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Abstract

The essential part of “reservoir geophysics” is to be able to obtain high resolution im-
ages of small scale structures in a heterogeneous medium. Diffraction tomography has
a resolution comparable to the wavelength and has been studied extensively within
the first Born or Rvtov approximations. These approximations linearized the problem
and lend to the computational advantages of the Fourier transformation. Computa-
tional efficiency and algorithmic simplicity. however, are accompanied by limitations
on the ranges of validity for these methods. The objective of this study is to develop
tomographic inversion algorithms that preserve the efficiency and simplicity of the
linear approximations but have less limitation in real applications where media are
not just slightly inhomogeneous. By expressing the scattering equations in operator
forms, an array of inversion methods are derived. The essence of these methods is
renormalization or rescaling, i.e. the effects of strong and multiple scattering are
taken into account by modifying or rescaling the primary wave field.

The developed methods can be classified as renormalizations in the spatial domain.
wavenumber domain, and wave asymptotic domain where spatial and wavenumber
domains are superimposed. The spatial domain renormalization technique is used to
effectively sum the divergent terms of the Born-Neumann expansion and to decompose
the original nonlinear problem into two cascaded linear problems. The Wavenumber
domain renormalization is used to obtain individual diffraction projections indepen-
dently by wavefield backpropagation; the inverse problem is then solved by assembling
the individual projections and performing inverse Fourier transform. With the wave
asymptotic renormalization, the rescaled scattered field is related to the spectrum of

the inhomogeneity function via the asymptotic Fourier transform.

v
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When the distribution of the small scale inhomogeneities is too complicated to
resolve, they may be treated as random. Beyond the conventional approaches of
the effective medium. the full wave representation in random media is used to invert
second order statistical properties of the medium. The estimated statistical quantities
may be used to identify. for example, fracture scales and orientations, or to facilitate

other reservoir simulation modalities.
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Chapter 1