations, both the expression Le α2  and the parameter Lα  will approach infinity, and Eqn 

(3.8) can be simplified as follows: 

 ue κκ ≈ . (3.12) 

Under this scenario, the wet-frame compressibility dominates the effective compressibility of 

the sample, and the contribution by the free-moving fluid can be neglected.  

Physically, pore fluid flow is restricted under high-frequency loading or in a low-

permeability porous medium, thus the pressure gradient across the boundary of the sample 

surface remains. The frame matrix and the pore fluid counteract the loading pressure together 

and both undergo identical deformation.  

The approach for quantifying uκ  with DARS will be addressed in Chapter 5, which 

discusses experimental results. 
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3.4 Numerical simulation of 1D diffusion 

To verify the analytical results of diffusion pressure and effective compressibility, in 

this section, we applied COMSOL, a finite-element tool, to simulate the diffusion inside a 

cylindrical, finite, homogeneous porous medium. We introduce the finite element simulation 

here because it gives us the potential and flexibility to handle realistic configurations 

(heterogeneity, etc.) that are impossible with the analytical study. We first consider the simple 

1D diffusion problems. In section 3.5, we will discuss 3D diffusion problem. 

3.4.1 Numerical expression of effective compressibility 

The analytical expression of the dynamic-flow component of compressibility is 
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This expression is derived from the volume integral of the pressure profile, Eqn (3.4), in the 

pore space of the studied porous sample (details in Appendix E). 

The numerical approach to calculating the effective compressibility is similar to the 

analytical process. The COMSOL simulation yields the pressure in a set of meshed elements. 

Therefore, we can estimate the amount of fluid stored in each element by using the definition 

of compressibility, 

 iifi dVpV φκ−=Δ , (3.14) 

where ip  and idV  represent the pressure and volume of the i -th element. Parameter φ  is the 

porosity of the medium, and fκ  is the compressibility of the pore fluid. 

Hence, the total amount of the fluid involved in the dynamic flow during the half 

wave period will be 
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where N  is the number of meshed elements. 

Finally, we get the expression of compressibility given by the numerical pressure 

results as follows: 
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where sV  is the bulk volume of the studied domain and is given by LrVs
2

02π= , in which 0r  

and L  are the radius and half-length of the domain, respectively. The summation expression, 

∑
=Ni

ii dVp , can be obtained by a sub-domain integration, a built-in function in COMSOL. 

The numerical expression of the effective compressibility will be 
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Following we will compare the diffusion pressure distribution and dynamic-flow contribution 

to compressibility given by the analytical model with that derived from the numerical result. 

And we extend this computational model to heterogeneous case. 

The results in this section are conditioned from Berea sandstone, of which the dry 

bulk density is 2.2 g/cc and, the dry p-wave and s-wave velocities are 2.64 km/sec and 1.65 

km/s, respectively. The permeability and porosity of the sample are 500 mD and 20%, 

respectively. The effects of frequency, permeability and porosity on the effective 

compressibility of the sample are discussed below. 
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3.4.2 Model description and results 

The simulated object is a finite cylindrical shaped rock sample. The cylinder surface 

of the sample is covered with a thin layer of non-permeable material. The two open ends of 

the sample are subject to dynamic fluid loading; therefore, the fluid can freely flow across the 

open surface boundaries. We further assumed that there is no cross flow in the radial direction, 

and the flow is purely along the axis of the sample. We accordingly constructed a finite 

element model of which the meshed plot is shown in Figure 3-1. The cylindrical surface of the 

model is non-permeable, and diffusion can occur only at the two open ends. The modeling 

parameters are listed in Table 3-1, and three permeabilities are studied. 

Figure 3-2 illustrates the numerical results of the diffusion pressure distribution inside 

the medium. The pressure decreases systematically and symmetrically from the two ends of 

the sample. Since the model is homogeneous, no transverse flow forms in the radial direction, 

and the pressure field in the radial plane is always uniform (Figure 3-2).  

We studied the numerical result of the diffusion pressure profile along the axial 

direction and compared it with the analytical result. Figure 3-3 shows the comparison of the 

real and imaginary components of the pressure profile. Clearly, the diffusion pressure results 

given by the two methods agree reasonably well, as they should. However, we also noticed 

that the numerical solution will yield error at low permeability. This can be seen for the 10 

mD case in Figure 3-3. The imaginary part of pressure clearly shows disagreement, but on the 

real part of pressure, this is not apparent. 

The good agreement of the diffusion pressure results given by the two different 

methods indicates that we can apply the numerical approach to estimate the dynamic-flow 

component of compressibility in porous media. The following section will focus on this topic. 
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Table 3-1. Common parameters used in finite element model. 

Length (mm) 38.1 

Radius (mm) 25.4 

Permeability (mD) 10, 100, 1000 

Porosity (%) 20 

Viscosity (cts) 5 

Fluid compressibility (GPa-1) 1.1204 

Frequency (Hz) 1000 

 

 

 

 

Figure 3-1. Finite element model of a 1D diffusion regime. Diffusion is along 
the axial direction. The cylinder surface is non-permeable. 
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Figure 3-2. COMSOL Numerical result of the 1D diffusion model. The 
pressure decreases systematically and symmetrically starting from the two 
open ends (Top). Because the medium is homogeneous, there is no cross flow 
in the radial direction and the pressure is always constant in the radial plane 
(Bottom). The model has 500 mD permeability and 20% porosity. 
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Figure 3-3. Comparison of the diffusion pressure given by the 1D analytical 
model and numeric simulation. (a): Real part. (b): Imaginary part. The porous 
medium has a length of L . Dashed lines: analytical results. Solid black lines: 
numerical results. 
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3.5 Comparison of compressibility 

Following we will use Eqn (3.8) and (3.17) to calculate and compare the effective 

compressibility at different frequencies, permeabilities, and porosities. 

3.5.1 Compressibility at varying frequency 

From Eqn (3.8), for a porous sample with a known flow properties, eκ  changes with 

frequency. Figure 3-4 compare the real part and imaginary part of the analytical and numerical 

results of the change of eκ  with frequency for a set of materials with identical wet-frame bulk 

moduli and porosities (20%) but different permeabilities. The results given by the two 

different methods are comparable. 

At low frequency, the fluid has more time to relieve the pressure gradient than at high 

frequency. Thus, more fluid can flow into or out of the sample during the half wave period. In 

other words, the material is “softer.” As frequency increases, the amount of dynamic flow 

decreases accordingly, and the material is “harder”; the eκ  decreases. The interesting 

observation is that a critical frequency exists, where the rate of the change of eκ  with 

frequency reaches a maximum. Below or above this critical frequency, the rates of the change 

of compressibility slow down systematically. The critical frequency corresponds to a state 

where the energy loss caused by dynamic flow reaches a maximum. In other words, the 

quality factor of the sample reaches a minimum. This frequency can be more easily 

determined on the imaginary plot of eκ  (Figure 3-4), where values of eκ  reaches negative 

maximum. The numerical characterization of this crossover frequency is described in 

Appendix F. 

Because the three materials have identical porosity and wet-frame compressibility, 

those with relatively high permeability can deliver more fluid in a given time. Hence, the eκ  

of these materials will be larger than that of those with relatively low permeability. When the 

loading frequency is extremely low, the eκ  profiles converge to a single value. Physically, 

this is because the wave period is so long that the pressure gradient is fully equilibrated and 

the compressibility is independent of permeability. In this state, the material is fully relaxed. 

On the other hand, when the frequency is extremely high, the pressure gradient across the 
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sample surface boundary remains, because the fluid has insufficient time to flow. 

Consequently, eκ  is independent of fluid flow and thus independent of permeability. The eκ  

profiles for different permeabilities converge to another constant, uκ . This high frequency 

strain-stress scenario is called the undrained state, where the fluid has too little time to flow. 

The corresponding compressibility is called the undrained wet-frame compressibility. 

Permeability has no effect in this extreme case.  

Figure 3-5 compares the real and imaginary part of the analytical and numerical 

results of eκ  at varying frequency for a set of materials with identical wet-frame bulk moduli 

and permeabilities (500 mD), but different porosities. The results given by the two different 

methods agree well.  

This study here was to investigate the superimposed effect of porosity on eκ  at 

different frequencies. Now, the permeability of the material is fixed but the storage is 

changing. The eκ  of the three cases all exhibit frequency dependence, but with different 

magnitudes. The materials with higher porosity behave softer than those with low porosity. 

This is generally true, because high porosity provides more storage space to hold more fluid; 

consequently, the eκ  will be larger. At high frequencies, the eκ  of each case decreases and 

the profiles converge to a constant when the frequency reaches the megahertz range. 

Physically, this is because the fluid is constrained in the pore structure and has no time to flow 

at high frequencies, thus the eκ  of the sample are mainly those of the wet frame. On the other 

hand, at the low frequency end, the eκ  profiles of the studied cases flatten out. However, the 

data curves corresponding to relatively low porosity reach a plateau faster than those with 

higher porosity. This is because low porosity requires less fluid to reach pressure equilibrium, 

or equivalently, the pressure gradients inside the low-porosity materials can be balanced more 

quickly. Consequently, the eκ  profiles of these low-porosity materials reach a plateau at a 

relatively higher frequency. 

The imaginary part of the compressibility is related to attenuation, which is another 

research topic and not covered in details in this thesis. But clearly, the analytical and 

numerical results of compressibility can give us some qualitative insights about the attenuation 

of fluid saturated porous media at varying frequencies.  
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Figure 3-4. Effective compressibility at varying frequencies with permeability 
parameterized. (a): Real part. (b): Imaginary part. Solid lines are analytical 
results and colored dots are numerical results. 
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Figure 3-5. Effective compressibility at varying frequencies with porosity 
parameterized. (a): Real part. (b): Imaginary part. Solid lines are analytical 
results and colored dots are numerical results. 
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3.5.2 Compressibility at varying permeability 

Permeability’s influence on eκ  is the opposite of frequency’s, as can be seen from the 

definition of diffusivity D  in equation (3.3). In the following discussion, we investigate the 

change of eκ  with permeability for a set of materials with identical wet-frame bulk moduli but 

different porosities at 1000 Hz. Figure 3-6 compares the real and imaginary part of eκ  given 

by the analytical model, Eqn (3.8), and numerical simulation. 

The results given by both methods show that as permeability increases, eκ  increases 

because high permeability means low flow resistance, and thus more fluid can participate in 

flow under a certain pressure gradient and time. However, the magnitude of the change of eκ  

with permeability is different for each porosity case. The change of eκ  with high porosity is 

much greater at low porosities. This is not surprising, since a large pore space can 

accommodate more fluid under a given pressure gradient and flow time. At the high-

permeability end, the eκ  profiles of all three cases flatten out, because the pore pressure is 

fully equilibrated. However, the profiles of those with low porosity reach a plateau faster than 

those with high porosity. This is because low porosity requires less fluid to balance the 

pressure gradient, or equivalently, these materials require less permeability to reach pressure 

equilibrium. Consequently, the low porosity materials can reach equilibrium faster in terms of 

permeability. On the other hand, at the low permeability end, the eκ  profiles of all three cases 

converge to a constant, the wet-frame compressibility, because the pressure gradient across the 

sample surface boundary persists. 

The peak and trough on the imaginary part of eκ  (Figure 3-6) indicate the existence 

of a critical permeability under certain frequency. This critical permeability corresponds to a 

state where the energy loss caused by the dynamic flow reaches a maximum. 
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Figure 3-6. Effective compressibility at varying permeabilities with porosity 
parameterized. (a): Real part. (b): Imaginary part.  
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3.5.3 Compressibility at varying porosity 

The following discussion reviews the porosity dependence of eκ  for three materials 

with identical wet-frame bulk moduli but varying permeability. Again, the simulation is at 

1000 Hz. Figure 3-7 compares the real and imaginary part of eκ  given by the analytical 

model, Eqn (3.8), and the numerical results at varying porosity.  

At the low-porosity end, the eκ  profiles converge systematically to a constant and 

show less permeability dependence. An explanation of this is that the pore space is so small 

that no fluid can flow into the pore structure, thus the fluid makes no contribution to the 

modulus of the porous medium. As porosity increases, more pore space becomes open to 

fluid; therefore, the material behaves softer. The effect of permeability is more evident as 

porosity increases. High permeability provides more chance for the fluid to get into the pore 

space, while low permeability limits the flow. Therefore, the eκ  show more permeability 

dependence at the high-porosity end.  
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Figure 3-7. Effective compressibility versus porosity with permeability 
parameterized. (a): Real part. (b): Imaginary part.  
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3.6 Numerical simulation of 3D diffusion 

This section focuses on the numerical simulation of 3D diffusion. The reason we are 

interested in 3D simulation is because firstly it could handle situations that are closer to the 

reality⎯most earth materials are heterogeneous and the diffusion inside is non-uniform, 

which is impossible for analytical study. Secondly, the 3D simulation provides the flexibility 

to handle materials with irregular shape, e.g., drilling cuttings or fragile earth materials which 

are difficult to core. The latter characteristic is particularly interesting to us.  

The simulation object is a hybrid heterogeneous model⎯a cylindrical shell embedded 

with a cylindrical core (Figure 3-8). The shell and the core are both homogeneous and share 

identical rock properties beside permeability. Also, the two sections both have fully open 

surface boundaries. This configuration allows fluid freely diffuse into the medium along any 

direction. The pore pressure at the interface of the shell and core is continuous. The modeling 

parameters are listed in Table 3-2.  

 

Table 3-2. Modeling parameters of finite element simulation 

Shell: 50 
Length (mm) 

Core: 20 

Shell: 13 
Radius (mm) 

Core:  8 

Shell: 1000 mD 
Permeability (mD) 

Core: 100 mD 

Porosity (%) 20 

Viscosity (cts) 5 

Fluid compressibility (GPa-1) 1.1204 

Frequency (Hz) 1000 
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Figure 3-8. 3D diffusion model. The sample surface of the model is fully open 
thus diffusion can be in any direction into the sample. 

3.6.1 Numerical result of pressure distribution 

The numerical results of the pressure field are shown in Figures 3-9 and 3-10. We also 

studied the pressure distribution along the axis of the model, as shown in Figure 3-11. From 

these figures we can clearly see that the pressure decreases gradually toward the center of the 

domain. However, we can easily identify the discontinuity of the pressure field at the interface 

of the shell and the core. The pattern of the pressure transition at the interface changed 

dramatically due to the discontinuity of permeability. The permeability in the core zone is 10 

times less than that in the shell; therefore, the damping of the diffusion pressure inside the core 

is much larger than inside the shell region (Figure 3-11). Or in the other word, the resistance to 

the dynamic flow is much higher in the core than in the shell. This characteristic indicates that 

the dynamic flow inside the core contributes much less effect on the overall performance of 

the effective compressibility of the model, as compared to the effect caused by the dynamic 

flow inside the shell zone. 



Chapter 3 – Dynamic diffusion process 

 

50

 

Figure 3-9. COMSOL Numerical results of diffusion pressure field. 

 

Figure 3-10. Diffusion pressure distribution in the central radial plane.  
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Figure 3-11. Diffusion pressure distribution along the axis of the model. 

Compared to the simple 1D diffusion model (Figure 3-1), the diffusion in the 3D 

model is much more complicated and we currently do not have an analytical solution to 

describe the pressure distribution for this scenario. However, from the study of the 1D 

diffusion model we already know that the diffusion pressure profile given by the analytical 

solution and the numerical simulation are comparable. Meanwhile, from the study of the 1D 

model we know that the numerically estimated compressibility is comparable to that given by 

the analytical expression; hence we argue that we may extend the same approach to estimate 

the dynamic-flow component of compressibility in the 3D diffusion regime. Following we 

will estimate the effective compressibility with the numerical results of the diffusion pressure 

distribution. The fundamental rock properties are also conditioned with the same Berea 

sandstone as used in the 1D diffusion model in section 3.4.1. 
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3.6.2 Numerical result of compressibility at varying frequency 

With the numerical diffusion pressure results, we calculated the eκ  at changing 

frequencies by using Eqn (3.17). Two different permeability combinations inside the shell and 

core are studied with the permeability ratio being maintained at 10. Case 1: the permeability in 

the shell and core are 1000 mD and 100 mD, respectively; Case 2: the permeability in the shell 

and core are 100 mD and 10 mD respectively. The results are plotted in Figure 3-12. Clearly, 

the high permeability combination yields larger compressibility. This trend agrees with the 1D 

diffusion model (Figure 3-5). The trough on the imaginary part of eκ  indicates the existence 

of a critical frequency at where the energy loss caused by the dynamic flow reaches a 

maximum. 
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Figure 3-12. Effective compressibility versus frequency with permeability 
parameterized. (a): Real part; (b): Imaginary part. 
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3.7 Conclusions 

An effective compressibility model was derived based upon a dynamic diffusion 

process. The model estimates the effective compressibility of fluid-saturated porous materials 

under a condition of dynamic fluid-loading, which mimics the interaction between the fluid 

and the solid skeleton in DARS measurements on permeable samples.  

The effective compressibility given by the dynamic model contains information about 

the loading frequency, the permeability and porosity of the tested medium, and the viscosity of 

the fluid inside the pore space. Therefore, the analysis of the effective modulus provides us a 

way to estimate the permeability of the materials. It might also be possible to investigate the 

fluid type inside the pore space by analyzing the viscosity from the diffusivity; the 

permeability and porosity of the medium of course should be known in this case. 

According to the effective compressibility model, the loading frequency and 

diffusivity of the porous sample jointly control the total amount of free moving fluid driven by 

the periodically changing pressure. At low frequency and high diffusivity, the pressure 

gradient across the sample surface boundary has time to equilibrate, and the porous medium 

shows maximum softness. On the other hand, at high frequency and low diffusivity, the 

pressure difference has less time and high flow resistance; therefore, the porous samples 

cannot equalize pressure variations and therefore demonstrate maximum stiffness.  

A crossover frequency exists at which the change of effective compressibility with 

frequency reaches a maximum. Beyond or below this crossover frequency, the rate of change 

of compressibility with frequency slows down gradually and reaches plateaus at both the high-

frequency and low-frequency ends. This crossover frequency corresponds to a state at which 

the energy loss caused by dynamic flow reaches maximum. In other words, the quality factor 

of the sample reaches a minimum. 

We applied COMSOL, a finite-element tool, to study the diffusion in a cylindrical 

object with finite length. Two different scenarios: 1D homogeneous diffusion and 3D 

heterogeneous diffusion, were studied. 

We compared the diffusion pressure given by the numerical simulation with that given 

by analytical solutions for the 1D diffusion model. The results agree well. 

We numerically estimated the dynamic-flow contribution to compressibility for the 

1D model and compared the result with that given by an analytical solution. The results are 
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comparable. We argued that we might extend the numerical approach to estimate the dynamic-

flow component of compressibility for more complicated 3D diffusion problem, for which we 

do not have explicit analytical solutions. 

 



 

 

Chapter 4  

Comparison of laboratory and analytical results 

4.1 Summary 

In Chapter 3 I derived an analytical compressibility model based upon the concept of 

dynamic diffusion. In the model, the effective compressibility of the porous medium is a 

function of the loading frequency, the viscosity of the loading fluid, and most importantly, the 

porosity and permeability of the sample. In this chapter, I estimate the compressibility of 

seventeen rock samples (sixteen real and one synthetic) with DARS, and compare it with the 

effective compressibility calculated with the analytical model. The results of the two different 

approaches show reasonable agreement. This proves that the fluid and solid interaction in 

DARS measurement is a dynamic diffusion process.  

4.2 Experimental procedure 

The acoustic and flow properties of the seventeen experimental samples are listed in 

Table 4-1. The dimensions and corresponding measurement errors of the seventeen rocks are 

listed in Table 4-2. The porosity spans a range from near zero for granite and coal to 38% for a 

synthetic rock, and the permeability covers a range from less than 1 mD for the granite and 

coal to over 10 Darcy for several Berea sandstones. One of the samples is a synthetic rock.  
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Table 4-1. Physical properties of seventeen rock samples. The samples were 100% saturated.  

 kgas (mD) φ (%) ρ (kg/m3) vp (m/s) vs (m/s) Description 

VIF02 12808 38.33 1947 2397 1380 Synthetic 

NIV45 8056 31.65 2099 3128 1811 Nivelsteiner 

SSB7 2748 28.56 2109 3416 2010 Berea sandstone 

SSF2 2669 26.78 2176 2915 1337 Coarse sandstone 

QUE10 2441 22.20 2263 3053 1736 Unknown sandstone 

SSG1 1862 24.29 2227 3226 1551 Unknown sandstone 

BEN28 1149 24.13 2232 3574 2131 Benheimer sandstone 

SSA4 362 20.80 2277 3186 1920 Berea sandstone 

BIP14 315 20.41 2312 3099 1794 Berea sandstone 

BIN21 212 19.92 2317 3145 1801 Berea sandstone 

YB3 182 18.94 2285 3410 1955 Berea sandstone 

FEL37 9 22.67 2256 3383 1967 Felser 

CAS17 5 19.54 2314 3261 1900 Castlegate 

Chalk3 1.1 28.30 2184 3505 2013 Chalk 

COL25 0.8 11.44 2462 3657 2157 Colton 

SSC5 0.7 11.75 2425 3665 2114 Boise 

UNK51 0.2 15.76 2390 3930 2379 Unknown sandstone 
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Table 4-2. Dimensions of seventeen rock samples. 

 L (in) Error in L (%) D (in) Error in D (%) Vs (in3) Error in Vs (%) 

VIF02 1.4656 ±0.078 0.9772 ±0.611 1.0992 ±1.305 
NIV45 1.4628 ±0.170 0.9840 ±0.072 1.1124 ±0.314 
SSB7 1.4846 ±0.130 0.9962 ±0.056 1.1572 ±0.242 
SSF2 1.4842 ±0.130 0.9950 ±0.008 1.1541 ±0.146 

QUE10 1.4594 ±0.281 0.9826 ±0.357 1.1067 ±0.998 
SSG1 1.4888 ±0.100 0.9976 ±0.055 1.1637 ±0.210 

BEN28 1.4678 ±0.148 0.9852 ±0.111 1.1189 ±0.371 
SSA4 1.4927 ±0.385 0.9959 ±0.113 1.1627 ±0.612 
BIP14 1.4646 ±0.394 0.9922 ±0.297 1.1324 ±0.992 
BIN21 1.4650 ±0.232 0.9792 ±0.112 1.1032 ±0.456 
YB3 1.1674 ±0.239 0.9846 ±0.234 1.0051 ±0.709 

FEL37 1.4682 ±0.163 0.9730 ±0.126 1.0917 ±0.415 
CAS17 1.4822 ±0.451 0.9782 ±0.086 1.1139 ±0.623 
Chalk3 1.4784 ±0.273 1.014 ±0.283 1.2066 ±0.841 
COL25 1.4664 ±0.375 0.9788 ±0.086 1.1034 ±0.547 
SSC5 1.4814 ±0.141 1.0002 ±0.041 1.1636 ±0.223 

UNK51 1.4704 ±0.218 0.9832 ±0.046 1.1164 ±0.310 
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4.2.1 Sample preparation 

All samples studied in this thesis are prepared with a nominal diameter of 1 inch and 

cut to a nominal length close to 1.5 inches. The plugs were rinsed, dried at ambient 

temperature for one day, oven dried at 85 oC for two days, and then allowed to cool to room 

temperature in a desiccator.  

Helium gas permeability, kgas, was measured in a Hassler-type core holder at a 

confining pressure of 14 bars. The porosities were measured with a porosimeter. Densities 

were measured by the routine mass-to-bulk volume ratio. The wet densities were calculated 

based on the dry-frame density, density of the saturating fluid, and measured porosity. 

Ultrasound p- and s-wave velocities were measured following the density, porosity 

and permeability measurements. All velocity measurements were at room temperature in a 

pressure vessel filled with hydraulic oil used as pressurizing fluid. Samples were jacketed by 

Tygon tubing. During measurement, a 0.5 bar confining pressure was applied to obtain a better 

sample-sensor coupling. Pore pressure was vented to the atmosphere so that the effective 

pressure was simply the confining pressure. Standard ultrasonic pulse transmission was used 

to measure dry velocity. After these routine velocity measurements, the samples were 

immersed in a tank filled with silicone oil (the same fluid as inside the acoustic resonator), and 

the pressure of the tank was decreased to 0.1 torr for 4 hours. This depressurization induces 

expansion of the gas bubbles trapped in the samples. Eventually, air escaped and fluid filled 

the pore space as the tank re-equilibrated to atmosphere pressure. 

After these procedures, the samples were ready for drained and undrained DARS 

measurements. The details are discussed in the following sections. 

4.2.2 Drained and undrained measurements 

The terms “drained” and “undrained” in this thesis refer to the sample surface 

boundary conditions. In the drained condition, the sample has a (partially or fully) open flow 

surface boundary (Figure 4-1a, b); therefore, fluid can freely flow across the sample surface 

boundary during the DARS measurement.  
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Figure 4-1. Sample surface boundary configuration. Undrained sample has a 
completely sealed surface. Drained sample has its cylindrical surface sealed 
and its two ends open. The sealing material is epoxy resin (Devcon® 5-
Minute® Epoxy and 5-Minute® Epoxy Hardener). 

Core boundary conditions are defined by the parts of the external surface of the core 

that were closed to flow. No-flow boundaries were established by sealing parts of the core 

surfaces with epoxy resin (Devcon® 5-Minute® Epoxy and 5-Minute® Epoxy Hardener). 

Many different scenarios could be modeled by sealing the sample surface in different patterns. 

The open boundary we used in this thesis is partially open, with the sample’s cylindrical 

surface being sealed with a thin layer of epoxy resin, while the two ends of the sample are 

open. The purpose of this treatment is to constrain fluid flow across the open surface boundary 

of the tested sample to be one-dimensional; therefore, we can adopt a simple 1D diffusion 

model to characterize flow phenomena inside the porous medium. In the undrained condition, 

the sample surface is fully closed (Figure 4-1a) and no flow crosses the sample surface 

boundary.  

The quality of the sealing has a significant effect on the measurement result. To check 

the sealing, the sealed sample was tested under 800mTorr vacuum for half an hour. If no air 

bubble came out of the sample, the sealing was recognized as successful. Otherwise, the 

2r0 

2L 

2r0

2L 

undrained configuration drained configuration 
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sample surface was sanded and resealed with epoxy, and the test was repeated until sealing 

was successful.  

The undrained measurement yields the wet-frame compressibility, uκ , which is 

required for the application of the effective compressibility model, Eqn (3.8).  

4.3 Data preparation 

Our current focus is to study the compressibility of porous materials. As discussed in 

Chapter 2, the frequency shift with the sample at the center of the cavity is dominated by the 

contrast between the compressibility of the sample and that of the background fluid. 

Therefore, I need only two resonance frequencies, one of the empty cavity (no sample inside 

the cavity) and the other of the sample-loaded cavity (with the sample centered in the cavity) 

to quantify the compressibility of the sample. Experimentally, the empty-cavity resonance 

frequency was measured immediately after each sample-loaded measurement in order to 

minimize the frequency drift caused by temperature variation during the two consecutive 

measurements. To control measurement noise and to best locate the resonant frequency, we 

apply Lorentzian curve fitting procedure (Appendix B) to each of the two recorded frequency 

spectra and the fitting yields an optimal estimation of the peak resonance frequency. The 

frequency estimates of the seventeen rock samples from DARS drained and undrained 

measurements are listed in Table 4-3. It is clear that the resonance frequency of sample-loaded 

system always increases under the influence of each sample, but the magnitude of the increase 

depends on the sample properties. The small fluctuations of the empty-cavity resonance 

frequency are due to changes in room temperature and perhaps dissolved air in the silicone oil.  

Following I will focus on the calculation of the effective compressibility. 
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Table 4-3. Frequency results of 17 rocks from DARS drained and undrained measurements. 

 Undrained measurement Drained measurement 

 ωs (Hz) ω0 (Hz) ωs (Hz) ω0 (Hz) 

VIF02 1089.5983 1082.4637 1090.5889 1082.856 
NIV45 1089.5234 1083.1594 1091.1631 1083.1514 
SSB7 1090.7406 1083.3589 1091.1609 1082.6344 
SSF2 1084.9336 1078.0831 1090.1965 1082.1418 

QUE10 1090.3247 1083.1368 1091.2809 1083.2379 
SSG1 1085.491 1077.9221 1091.0662 1082.6286 

BEN28 1090.6803 1083.1057 1091.2637 1083.0845 
SSA4 1091.5514 1083.5217 1091.94325 1083.5874 
BIP14 1090.946 1083.1287 1090.5595 1082.4083 
BIN21 1090.9691 1083.1470 1091.4831 1083.5668 
YB3 1089.3033 1082.9981 1090.126 1083.6428 

FEL37 1090.738 1083.0991 1090.2905 1082.5209 
CAS17 1090.5049 1082.489 1091.1439 1083.2061 
Chalk3 1089.215 1080.1171 1091.8126 1082.6832 
COL25 1091.5138 1083.3612 1090.7236 1082.601 
SSC5 1088.618 1080.038 1091.4486 1082.834 

UNK51 1091.2826 1083.1217 1091.2826 1083.1217 
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4.4 DARS estimated compressibility 

To estimate the compressibility of the seventeen rock samples by utilizing DARS 

frequency results (Table 4-3), we will use equations (2.7), 

ffs A κξκκ += . 

In the two equations, fκ  is 1.1205 GPa-1 calculated from the fluid’s density (918 kg/m3) and 

velocity (986 m/s) at 20 °C. Coefficient A  is -0.5951, quantified by using the 1.5 inches in 

length and 1 inch in diameter aluminum sample (details see Chapter 2, section 2.6). The 

perturbation parameter ξ  of each sample is calculated from 
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where sω  and 0ω  are the resonance frequencies of the sample-loaded and empty-cavity 

cavity, respectively; sV  is the sample volume calculated from the diameter and length of each 

relevant sample; cV  is the volume of the acoustic resonator and is equal to 113.22 in3. 

Using these parameters A , fκ  and ξ , we calculated the drained and undrained 

compressibility of the seventeen samples. To differentiate the results, the drained 

compressibility is defined as dκ , while the corresponding undrained compressibility is 

defined as uκ . The results are summarized in Table 4-4. 

The difference between the drained and undrained compressibility is the dynamic flow 

contribution to compressibility and we will compare this quantity with the analytical results of 

dynamic flow component in the following section. 
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Table 4-4. Compressibility of 17 rocks from DARS drained and undrained measurements. 

 κu (GPa-1) Uncertainty in κu κd (GPa-1) Uncertainty in κd 

VIF02 0.1179 ±2.51% 0.4160 ±2.88% 
NIV45 0.1224 ±1.37% 0.3227 ±1.75% 
SSB7 0.0986 ±1.39% 0.2307 ±2.24% 
SSF2 0.1547 ±1.25% 0.2968 ±1.49% 

QUE10 0.1061 ±4.84% 0.2144 ±5.39% 
SSG1 0.1121 ±0.79% 0.2176 ±2.36% 

BEN28 0.0997 ±2.11% 0.1759 ±3.69% 
SSA4 0.1278 ±3.52% 0.1666 ±5.40% 
BIP14 0.1172 ±4.84% 0.1667 ±7.45% 
BIN21 0.1205 ±3.15% 0.1409 ±5.60% 
YB3 0.1038 ±1.77% 0.1410 ±7.75% 

FEL37 0.1385 ±3.44% 0.1441 ±4.86% 
CAS17 0.1214 ±6.00% 0.1256 ±7.57% 
Chalk3 0.0515 ±1.34% 0.0548 ±17.87% 
COL25 0.0925 ±12.18% 0.0895 ±9.03% 
SSC5 0.0868 ±4.59% 0.0885 ±5.78% 

UNK51 0.0993 ±5.20% 0.1002 ±6.01% 
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4.5 Compressibility calculated from the analytical model 

According to the analytical model of effective compressibility, Eqn (3.8), 
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the effective compressibility of a fluid-saturated porous material under periodic fluid loading 

is simply the superposition of the wet-frame compressibility, uκ , and a dynamic flow 

contribution of compressibility. To assist the following discussion, we assign a parameter, 

flowκ , to represent the dynamic flow component of compressibility, 
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Therefore, to calculate the effective compressibility of each tested sample, we need uκ  and 

flowκ  of the sample. The quantification of uκ  has been discussed in section 4.4 and the 

results of the seventeen samples are listed in Table 4-4. We thus only need to estimate flowκ , 

which can be simply calculated by using the viscosity and compressibility of the pore fluid, 

and porosity and permeability of each tested sample. The viscosity and compressibility of the 

pore fluid are constant and given, which are 5 cs and 1.1203 GPa-1, respectively. The flow 

properties of the tested samples have been determined from the rock-physics measurements 

(Table 4-1). Using these parameters, we calculated the flowκ , and eκ  of the seventeen 

samples. The results are listed in Table 4-5. 

So far we have estimated the uκ  and dκ  of the seventeen samples from their DARS 

measurements and calculated their flowκ , and eκ  by using their flow properties. Following 

we will compare and interpret these results. 

 

 



Chapter 4 – Comparison of laboratory and analytical results 

 

66

Table 4-5. Compressibility of 17 rocks estimated from the analytical model. 

 κflow (GPa-1) κe (GPa-1) 

VIF02 0.4124 0.5303 
NIV45 0.3425 0.4648 
SSB7 0.2558 0.3545 
SSF2 0.2431 0.3978 

QUE10 0.2104 0.3164 
SSG1 0.1963 0.3085 

BEN28 0.1470 0.2467 
SSA4 0.0584 0.1862 
BIP14 0.0547 0.1719 
BIN21 0.0440 0.1645 
YB3 0.0500 0.1538 

FEL37 0.0098 0.1483 
CAS17 0.0067 0.1281 
Chalk3 0.0038 0.0553 
COL25 0.0019 0.0944 
SSC5 0.0021 0.0889 

UNK51 0.0026 0.1018 
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4.6 Results analysis and discussion 

4.6.1 Comparison of drained and undrained results 

As discussed in section 4.2.2, the drained samples have partially opened surface while 

the undrained ones have completely closed surface which blocks the dynamic flow across the 

surface boundary. Clearly, the undrained samples will be less compressible than the drained 

ones because the irreducible pore fluid serves as a stiffer in the undrained samples.  

We compared the drained and undrained compressibility of the seventeen samples by 

crossplot the data in Figure 4-2. The results verify our expectation that the undrained samples 

have smaller compressibility than the drained ones. An interesting observation is that the 

magnitude of the difference in the two compressibilities shows permeability dependency. For 

instance, for low permeability materials, e.g., CAS17, SSC5, and UNK51, the difference is 

less than 3%. On the other hand, for the high permeability materials, e.g., VIF02, NIV45 or 
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Figure 4-2. Comparison of compressibilities of 17 tested samples 
estimated by drained and undrained DARS mesurements. Circles, triangles 
and squares identify high, intermediate and low permeability respectively. 
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SSB7, the drained compressibility could be 2 to 3 times larger than the undrained values. The 

reason is because, for high permeability materials, more fluid could flow in and out the pore 

space to release the pressure gradient; for low permeability materials, however, the flow is 

constrained by the permeability and only limited amount of fluid is allowed to move freely. 

Therefore, the dynamic flow contribution on compressibility has less effect on the overall 

compressibility for low permeability materials as compared to high permeability materials. 

4.6.2 Comparison of analytical and experimental results 

We estimated the dynamic flow contribution to compressibilities from DARS drained 

and undrained measurement and compared these results with those calculated from the 

compressibility model by cross-plot the data in Figure 4-3. To our surprise, the analytical 
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Figure 4-3. Comparison of compressibilities estimated by drained DARS 
and calculated by the analytical model without correction. Circles, 
triangles and squares identify high, intermediate and low permeability 
respectively. The short vertical bars crossing the data points represent the 
uncertainty range in DARS compressibility estimates. 
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results didn’t match with the experimental data, except for several samples with extremely low 

permeability, e.g., chalk5, SSC5 and UNK51. The data points of most of the samples deviate 

systematically from a 45° line through the origin. This shows that the analytical effective-

compressibility model overestimates the measured compressibility of the tested samples.  

I checked the acoustic amplitude spectrum of the porous materials and the reference 

sample, and found that the peak amplitude of the porous materials is dramatically different 

from that of the reference sample (Figure 4-4), particularly for those samples with relatively 

high permeability; their peak amplitude is much lower than that of the reference sample and 

even far smaller than that of the empty-cavity response. The pressure decrement is caused by 

the losing fluid into the porous medium from inside the cavity. From the derivation of the 

effective compressibility model, Eqn (3.8), we know that the dynamic flow component of 

compressibility of the tested sample is a linear function of the amount of free-flowing fluid 

across the sample’s open surface boundary. However, in the derivation of equation (3.8), we 
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Figure 4-4. Ratio of acoustic pressure amplitude of DARS sample-loaded 
cavity and empty cavity. The value of the reference aluminum is much 
higher than that of highly permeable rocks. This difference should be 
considered in the analytical compressibility model. 
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assumed that the acoustic pressure is constant over different samples ( 0p  is constant in Eqn 

(3.4)). This assumption certainly results in an overestimation of the amount of fluid flow, and 

thus of the compressibility of the tested sample. To correct this overestimation, the pressure 

amplitude 0p  used in Eqn (3.4) should be replaced with the real pressure amplitude in the 

measurement of each tested sample. Therefore, the modified diffusion pressure profile will be, 
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Parameter 0p′  in Eqn (4.1) will be the real pressure amplitude from DARS measurement for 

each corresponding sample. 

From Figure 4-4 we have already that the pressure amplitude in the measurement of 

the tested samples and the reference sample is different; hence a coefficient C , the ratio of the 

pressure amplitudes of the cavity with the tested sample and with the reference sample, should 

be used in the dynamic flow component of compressibility in Eqn (3.8). The modified 

effective compressibility will be 
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The compressibilities of the seventeen samples were recalculated with the modified 

compressibility model (Table 4-6). Figure 4-5 compares the new results with those given by 

DARS measurement. The cross-plotted data points of both the compressibilities now all fall 

along the 45° straight line through the origin. The correlation of the two observations is 0.998, 

and the standard deviation of the data points from the 45-degree line is 0.0042. This result 

strongly indicates that 1) the results given by two different methods are comparable; 2) more 

importantly, the interaction between the solid and fluid phase in the drained DARS 

measurement of porous samples is proven to be a dynamic diffusion process; 3) the 

replacement of the pressure amplitude in the effective compressibility model with that from 

the real measurement is essential for interpreting the DARS measurement results. From the 

effective compressibility model we can see that the compressibility measured by DARS for 

porous materials is not the routine compressibility we quantified using other techniques, such 
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as the ultrasonic method. The compressibility given by DARS measurement is the 

superposition of the wet-frame compressibility of the tested sample and a pseudo-

compressibility contributed by a portion of free-flowing fluid moving across the open surface 

boundary of the sample. 

The fluctuation of the data points around the 45-degree line in Figure 4-5 may be 

attributed to errors in sample volume measurement, temperature variation during DARS 

measurement, the sample heterogeneity, or effects of the epoxy sealing layer. 
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Table 4-6. Compressibility of drained samples given by DARS and the analytical compressibility model. 

 κd (GPa-1) κe (GPa-1) 
e

de
κ
κκ −  

VIF02 0.4160 0.4134 -0.6% 
NIV45 0.3227 0.3240 0.4% 
SSB7 0.2307 0.2305 -0.1% 
SSF2 0.2968 0.2950 -0.6% 

QUE10 0.2144 0.2194 2.3% 
SSG1 0.2176 0.2270 4.1% 

BEN28 0.1759 0.1801 2.3% 
SSA4 0.1666 0.1669 0.2% 
BIP14 0.1667 0.1635 -2% 
BIN21 0.1409 0.1527 7.7% 
YB3 0.1410 0.1422 0.9% 

FEL37 0.1441 0.1463 1.5% 
CAS17 0.1256 0.1268 1% 
Chalk3 0.0548 0.0547 -0.1% 
COL25 0.0895 0.0941 4.9% 
SSC5 0.0885 0.0887 0.2% 

UNK51 0.1002 0.1012 1% 
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Figure 4-5. Comparison of compressiblities of 17 tested samples estimated by 
drained DARS and calculated by the modified analytical model after 
correction. The short vertical bars crossing the data points represent the 
uncertainty range in DARS compressibility estimates. 
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4.7 Conclusions 

Sixteen real rocks and one synthetic rock were measured with DARS in drained and 

undrained conditions. The effective compressibilities of the samples were estimated from the 

DARS measurements. The drained measurements yield larger estimates for compressibility as 

compared to undrained measurements due to dynamic flow effect. 

We also calculated the compressibility of the seventeen samples using the analytical 

model. The compressibility results given by the two different methods agree well, indicating 

that the interaction between the fluid and the solid matrix in DARS measurements of 

permeable samples is a dynamic diffusion process.  

The acoustic and flow properties of the seventeen tested samples cover a rather large 

range, indicating that the analytical compressibility model can be applied generally to all 

porous media. 

Diffusivity is the dominant controlling factor on the effective compressibility of the 

porous materials measured by DARS. Therefore, the analysis of the effective compressibility 

provides us a way to estimate the permeability of the materials, as will be shown in Chapter 5. 

 



 

 

Chapter 5  

Applications of DARS 

5.1 Summary 

The previous chapters have validated the DARS concept and the reliability of DARS 

compressibility measurements and have investigated the mechanism of the diffusive 

interaction in DARS measurement of porous media. This chapter focuses on applications of 

the DARS method. Anticipated applications include estimating the permeability of porous 

media, estimating the wet-frame compressibility (reciprocal of bulk modulus) in Gassmann’s 

equation. 

5.2 Permeability estimation 

In Chapter 3 we discussed that the effective compressibility of fluid-saturated porous 

materials under dynamic fluid loading situation is a function of frequency, pore fluid viscosity, 

and more importantly, the porosity and permeability of the medium. In Chapter 4, we 

compared the DARS-quantified compressibilities of 17 samples with those given by the 

analytical compressibility model and found that the results agreed well. We thus argued that 

the drained compressibility measured by DARS is the result of a dynamic diffusion process. 

Therefore, we proposed to combine the analytical model for compressibility with DARS 

compressibility to determine the flow properties of porous media. 
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From Eqn (3.8),  
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the effective compressibility of a cylindrical porous sample with open ends (drained) is a 

function of seven free parameters: wet-frame compressibility of the sample (reciprocal of the 

Gassmann wet frame bulk modulus), the scaling coefficient C , frequency, the viscosity and 

compressibility of the pore fluid, the porosity and permeability of the medium, and the length 

of the tested sample. Among the seven parameters, the frequency is known from the drained 

measurement of the tested sample; the coefficient C  can be obtained by taking the ratio of the 

pressure amplitudes of the tested sample and the reference sample; the viscosity and 

compressibility of the pore fluid is constant and given; the wet-frame compressibility of the 

sample can be measured in the undrained sample; and the length of the sample can be 

measured with a caliper. The only possible unknowns are porosity and permeability. Since 

porosity can be easily measured by the ratio of the weight difference between the dry and wet 

sample to the sample bulk volume, we hence assume that permeability is the only unknown 

parameter. We of course can measure permeability with other methods; however, we propose 

to use DARS measurement to estimate it. 

It is difficult to get an explicit expression of permeability from Eqn (3.8); hence we 

relied on a numerical search (details reference Appendix G) for the optimal permeability by 

forcing the calculated compressibility from the analytical model to match that estimated by 

DARS.  

The permeability obtained for the seventeen samples is listed in Table 5-1. We also 

measured the gas permeability of these samples by a direct gas injection measurement. We 

cross-plotted the permeability given by the two different approaches in Figure 5-1. The results 

are comparable for samples with intermediate value of permeability (from 10s mD to several 

Darcy). However, for those with extremely low (1 mD or less) or high permeability (beyond 

10 Darcy), the results given by the two methods do not match well. The reason for the 

mismatch is that our current system is not sensitive to ultra-low and ultra-high permeabilities. 

In Chapter 3, section 3.5.2, we have discussed that the effective compressibility relies less and 

less on permeability when the permeability is extremely high or low (Figure 3-6). In high 

permeability materials, the conductivity of the pore space is so high that the pore fluid can be 

recognized as part of the DARS system and the pore pressure can simultaneously balance the 
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pressure change outside the material; hence the dynamic flow has less and less contribution to 

the effective compressibility within high permeability range. To extend DARS measurement 

into the high-permeability range, we may need to explore higher resonance modes, in which 

case the pore pressure cannot reach equilibration in a wave period and the compressibility will 

see more effect by the dynamic flow. On the other hand, in low permeability materials, the 

pore fluid is limited to flow to release the pressure gradient; hence the dynamic flow also has 

no contribution to the compressibility. In order to investigate low-permeability materials, we 

have to rely on a lower-frequency cavity and a possible approach is to build a long cavity or to 

use a lower-velocity fluid, which may provide frequencies at 10s or 100s Hz; this would push 

the permeability sensitivity below one milliDarcy. 
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Table 5-1. Permeability of 17 rocks given by drained DARS and measured by gas injection. 

 kgas (mD) kDARS (mD) Uncertainty in kDARS 

VIF02 12809 9009 ±21% 

NIV45 8055 7240 ±12.4% 

SSB7 2747 2865 ±4.7% 

SSF2 2669 2762 ±7.2% 

QUE10 2194 1950 ±5% 

SSG1 1862 1659 ±2.4% 

BEN28 1149 1070 ±4.3% 

SSA4 361 335 ±3.5% 

BIP14 315 290 ±3.2% 

BIN21 212 206 ±2.8% 

YB3 181 170 ±3.1% 

FEL37 9 4.5 ±9% 

CAS17 5 3.1 ±21.7% 

Chalk3 1.08 1.12 ±4% 

COL25 0.7 0.05 ±15.3% 

SSC5 0.8 0.7 ±6.7% 

UNK51 0.9 0.2 ±20% 
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Figure 5-1. Comparision of permeabilities of 17 samples estimated from 
DARS drained measurement and measured by direct gas injection. The 
vertical black bars crossing the data points represent the error range in DARS 
permeability estimates. The short vertical bars crossing the data points 
represent the uncertainty range in DARS permeability estimates. 
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5.3 Estimating Gassmann wet frame compressibility 

The presence of pore fluid complicates the seismic signature of earth materials. When 

a passing wave compresses a rock, the deformation in the pore space leads to pore-scale 

pressure gradients and subsequent pore fluid flow. Gassmann’s equation provides a fast way 

to predict the effects of fluid saturation on the seismic properties of a porous medium 

(Gassmann, 1951; Wang, 2001; Han and Batzle, 2004). Gassmann’s equation written in 

compressibility form is 

)()(
))((

sdrysf

sfsdry
sG κκκκφ

κκκκφ
κκ

−+−
−−

+= , 

where Gκ  and dryκ  are wet- and dry-frame bulk moduli, respectively, sκ  is the grain 

compressibility, fκ  is the compressibility of the pore fluid, and φ  is the porosity. 

Generally, Gassmann’s equation is robust; however, the successful application of this 

equation is strictly subject to the following assumptions (Mavko, 1998): 1) the porous medium 

is homogeneous and isotropic, 2) all pores are interconnected and communicating, 3) the rock-

fluid system under study is closed, 4) pore fluids are frictionless, and 5) the fluid-rock system 

is relaxed (there are no pressure gradients in the fluid phase). These strict requirements make 

the application of Gassmann equation questionable when we work with earth materials, 

especially at high frequency, because the complicated and heterogeneous constituents of earth 

materials often fail to satisfy these assumptions.  

The routine way to quantify the Gassmann wet frame bulk modulus is through low 

frequency strain-stress measurements (Hofmann, 2000; 2005) by taking the bulk volume 

normalized ratio of the volume strain to the corresponding stress. The challenges associated 

with such experiments are: 1) the surface boundary of the tested materials has to be well 

sealed and any leaking of pore fluid will significantly bias the results; 2) the tested sample has 

to be well machined in a particular shape (cylinder or cubic depending on the experiment 

apparatus); 3) the tested sample should be strong enough to bear certain amount of strain and 

this requirement excludes fragile earth materials, e.g., coal, which is particular interesting to 

us. Due to these difficulties, we propose an alternative approach to quantify the wet-frame 

bulk modulus of porous media through a fast, indirect and nondestructive undrained 

measurement with our DARS system, which has no particular requirements on the sample 
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shape and strength. The advantage of the DARS undrained measurements is that it avoids the 

need for strict assumptions associated with the application of Gassmann’s relation, and it does 

not require prior knowledge of the bulk moduli of minerals, information that frequently is not 

known for most earth materials. The details of the proposed approach are discussed in the 

following sections. 

In Chapter 3 we derived an analytical model for the effective compressibility of a 

porous medium subject to cyclic fluid loading. The model includes a critical parameter, uκ , 

the compressibility of the wet rock frame. The reciprocal of this compressibility yields a bulk 

modulus. In the derivation of the analytical model, the porous medium is fluid-saturated; this 

modulus is thus the property of the wet frame. In DARS experiments, this parameter is 

quantified by the measurement of the undrained or sealed sample. We believe that this 

parameter is the Gassmann wet-frame compressibility, or at least can be used to approximate 

that quantity, because our undrained measurement satisfies almost all of the major 

assumptions of Gassmann’s equation. Our approach is not subject to the first two assumptions 

of Gassmann’s theory, because it uses a direct measurement of the wet-frame bulk modulus, 

which is not limited to homogeneous and isotropic materials. The third assumption is 

automatically satisfied with our approach because our measurements are carried out in the 

undrained state. As for the 4th assumption, the fluid we currently use in DARS experiment is 

low-viscosity silicone oil, ( cts5=η ); practically, this can be considered frictionless.  

Only the fifth assumption may be problematic: that the rock-fluid system is relaxed 

and has no pressure gradients in the fluid phase. However, we believe that our approach can 

still satisfy this requirement because of two facts: 1) the frequency in DARS measurement is 

at about 1000 Hz (and can be even lower), and 2) the dimension of our samples is far less than 

one wavelength in the experiment. In our current experiment, the typical working frequency is 

about 1080 Hz and the acoustic velocity of the fluid medium is about 986 m/sec. Therefore, 

the wavelength is close to 92 cm. On the other hand, the typical length and radius of our tested 

samples are about 4 cm and 1.25 cm, respectively, far less than the wavelength. Hence, we 

argue that the pore fluid has sufficient time to flow to equilibrate the wave-induced pressure 

gradients inside the pore spaces during a wave period. The pressure drop across the sample 

surface boundary, however, still remains and can never reach equilibration. This argument is 

valid for most the earth materials.  

We tested 17 samples with DARS and quantified their wet-frame compressibilities 

through undrained measurement; the results are listed in Table 5-2. We also calculated these 
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properties from ultrasonic p- and s-wave velocity measurements and density measurements of 

the saturated samples; the results are also listed in Table 5-2. The comparison of the 

compressibilities given by the two methods are shown in Figure 5-2. Clearly, the 

compressibility given by high-frequency ultrasonic measurements are much lower that those 

from low-frequency DARS measurements. The comparison here is only for reference, since 

Gassmann’s equation can not be applied to the ultrasound frequency range, where the pore 

fluid has no time to flow and equilibrate the pore pressure gradients. In DARS undrained 

measurement, the pressure inside the pore space is equilibrated thus the undrained bulk 

modulus gives a better estimation of the Gassmann wet frame bulk modulus.  
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Table 5-2. Wet-frame compressibility of 17 rocks given by undrained DARS and derived from ultrasonic velocity measurement. The 
samples were 100% saturated. 

 κultrasound (GPa-1) κu (GPa-1) Uncertainty in κu 

VIF02 0.16027 0.1179 ±2.51% 
NIV45 0.08803 0.1224 ±1.37% 
SSB7 0.07547 0.09861 ±1.39% 
SSF2 0.07519 0.15466 ±1.25% 

QUE10 0.08333 0.1061 ±4.84% 
SSG1 0.06283 0.11214 ±0.79% 

BEN28 0.06671 0.09969 ±2.11% 
SSA4 0.08396 0.12781 ±3.52% 
BIP14 0.08143 0.1172 ±4.84% 
BIN21 0.07758 0.12051 ±3.15% 
YB3 0.06698 0.10378 ±1.77% 

FEL37 0.07052 0.1385 ±3.44% 
CAS17 0.07424 0.12139 ±6.00% 
Chalk3 0.06653 0.05149 ±1.34% 
COL25 0.05666 0.09245 ±12.18% 
SSC5 0.05519 0.08676 ±4.59% 

UNK51 0.05297 0.09926 ±5.20% 
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Figure 5-2. Comparison of wet-frame compressiblities of 17 samples 
estimated by DARS undrained measurement and derived from ultrasonic 
velocity measurement. The short vertical bars crossing the data points 
represent the uncertainty range in DARS permeability estimates. 
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5.4 Conclusions 

The combination of DARS-quantified compressibility with the analytical effective 

compressibility model provides a way to estimate the permeability of porous materials. We 

estimate the permeability of the 17 tested samples and compare the estimated permeability 

with that given by a direct gas-injection measurement. The results agree well for the materials 

with intermediate permeabilities, e.g., 10 to several thousand mD.  

The current DARS setup is not suited to estimate the permeability of rocks with 

extremely low or high permeability, for instance less than 10 mD or above 10,000 mD, 

because the compressibility estimated with the current system is insensitive to extremely low- 

or high-permeability samples. To extend our measurement to the low-permeability range, we 

need a lower-frequency cavity. On the other hand, to have a better study of highly permeable 

materials, we may need to explore multiple-resonance modes. 

The current study on permeability estimation is limited to homogeneous materials. For 

heterogeneous materials this needs further study. 

Gassmann’s equation is frequently used in fluid substitution analysis to predict the 

wet-frame bulk moduli of earth materials; however, this equation is subject to strict 

assumptions which restrict its application to limited rock types. We propose an alternative 

approach to measure the wet-frame bulk modulus by undrained DARS measurement of fluid-

saturated porous materials. Our approach is reasonable because it satisfies the major 

assumptions of Gassmann’s equation. 

We quantify the wet-frame bulk moduli of 17 samples using their undrained DARS 

measurement and compare the results with those derived by ultrasonic p- and s-wave velocity 

measurements and density measurements. Our results are much smaller than the ultrasound 

results, because in the ultrasonic measurement, the pore fluid has no time to flow, making the 

rock frame stiffer. 

 



 

 

Chapter 6  

Practical considerations 

6.1 Summary 

DARS measurement is subject to some sources of error that may affect its accuracy. 

This chapter summarizes the potential error sources, their effects, and possible ways to 

compensate for them. 

 In a numerical study of the affecting factors, the errors they produce in 

compressibility and bulk modulus estimates, the two dominant error sources were uncertainty 

in the sample volume and temperature drift during the DARS measurement. However, these 

two factors are controllable, and their effect can be reduced by adopting appropriate 

measurement tools. The other errors, which are related to the accuracy of the DARS 

instrument and DARS perturbation theory, are inevitable, but their effects are relatively small 

compared to the other two error sources. 

6.2 Potential factors affecting DARS measurement 

The key of DARS is that the acoustic pressure and velocity fields in the background 

fluid medium inside the cavity are assumed to remain unchanged by the interference of the 

reference sample and the studied samples. To fulfill these assumptions, these factors 

potentially affecting observations should be carefully considered: temperature variation, 

sample size, and sample shape. They are discussed below. 

 

 



Chapter 6 – Practical considerations 

 

87

6.2.1 Temperature drift 

Implicitly, the application of DARS assumes a constant working temperature for both 

the reference and the studied material, throughout the entire measurement process of each 

relevant sample. The potential influence of temperature variation stems from the difference in 

the acoustic velocity and density, and thus the compressibility of the background fluid, at 

different temperatures. Figures 6-1 and 6-2 demonstrate the temperature dependence of the 

acoustic velocity and density of the background fluid medium. Clearly, if the temperature is 

not well controlled, these changes in the acoustic velocity and density, and thus the 

compressibility of the fluid medium, will be propagated into the interpreted compressibility of 

the studied materials. The possible error contribution to the estimated compressibility of tested 

samples will be addressed in the following error analysis section (6.3.1). 
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Figure 6-1. Acoustic velocity versus temperature for silicone oil. 
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6.2.2 Sample size 

Sample volume has a first-order effect on DARS frequency observation; therefore, the 

size of the tested samples needs to be precisely measured. Moreover, the sample volume 

should be restricted to a limited range to satisfy the perturbation assumptions. Based upon our 

experience, a portion of 2-4% of the cavity volume is reasonable for the sample size. Too 

small a sample may result in a large reading error in the observation, while too large a sample 

may violate the perturbation assumption.  

There are two sources for the possible effects of the sample volume: first, according to 

perturbation Eqn (2.3), the sample volume has an explicit first-order effect on the perturbation. 

Therefore, any uncertainties in the measurement of the sample size will go directly into the 

estimated compressibility of the studied materials. The second possible source of error is 

associated with the coefficient A  in Eqn (2.3), which is a volume integral of the acoustic 

pressure over the sample body. The acoustic pressure inside a resonating cavity has a 

sinusoidal spatial distribution along the axis of the resonator, and thus over the sample body 
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Figure 6-2. Density versus temperature for silicone oil. 
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located inside the cavity. In DARS, we assumed that the acoustic pressure distribution is 

unchanged between the reference sample and the studied sample. This assumption is sound if 

the size of the studied sample and that of the reference material are identical. However, if the 

sizes are mismatched, the acoustic pressure acting on different objects cannot be assumed to 

be equal. If it is erroneously assumed to be equal, the error will be transferred into the 

estimated compressibility of the studied sample through coefficient A . 

The effect of the measurement uncertainty of sample volume will be discussed in 

Section 6.3.4. 

6.2.3 Sample shape 

From the perturbation theory, Eqn (2.3), the frequency shift is explicitly dependent on 

the volume of the sample rather than the shape. Therefore, we postulate that DARS is a 

potential way to evaluate the elastic properties of materials with irregular shapes, with the 

prerequisite that the sample volume can be accurately quantified, which in most cases is not a 

big challenge.  

To verify the hypothesis, we tested two sets of standard materials, aluminum and 

Lucite. Each of the two sample sets had a total of twelve samples. Six of those had the same 

diameter (1.5″) and various lengths (1.0″, 1.2″, 1.4″, 1.6″, 1.8″, and 2.0″), and six had the 

same length (2.0″) and various diameters (1.0″, 1.1″, 1.2″, 1.3″, 1.4″, and 1.5″). The volume 

ratio of the samples to the cavity is in a range of 1.4-3.1%, which is acceptable for the 

perturbation assumption. 

The cross-plot between the resonance modes, measured with the samples located at 

the center of the cavity, and the various sample volumes of the two sample sets is shown in 

Figure 6-3. A strong linear correlation exists for both materials. Moreover, the two linear 

trends intersect at the point where the sample volume is zero, and the corresponding resonance 

frequency is the empty cavity response. This behavior proves that, first, the perturbation is a 

function only of the volume of the sample (or, more precisely, the ratio of the sample’s 

volume to that of the cavity) rather than being dependent on the sample’s shape; second, the 

nonlinearity of the differential estimation caused by the discrepancy between the volume of 

the reference sample and that of the studied sample is not dramatic if the sample volume is 

controlled in a range of 2-4% of the cavity volume.  
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In Figure 6-3, for the data points of the samples with fixed diameter but varying 

lengths, small fluctuations around the trend line can be observed for both the aluminum and 

the Lucite sample sets, because the acoustic pressure distributed over the sample body is 

varying with length instead of being constant. The deviation is small and the assumption of 

constant pressure is reasonable for a first-order estimation. On the other hand, for the data 

points represent the results for the samples with fixed length but changing diameters, the 

results of both the aluminum and Lucite are well distributed along two straight lines, which 
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Figure 6-3. Frequency shift versus sample volume. DARS observation is 
insensitive to the sample’s shape but sensitive to its volume. 

 Blue dots – Aluminum samples with 1.5″ diameter but various 
lengths (1.0″, 1.2″, 1.4″, 1.6″, 1.8″, and 2.0″)  

 Red dots – Aluminum samples with 2.0″ length but various 
diameters (1.0″, 1.1″, 1.2″, 1.3″, 1.4″, and 1.5″)     

 Green dots – Lucite samples with 1.5″ diameter but various 
lengths (1.0″, 1.2″, 1.4″, 1.6″, 1.8″, and 2.0″)     

 Black dots – Lucite samples with 2.0″ length but various diameters 
(1.0″, 1.1″, 1.2″, 1.3″, 1.4″, and 1.5″) 



Chapter 6 – Practical considerations 

 

91

indicates that the pressure variation in the radial direction, a Bessel function, can be ignored, 

and that the error in the compressibility estimation thereby induced can also be ignored. 

6.3 Error analysis 

There are several possible error resources in DARS experiments and in the application 

of the perturbation theory. Some of the errors are inherent and inevitable, for instance the 

accuracy of the measurement instrument and the extent of the approximation in the 

perturbation theory. However, most of the errors are controllable or at least can be improved, 

e.g., errors caused by operator and observation error.  

To gain insight into the possible errors within DARS and the way they affect the 

interpretation result, we need to slightly modify the perturbation equation. Recall the 

perturbation equation Eqn (2.3), at the center of the cavity, 
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The sub-index s  and r  in Eqn (6.1) and (6.2) indicate the tested sample and reference 

sample, respectively; parameters s0ω  and r0ω  are the empty-cavity resonance frequency for 

the tested sample and reference sample, respectively.  

Combining Eqn (6.1) and (6.2) we get, 
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Next we will use a Lucite sample to help analyze the possible errors and give 

recommendations to moderate some of these errors. 

6.3.1 Error associated with temperature variation 

The acoustic velocity of the background fluid in the DARS cavity depends linearly on 

temperature (Figure 6-1). Therefore, any change in temperature will result in variation of the 

resonance frequency, and this factor should be carefully considered. 

The possible temperature drift in a DARS experiment is between the empty cavity and 

sample-loaded cavity in two consecutive measurements. Here we assume that the temperature 

variation exists only in the two measurements for the test sample, but not for the reference 

sample. The temperature change is transformed into frequency, s0ω , in Eqn (6.3), through the 

linear correlation between the fluid acoustic velocity and temperature (Figure 6-1). The other 

parameters in Eqn (6.2) are held constant. We calculate the compressibility and bulk modulus 

of the Lucite sample at varying temperatures and plot the results in Figure 6-4. The 

corresponding error in bulk modulus and compressibility caused by temperature variation is 

shown in Figure 6-5. It is clear that the temperature drift has a strong effect on the estimation 

of the bulk modulus and compressibility. 

In the current DARS apparatus, the temperature is loosely controlled by a room air 

conditioner, and a slow temperature drift with time always exists in the measurement (Figure 

6-6). The typical rate of temperature change with time is about ±0.5 oC/12hr. The time interval 

between the empty cavity and sample-loaded cavity measurements is about 5 minutes; 

therefore, the possible temperature change between the two consecutive measurements is 

about ±0.007 oC. The resultant error in bulk modulus and compressibility is about 2% (Figure 

6-4), which is still tolerable. If the time interval between the two measurements is long or 

large temperature fluctuations are observed, the temperature effect should be carefully 

considered. 
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There are two approaches to moderating the temperature-drift effect. The first is to 

build a highly sensitive thermal control unit through which the variation of the measurement 

temperature can be maintained in an acceptable range, say less than 0.01 °C. The advantage of 

this idea is that the temperature effect thus can be neglected. However, this method is not cost-

effective. A custom-designed thermal unit at this sensitivity level can easily cost $20k-$50k. 

Moreover, adding this sophisticated instrument will inevitably complicate the operation and 

slow down the measurement procedure. The second method is to use a high-sensitivity 

thermal probe and temperature module to monitor the subtle change in temperature between 

the empty cavity and sample-loaded cavity measurements. We already know that the acoustic 

velocity of the background fluid depends linearly on temperature; therefore we may take 

advantage of this to eliminate the temperature-drift effect on the perturbation measurement. 

The idea is straightforward: by using the temperature probe we can accurately detect the 

temperature in the sample-loaded experiment; then, through the linear correlation between the 

acoustic velocity and temperature, we can precisely back-calculate the ‘corresponding’ empty-

cavity resonance frequency at the sample-loaded temperature. The market value of a high-

 

Figure 6-4. Sensitivity of estimated bulk modulus and compressibility to 
temperature drift in DARS measurement. A Lucite sample is used in this 
study. 
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resolution thermal probe (0.0007-0.001 °C) and temperature module (16 digits resolution) is 

about $2k-$3k. 
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Figure 6-5. Correlation of errors in estimated compressibility and bulk 
modulus with the uncertainty in the volume of tested samples. A Lucite 
sample is used in this study. 
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Figure 6-6. Resonance frequency drift with temperature variation of DARS 
apparatus. This is the empty cavity measurement, but we believe this 
phenomenon also exists in the sample-loaded measurement. 
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6.3.2 Instrument error 

Inherent instrument error reflects the quality of the measurement instrument. In DARS 

experiments, this parameter refers to the resolution of the frequency acquisition instrument – 

the SR850 power lock-in amplifier. The nominal accuracy of this instrument is 30 μHz. This 

accuracy compared to the frequency step we frequently used in current measurement, 0.01 

Hz/step, has large enough resolution window to capture the frequency change; therefore, we 

can safely ignore the error associated with the instrument. 

6.3.3 Error associated with perturbation theory 

Perturbation theory provides a first-order description of the resonance characteristic of 

the acoustic setup; thus any result of the perturbation model inevitably has errors associated 

with higher-order effects. The major error in the perturbation model comes from the 

coefficient A . This coefficient, calibrated by a reference sample, is assumed constant over all 

of the other tested materials, and this assumption forms the foundation of DARS. However, 

this assumption only holds when the lengths of the reference sample and the tested sample are 

comparable. Otherwise, the acoustic pressure distribution over the reference sample will be 

different from that over the tested sample, and thus the coefficient A  will be different.  

In Chapter 2 we discussed that the first-mode acoustic pressure distribution in a 

cylindrical cavity with length 0L  is proximately a cosine function, 
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If the length of the reference sample, rL , is different from the tested sample, the averaged 

acoustic pressure over the reference sample then will be 
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The ratio of the sp  and rp  will be 
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Replacing the pressure ratio in Eqn (6.3) with (6.4), we get 
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Holding all the other parameters constant in Eqn (6.5), we calculate the rate of the change in 

compressibility and bulk modulus at varying sL . The result is illustrated in Figure 6-7. The 

error in both the compressibility and bulk modulus increases with the discrepancy between sL  

and rL . However, the magnitude is relatively small. For instance, a 5% length difference 

results in 0.1% error in both the compressibility and bulk modulus. This error is acceptable in 

our current measurement.  

For the rock samples used in this thesis, the difference between their length and that of 

the reference aluminum sample is in the 5% range; therefore, the assumption that the acoustic 

pressure distribution over the reference sample and the rocks remains constant is reasonably 

acceptable.  
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Figure 6-7. Error in estimated compressibility and bulk modulus caused by 
discrepancy between the length of the reference sample and that of the tested 
sample. A Lucite sample is used in this study. 
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6.3.4 Error associated with sample volume measurement 

Another major error comes from the uncertainty in the volume measurement of the 

tested sample. From Eqn (2.3), we know that the sample volume has a first-order effect on the 

resonance frequency and thus on the estimated compressibility of the tested sample. To study 

the magnitude of the effect of the uncertainties in sample volume on the compressibility 

estimation, we calculate the compressibility and bulk modulus under varying degrees of 

uncertainty in the sample volume, sV , with Eqn (6.3). All other parameters in the equation 

were held constant. The estimated compressibility and bulk modulus versus the uncertainties 

in the sample volume are shown in Figure 6-8. The corresponding errors in the compressibility 

and bulk modulus are shown in Figure 6-9. It is clear that the uncertainty in the sample 

volume has a strong effect on modulus and compressibility estimation and should be carefully 

quantified.  

 

Figure 6-8. Sensitivity of estimated bulk modulus and compressibility to 
the uncertainties in the volume of the tested sample. A Lucite sample is 
used in this study. 
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All samples used in this study were prepared in a cylindrical shape with a nominal 

length of 1.5 inches and diameter of 1 inch. The volume of each sample was calculated using 

the measured diameter and length. The diameter and length are the average of five 

measurements taken at different orientations and positions. The nominal accuracy of the 

measurement tool, a caliper in our case, is ±0.001 inch; therefore, the uncertainty in the 

sample volume caused by the inherent error of the measurement tool is far less than 0.01% of 

the sample volume; therefore, this small effect can be safely ignored (Figure 6-9). The major 

error associated with volume measurement is caused by the ‘irregular’ shape of the sample. 

Although all of the tested samples were carefully drilled to maintain a cylindrical shape, we 

still observe a ±0.005 inch change in diameter for most of the samples. Even worse are the 

uncertainties in the length measurements. The two ends for most of the samples are not 

completely parallel, with most having a ±0.015 inch change in length depending on radial 

position. Therefore, the ±0.005 inch uncertainty in diameter and ±0.015 inch uncertainty in 

 

Figure 6-9. Correlation of errors in estimated bulk modulus and 
compressibility with the uncertainties in the volume of the tested sample. 
A Lucite sample is used in this study. 
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length can result in 1.0-1.8% uncertainty of the calculated sample volume. From Figure 6-9 

we can tell that this 1.0-1.8% volume uncertainty can result in 3-7% error in the 

compressibility and bulk modulus estimations. The small uncertainty in the sample volume is 

magnified when we calculate the compressibility and modulus with Eqn (2.7) and (2.8).  

To achieve 1% accuracy in the estimation of compressibility and bulk modulus, the 

maximum tolerance for error in the sample volume is 0.4%, which is far beyond the capacity 

of our current volume measurement method. An approach under consideration is to use a 

liquid displacement method, e.g., a high-resolution baker or custom designed apparatus. This 

may yield a more reliable reading of sample volume; also, it gives us more flexibility about 

the sample shape. As we discussed in section 6.2.3, DARS is not sensitive to sample shape, a 

fact we should exploit. We can still rely on the routine caliper measurement; however, we 

need to machine the samples to closer tolerances to achieve 0.4% accuracy in volume 

measurement. This strict requirement apparently excludes many of the fragile earth materials 

that are of most interest, such as coals and most reservoir rocks. 

Summarizing the four errors, the dominant errors are caused by the uncertainty in the 

sample volume and the changing temperature in the experiment. However, these two errors are 

controllable or at least can be improved. The other two errors, related to the nature of the 

measurement instrument and the perturbation theory, are inevitable; however, their effects are 

relatively small and in most cases can be ignored. 

Finally, the error in the ultrasound velocity measurements of the reference sample 

may also affect the accuracy of the compressibility estimate of DARS tested materials, by 

affecting the compressibility of the reference material. For instance, a ±15 m/s variation was 

observed both in the p- and s-wave velocity results of which are 6320±15 m/s and 3090±15 

m/s, respectively. The variations of the two velocities result in a ±0.2% uncertainty in the 

compressibility estimate of the aluminum sample. This uncertainty in the aluminum’s 

compressibility will finally be transformed into the compressibility estimate of the tested 

samples. Fortunately, the error contribution by the uncertainty in the reference sample’s 

compressibility is relatively small, less than 0.3% for most of the studied materials.  

6.4 Effect of open flow surface on effective compressibility 

From Eqn (3.5) in Chapter 3, we know that the effective compressibility is a function 

of the volume of the dynamic flow across the open surface boundary of the tested sample. An 
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immediate question to ask is what is the effect of the open flow surface area on the effective 

compressibility, because the open area controls the volume of the dynamic flow. To answer 

this question, we prepared four Berea samples (A, B, C and D), which were drilled from the 

same rock block. The four samples have same dimension ⎯1.5 inches in length and 1 inch in 

diameter ⎯and identical statistic properties, such as permeability, porosity, tortuosity and 

bulk modulus. The four samples were prepared with different surface boundary 

configurations: sample A has fully closed surface; sample B has the cylindrical surface sealed 

but two ends open; sample C has the two ends sealed but the cylindrical surface open; and 

sample D is fully open. The configuration of the boundary conditions of the four samples is 

shown in Figure 6-10. The four samples were saturated with the same fluid as in the DARS 

cavity. 

 

Figure 6-10. Configuration of the surface boundary for four Berea samples. 
The four rocks were cut from the same Berea sandstone rock block and 
prepared with following surface boundary conditions (left to right): Sample A 
- fully sealed with epoxy; Sample B - cylindrical surface sealed with epoxy; 
Sample C - two ends sealed with epoxy; Sample D - fully open sample 
surface. 

We calculated the compressibility of the four samples from DARS measurement 

results and plotted the compressibility versus the corresponding open surface area in Figure 

6-11. The compressibility increases systematically with the increment of open surface area. 

Sample A has zero open surface area; therefore, its compressibility is the smallest. Sample D 

has the maximum open surface area, thus it has the maximum compressibility. The 

compressibility of sample B and C are located between that of sample A and D and are 

sample A 
fully 

sealed 

sample B 
ends 
open 

sample C 
ends 

sealed 

sample D 
fully 
open 
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consistent with their open surface area. The interesting observation is that the compressibility 

does not depend linearly on the open surface area. This phenomenon is due to the difference of 

the dynamic flow paths inside the four samples. In sample B, the dynamic flow is along the 

axial direction of the sample. In sample C, the dynamic flow is in the radial direction. In 

sample D, however, the dynamic flow is three dimensional and the regime of the flow path is 

completely different from that in samples B and C. Therefore, the pattern of the open surface 

will affect the path and efficiency of the dynamic flow. 

6.5 Diffusion depth discussion 

The solid and fluid interaction in DARS measurement of porous materials is a 

dynamic diffusion process. We are interested in how deep the dynamic diffusion penetrates 

into the porous medium. This question is critical because it reflects the quality and reliability 
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Figure 6-11. Effective compressibility versus open flow surface area. The 
four rocks were cut from the same Berea sandstone rock block. Sample A - 
fully sealed with epoxy; Sample B - cylindrical surface sealed with epoxy; 
Sample C - two ends sealed with epoxy; Sample D - fully open sample 
surface. 
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of the DARS measurement. For instance, if the dynamic diffusion only penetrates a shallow 

zone of the tested sample, the property we interpreted may not represent the bulk property of 

the sample.  

We used diffusion depth to help us study this problem. Diffusion depth in this thesis is 

defined by the distance in the tested sample where the diffusion pressure is e/1  times of the 

pressure on the sample surface.  

e
pLp d

0)( = . 

In a finite 1D diffusion regime (Chapter 3, section 3.3), the pressure profile is 

( ) 02 )(
1

pee
e

exp xx
L

L
αα

α

α
−+

+
= . 

Therefore, the pressure at diffusion depth dL  will be 
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It is difficult to derive an explicit expression for dL  from Eqn. (6.6), so we did numerical 

analysis. The frequency used in this study was 1000 Hz, and the porosity of the model was 

20%. We calculated the diffusion depth of models with a variety of permeability and length 

combinations. The results are shown in Figure 6-12. The color bar represents the ratio of 

diffusion depth, dL , to model length, L . Red means the diffusion depth is comparable to the 

length of the model, or the dynamic diffusion senses the whole section of the studied model. 

On the other hand, dark blue means the diffusion depth is far less the model length and the 

dynamic diffusion only penetrates a very shallow zone of the model. For instance, if we have a 

sample with permeability of 30 mD, from Eqn (6.6) we calculated the diffusion depth of the 

sample is about 1 cm. If the sample length is 10cm, the diffusion length thus is only 10% of 

the sample length and the dynamic flow recovers only a small section of the sample. To 

improve the recovery ratio, the simple way is to cut the sample shorter, e.g., 1 cm.  
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Figure 6-12. Ratio of diffusion depth to sample length for rocks with varying 
permeabilities. The color bar represents the ratio of the diffusion depth, dL , 
to the model length, L . Red means the diffusion depth is comparable to the 
sample length; deep blue means the diffusion length is far less than the sample 
length. 
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6.6 Conclusions 

There are four error resources in DARS experiment: measurement error caused by 

temperature drift; error caused by uncertainties in the volume of the tested samples; system 

error associated with the instrument and inherent error in the perturbation theory. The first two 

are the major errors and have a strong effect on the estimated compressibility and bulk 

modulus of the tested samples. The other two errors are inevitable; however, their effects are 

of high order and in most cases can be neglected. 

Temperature variation in DARS measurements changes the resonance frequency by 

affecting the acoustic velocity of the background fluid medium. The volume of the tested 

sample has a first-order effect on frequency shift in DARS measurement. To satisfy the 

perturbation theory, the sample size should be limited to a range of 2-4% of the cavity size. 

The volume of the reference material and the tested sample should match. 

DARS is insensitive to the shape of the tested sample. This feature provides the 

potential to measure materials with irregular shapes, such as drilling cuts, which are abundant 

but hard to measure with routine rock physics measurement techniques.  

The pattern of the open surface boundary for porous materials controls the volume of 

the dynamic flow across the surface boundary thus it has significant effect on the effective 

compressibility. 

Dynamic diffusion in DARS measurement of porous materials provides a way to 

investigate the flow properties of porous media. However, the estimated flow property is 

subject to the depth the dynamic flow can penetrate into the sample. If the dynamic flow 

senses only a small section of the sample body, the flow property may not represent the bulk 

property of the tested sample. 

 



 

 

Chapter 7  

Summary of conclusions and assumptions 

7.1 Differential Acoustic Resonance Spectroscopy 

These are the major steps I completed for the development and application of 

differential acoustic resonance spectroscopy technique. 

(1) I constructed a (DARS) system based upon an acoustic perturbation theory. 

(2) I successfully conducted lab measurements on both nonporous materials and 

porous materials with the DARS setup. 

(3) I developed an analytical compressibility model based on a dynamic diffusion 

concept and, the results yielded by both the analytical model and DARS observations on a set 

of 17 porous samples match reasonably well. 

(4) I combined the analytical model with DARS measurement to predict the 

permeability of the 17 samples and compared the results with those given by direct gas 

injection measurement; the results agree well for the materials with intermediate permeability, 

e.g., 10 to several thousand mD. 

(5) I applied COMSOL, a finite-element tool, to study the diffusion phenomenon in a 

finite, cylindrical medium with homogeneous and heterogeneous flow regimes. I compared the 

numerical results of the diffusion pressure for the 1D axial diffusion model (homogeneous) 

with those given by a 1D analytical solution; the results agree well. 

(6) I estimated the dynamic-flow-related compressibility of the 1D homogeneous 

model and compared the estimated compressibility with that given by our analytical 

compressibility model. The results match reasonably well. 
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7.2 General conclusions 

We have developed a procedure for estimating the effective compressibility of 

saturated rocks under a dynamic fluid loading condition.  

DARS-estimated compressibility for nonporous materials matches that derived from 

ultrasonic velocity measurement and density measurement; however, this is not always true 

for porous materials. 

The agreement of the results given by both the analytical compressibility model and 

the DARS measurement indicates that the interaction between the fluid and solid in porous 

media is a complex dynamic diffusion process. 

Our current setup is appropriate for porous rocks with intermediate permeability. To 

extend the measurement to low-permeability rocks, we need to design a longer cavity. To 

study high-permeability rocks, we need to explore higher resonance modes. 

The undrained measurements on porous materials yield the wet-frame bulk modulus, 

which is equivalent to the Gassmann low-frequency wet-frame bulk modulus of porous 

samples. 

7.3 Major assumptions 

The following are the major assumptions related to DARS measurement and the 

perturbation model, Eqn (2.7): 

(1) The effect of the energy radiation of an open-ended cavity is small and can be 

ignored. 

(2) The acoustic pressure is constant over different tested samples. 

(3) At the center of the cavity, the value of the acoustic velocity is small and can be 

ignored compared to the acoustic pressure; thus the frequency shift is entirely caused by the 

perturbation on the acoustic pressure field. 

(4) Temperature drift can be ignored in both the empty-cavity and sample-loaded-

cavity measurements. 

(5) In DARS undrained measurements, the pressure distribution inside the sample has 

no effect on the perturbation measurement. 
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The following are the major assumptions in the derivation of the 1D analytical 

compressibility model, Eqn (3.8): 

(1) The porous medium is homogeneous and isotropic. 

(2) Diffusion in the pore space is purely in one dimension along the axial direction. 

(3) The sample matrix is incompressible as compared to the pore fluid. 

(4) The medium is a perfect right circular cylinder; thus we can integrate the diffusion 

pressure profile in the pore space to get an explicit expression for the effective 

compressibility, Eqn (3.8). 

(5) The permeability we estimate by combining the DARS measurement with the 

analytical compressibility model represents the global permeability, regardless of how deep 

the diffusing flow is sensing into the sample. 



 

 

Appendix A 

Standing wave 

Acoustic wave equation states that 

 p
t
p 2
2

2
∇=

∂

∂ ρκ , (A.1) 

where parameter ρ  and κ  represent the density and compressibility of air, and p is the 

acoustic pressure field.  

The 1D solution of Eqn (A.1) is given by  

( )[ ]θ+−= vtxkAtxp sin),( , or )sin(),( θω +−= tkxAtxp ,  

where k  is wave number defined by vk ωλπ =≡ 2 ; ω  is angular frequency define by 

fπω 2= ; λ  is wavelength; θ  is phase angle; and v  is the traveling velocity given by 

ρκ1=v . 

If a sound wave hits a rigid wall, then displacements perpendicular to that rigid wall 

are not possible; therefore, the wave is reflected from the wall, such that the component of the 

wave vector perpendicular to the wall changes sign. If the wave e.g. travels in a rectangular 

box with rigid walls perpendicular to one set of walls, the total wave will consist of the 

coupling of the wave itself, the first reflection from a wall, and other reflections from the other 

walls, etc. 

If we choose the wavelength in such a way that the last wave coincides with the 

original wave, then a resonance occurs, and the wave formed this way is called a standing 

wave. Note that the boundary condition at the wall is such that the displacement should be 
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zero, or the amplitude of the pressure a maximum. The sum of two waves traveling in opposite 

directions is given by: 

 
( ) ( )[ ] ( )[ ]

( ) ( )tkxA
tkxtkxAtxp

ωθ
θωθω

coscos2
coscoscos,

+=
+−−++−=

. (A.2) 

The condition for resonance is that )cos( θ+kx  is one for 0=x  and for xLx =  if xL  is the 

length of the box. This condition is fulfilled for xLnk /π=  with ...3,2,1=n . 

At low frequency, the longitudinal resonance modes dominate the acoustic response in 

the cavity and the acoustic pressure is a sinusoid. For the fundamental mode, there is one node 

at the center. The basic wave relationship leads to the frequency of the fundamental: 
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Appendix B 

Nonlinear curve fitting 

A sharp resonance can be described by the Lorentzian formula (Mehl, 1978): 

 ( )[ ]0

0
ωω −+

=
iw

A
a , (B.1) 

in which a  is measured signal amplitude, aarg  is the phase of it, 0ω  is the frequency of the 

normal mode, w  is the line-width, and 0A  is the peak amplitude. 

In the presence of a large background signal, nonlinear fitting is essential to 

processing complicated data. This technique makes it possible to use more complicated 

functions to describe the background. Assuming the background, which is linear with respect 

to ω , is 

 ( )( )012121 ωω −+++= iccibbab . (B.2) 

The conventional Lorentzian form is simply modified as follows: 
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Then a data set { }ii wf , , Ni ...3,2,1=  can be fit simply by minimizing 
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The resonance frequency and line-width can be picked out from the fitting procedure. 

Figure B-1 demonstrates the idea of the fitting. The solid curve in the plot is real 

recorded data. The anti-symmetry of the data curve was induced by the background noise, 

cross-talk of the instrument, and the overlapping of adjacent modes. The combination of these 

deficiencies will distort the resonance peak and if we simply pick the peak frequency as the 

resonance frequency, we may mis-interpret the measurement result. I observed that the peak 

frequency read out directly form the data is always higher than that given by the curve fit, and 

this phenomenon associates both within DARS empty cavity and sample loaded 

measurements. In Table B-1, as an example, I listed the frequencies given by the two different 

approaches of the 5 solid samples used to test the cavity. Clearly, the direct reading yields 

larger estimates of the frequency. I also calculated and compared the compressibility of the 

four plastic materials by using the frequencies given by the two different methods. The 

compressibility derived from the direct reading frequency is different from that derived from 

the curve fit frequency. Even though the magnitude of the difference is small, less than 1.5%, 

it is clearly there. Therefore, to have more accurate estimate of the compressibility of the 

tested materials, we should use the curve fit frequency results.  The aluminum is chosen as the 

reference sample whose compressibility is derived from ultrasound velocity measurements. 

a′=an/√2

a′

a n

wn

fn   n = 1,2,3,...

Raw data
Fitting result

 

Figure B-1. Lorentzian curve-fitting technique. 
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Table B-1. Frequency data and compressibility of 5 nonporous samples.  

Direct reading from data Curve fit 

 

ω0 (Hz) ωs (Hz) ωs-ω0 (Hz) κs (GPa-1) ω0 (Hz) ωs (Hz) ωs-ω0 (Hz) κs (GPa-1) 

Difference in 

compressibility 

Aluminum 1082.1 1091.5 9.4337 0.0118 1082.0 1091.4 9.4319 0.0118 Reference 

Delrin 1082.4 1090.4 8.0617 0.1698 1082.2 1090.3 8.0771 0.1715 -1% 

Lucite 1081.5 1089.4 7.9467 0.1853 1081.3 1089.3 7.9208 0.1833 1.09% 

PVC 1082.6 1090.3 7.6887 0.2032 1082.5 1090.2 7.7124 0.2059 -1.34% 

Teflon 1082.8 1089.4 6.5697 0.3383 1082.6 1089.2 6.5659 0.3377 0.17% 

 

 



 

 

Appendix C 

Sample preparation 

All rock samples studied in this thesis are drilled with a nominal diameter, d , of 1 

inch and cut with a nominal length, l , of 1.5 inch. The cores were rinsed, dried at ambient 

temperature for one day, and then oven dried at 85oC for two days and then allowed to cool 

down to room temperature in a desiccator. 

Ultrasound p- and s-wave velocities, density, porosity and permeability are measured 

before the DARS measurements. All velocity measurements are taken at room temperature in 

a pressure vessel filled with hydraulic oil used as pressure fluid. Samples are jacketed by 

Tygon tubing. In the measurement, a 0.5 bar confining pressure is applied to obtain a better 

sample-sensor coupling, and the pore pressure is vented to atmosphere, thus the effective 

pressure is simply the confining pressure. Standard ultrasonic transmission technique is used 

to measure velocity.  

Nitrogen gas permeability, kg, was measured in a Hassler-type core holder at a 

confining pressure of 300 psi. For the tested sample, the permeability to nitrogen ranged from 

0.5 mD to 12 Darcy. Porosity was measured with a porometer. The porosity of studied 

materials ranged from about 0.4% to 35%. Core properties are provided with the individual 

data sets. Densities of the studied rocks are measured by the routine mass-to-bulk volume 

ratio. The wet densities are calculated based on the dry frame density, density of the saturated 

fluid, and measured porosity. 

After the velocity, density, porosity and permeability measurements, the samples were 

immersed in a tank filled with the same fluid as inside the acoustic resonator and the pressure 

of the tank was decreased to 0.1 torr for 4 hours. This depressurization induces expansion of 

the gas bubbles trapped in the samples. Eventually, air escapes from the porous media. 

Finally, fluid is forced to fill the pore structure previously occupied by the air fraction as the 

tank re-equilibrates to atmosphere pressure. 



 

 

Appendix D 

1D diffusion equation 

Considering an arbitrary domain, Ω , in a fluid-saturated porous medium (Figure 

D-1), the mass of the fluid stored inside Ω  is 

 ∫∫∫
Ω

= dxdydzM fρ , (D.1) 

where fρ  is the density of the pore fluid. 

 

Figure D-1. Configuration of mass divergence in an arbitrary domain, Ω . 

The rate of the mass change with respect to time can be written as 

Ω 

n
S dS 
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 ( )∫∫∫
Ω

= dxdydz
dt

dM
tfρ . (D.2) 

In Eqn (D.2), tf )(ρ  is the rate of change of the density with time. 

If there is no sink inside Ω , the mass of the pore fluid inside this region cannot 

change except by flowing in or out through the boundary surface S  of domain Ω : 

 ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
Φ∂

⋅=
S

f dS
ndt

dM ρ , (D.3) 

where Φ  is flow velocity potential and n∂Φ∂  is the directional derivative in the outward 

normal direction, n being the unit outward normal vector on boundary of domain Ω . 

Therefore, ( )nf ∂Φ∂ρ  is the mass flux through the surface boundary S  of domain Ω . 

According to Darcy’s law, the velocity of the fluid flow inside a porous medium can 

be written as 

 pk
n

u ∇−=
∂
Φ∂

=
φη

, (D.4) 

in which φ  and k  are the porosity and permeability of the medium, and η  is the viscosity of 

the pore fluid. For a homogenous and isotropic medium, the permeability is a scalar. To be 

more general, here I treat it as a tensor. 

Substituting Eqn (D.4) in (D.3), we get 

 ∫∫ ⎟
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Hence, we have 
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Because the domain D  is chosen arbitrarily, by Green’s theorem, we can write Eqn (D.6) as 
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Therefore we get 
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To get a connection between the rate of density change with respect to time and that of 

pressure, we apply the definition of compressibility, which states that 
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in which 0V  is the total volume of the fluid inside an arbitrary portion of the porous material; 

parameter pΔ  is the stress applied on the fluid and fVΔ  is the corresponding volume change 

of the fluid. 

The volume change of the fluid can also be expressed as 
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In Eqn (D.10), 0fρ  and fρ′  are the density of the fluid with and without the certain stress. If 

we furthermore assume that the fluid is slightly compressible, e.g., 
0ff ρρ ≈′ , then we can 

rewrite Eqn (D.10) as 
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Substituting Eqn (D.11) into (D.9), we have 
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If the pressure change is time dependent, Eqn (D.12) then can be written as 
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If the time variable is infinitely small, we can rewrite Eqn (D.13) as 
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Rearranging Eqn (D.14) we get 

 pfftf κρρ
0

)( −= . (D.15) 

Replacing the term tf )(ρ  in (D.8) with Eqn (D.15), we have 

 )(
0

pkp ftff ∇−⋅∇=−
φη
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If the density of the fluid is spatially constant in region Ω , Eqn (D.16) can then be expressed 

as 

 pkp
f

t
2∇=

ηκφ
. (D.17) 

Setting fkD ηκφ= , we get the final expression of the diffusion equation, 
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or, 
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The parameter D  in Eqn (D.17) is the diffusivity of the porous medium and has the dimension 

[ ]tl 2 .  

In homogeneous porous media, the diffusion is dependent on only one coordinate and 

Eqn (D.19) can be simplified to a 1D expression 
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Furthermore, if acoustic pressure is time harmonic, i.e., tierptrp ω)(),( = , we can rewrite Eqn 

(D.20) as 
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2
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x
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The general solution of Eqn (D.21) is 

 xPeAxp αΔ=)( , (D.22) 

in which PΔ  is the amplitude of the pressure change, Diωα =  and A  is a constant 

coefficient. 

In our particular case, the sample’s side surface is sealed and the dynamic flow is at 

the two open ends; therefore, the pressure distribution inside the pore space is a superposition 
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of two opposite pressure profiles, Figure D-2, with boundary conditions 0)( pLp =  and 

0)( pLp =− , separately, and parameter L  is the half-length of the sample. 

Therefore, we have 
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Hence the combined pressure profile is 

 21)( BpApxp += . (D.24) 

in which A  and B  are two constant coefficients. 

Reapplying the boundary conditions 0)( pLp =  and 0)( pLp =− , we get 
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Thus, the final expression of the pressure field inside the pore fluid will be 
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In deriving the diffusion equation, I ignored the compressibility of the solid matrix with the 

assumption that the matrix is less compressible than the fluid, and thus the porosity can be 

treated as constant. More generally, the porosity change with pressure should also be 

considered, and diffusivity D  should include the compressibility of the fluid and the solid 

skeleton simultaneously, e.g., the compressibility in D  is a summation of the compressibility 

of the fluid and that of the solid matrix. 
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Figure D-2. Pore pressure distribution inside a porous medium under a 
dynamic fluid-loading condition. 

 



 

 

Appendix E 

Effective compressibility 

The compressibility of a rock sample is evaluated by the bulk-volume-normalized net 

volume change over the applied net stress. In the following analysis, I assume the rock sample 

to be homogeneous and isotropic and embedded with pore space, which has arbitrary shape 

and complexity. The pore space is saturated with fluid. 

E.1 Static effective compressibility  

Considering a fluid-saturated rock sample with bulk volume V  and porosity φ , 

placed in some hydrostatic pressurized fluid, the sample matrix will subsequently shrink and 

additional fluid will also be introduced into the pore space to balance the pressure gradient 

inside and outside the sample. The solid matrix and the pore fluid endure equivalent pressure. 

In rock-physics language, this configuration is called the iso-stress condition, and the 

corresponding bulk modulus of the rock (including the pore fluid) is called the Reuss lower-

bound bulk modulus. The compressibility of the sample under such a stress condition is 

evaluated by the ratio of the net volume change of the sample and the net pressure applied 

over the sample body. The net volume change of the sample consists of two contributions, the 

volume change of the matrix and the extra amount of fluid accumulated in the pore space. 

Thereafter the bulk compressibility could be superposed from two different experiments. One 

experiment holds the pore pressure constant and applies stress to the solid matrix; this is the 

so-called drained state and the acquired compressibility/modulus is purely that of the rock 

frame matrix. Another experiment is to hold the stress constant and inject fluid in the pore 

space. The ratio of the change in the volume of fluid added to storage per unit bulk volume 

divided by the change in pore pressure gives the storage coefficient, a part of the 

compressibility of the rock attributed to the fluid storage in the pore space. 
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From the Reuss model, the compressibility of fluid-saturated porous materials can be 

quantified as 

 ∑=
i

i

MM
ϕ1

, (E.1) 

In Eqn (E.1), M  is the effective modulus; iϕ  and iM  are the volume percentages 

and moduli of the corresponding components. 

Rewriting Eqn (E.1) in compressibility form, and for a solid-fluid two-phase system, 

we get the corresponding Reuss effective compressibility: 

 ( ) fse κφκφκ +−= 1 . (E.2) 

The parameter φ  is the volume percentage of the fluid section, or the porosity of the system.  

Equation (E.2) tells that, in an iso-stress condition, the pore fluid dominates the 

effective compressibility of fluid-saturated porous materials. Since the solid part is harder than 

the fluid—which is generally true for most sedimentary materials in nature— the iso-stress 

state yields the upper bound of effective compressibility (or the lower bound of effective bulk 

modulus) of porous materials. For porous materials with extremely low porosity, the effective 

compressibility of the material therefore is controlled mainly by the solid matrix, because the 

contribution from the pore fluid part is small and can be neglected.  

E.2 Dynamic effective compressibility 

If we repeat the experiment in section E.1, but the applied pressure in the fluid is 

periodic rather than hydrostatic, the periodic pressure change causes the fluid to flow into and 

out of the sample. Under this scenario, the effective compressibility of the material can still be 

quantified by the ratio of the net volumetric strain to the corresponding stress. The net volume 

change consists of a combination of the change in the solid matrix and the extra amount of 

fluid flowing in and out the pore structure.  

Hence, the effective compressibility of the sample, according to the definition of 

compressibility, will be, 
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s
e Δ
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where sV  is the bulk volume of the sample. mVΔ  is the volume change of the matrix (wet in 

this case), and fVΔ  is the volume change due to the extra fluid flowing into and out of the 

pore space; pΔ  is the pressure applied on the sample, which is equivalent to the 0p  in Eqn 

(D.26).  

The volume change of the sample matrix can be derived according to the definition of 

the compressibility, with the compressibility a required known property of the solid matrix. 

However, because the sample is saturated and the stress working on the matrix is periodic 

rather than static, the compressibility of the matrix in this state is not simply the dry-frame 

compressibility. Here I write the compressibility of the matrix as uκ , which is defined as the 

reciprocal of the undrained bulk modulus or Gassmann wet frame bulk modulus for fluid-

saturated porous materials; I investigate this quantity in Chapter 5 and the way to quantify it 

experimentally. Hence, mVΔ  can be expressed as 

 0pVV sum κ−=Δ . (E.4) 

The net volume change of the pore fluid is equal to the amount of fluid flowing into and out of 

the pore space driven by the periodically changing pressure. Because the fluid pressure profile 

inside the sample is a function of position Eqn (D.26), a volume integral is required to 

quantify the total amount of fluid involved in the flow. Since the sample has a cross-sectional 

area A  in the direction that is orthogonal to the pressure gradient, the total volume of the fluid 

involved in the flow can be written as 

 dxAxpV ff )(∫−=Δ κφ . (E.5) 

In our particular case, the samples I measured are cylindrical core plugs. To satisfy 1D flow, I 

sealed the sample side surface and left only the two ends open (Figure E-1). Therefore, the 

periodic flow happens only at the two ends of the samples. In this case, the flow area is 
2

0rA π= , therefore Eqn (E.5) can be written as 
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 dxrxpV ff
2

0)( πκφ∫−=Δ . (E.6) 

 

Figure E-1. For a porous sample with cylindrical shape and side surface being 
sealed, the fluid flow happens only at the two open ends. 

Because the flow happens symmetrically on the two ends of the sample, the total 

amount of the fluid flowing in or out the sample will be 

 ∫∫ −=−=Δ dxxprdVxpV fff )()( 2
0 κφπκφ . (E.7) 

Substituting Eqn (E.4) and (E.7) into (E.3), we have 
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Replacing 0p  with Eqn (D.26) and sV  with Lr2
02π  in Eqn (E.8), we have 
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Ignoring the details of the derivation, we get the final expression of the effective 

compressibility of a fluid-saturated sample under dynamic loading: 

2r0

2L 
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Appendix F 

Crossover frequency 

For a given sample with fixed flow properties, a critical frequency exists, below which 

the pore pressure will partially or maybe fully equilibrate. This critical frequency can be 

quantified by setting the second derivative of the effective compressibility with respect to 

frequency equal to zero, 
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In equation (F.2), the parameter uκ  is frequency independent; hence, this equation can be 

rewritten as 
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To simplify the derivation, we apply three auxiliary parameters, Χ , Υ  and Ζ , which are 

defined by 
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Therefore, we can simplify Eqn (F.3) as 
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Parameter α  in equation (F.3) is the only depending parameter on frequency, and its first 

derivative with respect to frequency is 
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The first derivative of Χ , Υ  and Ζ  to frequency are  
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The second derivative of Χ , Υ  and Ζ  to frequency are 
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Substituting the series equations (F.6) to (F.11) into (F.4) and ignoring the tedious 

mathematics we get 
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Replacing Χ  and Υ  with their corresponding expression in equation (F.12) we can solve for 

the critical frequency. 

In the high-frequency range, the system has no time to relax; therefore, nonlinear 

effects might influence the volume change of the solid matrix. Meanwhile, the inertial effect 

on the fluid, which increases with frequency, will also affect the fluid flow. All of these issues 

may complicate the transient flow phenomena. 



 

 

Appendix G 

Permeability estimation 

It is difficult to get an explicit expression of permeability from Eqn (4.2),  
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Hence we will rely on a numerical procedure (Matlab subroutine) to search for the optimal 

permeability by forcing the calculated eκ  to match the DARS drained compressibility, dκ .  

The procedure follows:  

(1) Give an initial guess of permeability 

(2) Calculate eκ with Eqn (4.2).  

(3) Compare eκ  with DARS drained compressibility, dκ , if the match is in 0.1%, 

then stop the search and the current permeability will be the final solution. Otherwise 

go to step 4. 

(4) Compare eκ  and dκ .  

(4a) If eκ  > dκ , the permeability is overestimated and it will be scaled down 

by 1% of the difference between eκ  and dκ . Then repeat step (3) and (4a) 

till find the optimal solution of permeability.  

(4b) If eκ  < dκ , the permeability is underestimated and will be scaled up by 

1% of the difference between eκ  and dκ . Repeat step (3) and (4b) till find 

the final solution of permeability. 

The reason I scaled the step size of the permeability change in the searching by 1% of 

the difference between eκ  and dκ  in each iteration is due to two considerations: firstly, the 
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numerical search converges fast because the step size of the change in permeability is 

relatively flexible and can be large in the early iterations; secondly, high accuracy in 

permeability estimate because the step size of the permeability change will be very fine when 

eκ  getting closer and closer to dκ . 

The accuracy of the estimated permeability is controlled by two constrains, the 

tolerance of the difference between eκ  and dκ , and the step size of the permeability change. 

Of course higher constrain yields better accuracy; however, the sacrifice is computing time. I 

tried to raise the two constrains by an order: 0.01% tolerance of the difference between eκ  

and dκ , and the step size of permeability change is scaled by 0.1% of the difference between 

eκ  and dκ . The accuracy in the permeability estimate is enhanced only by 0.3% with the cost 

of more than tens of times increase of iterations. The current setup of the two constrains is 

sufficient for our requirements. 
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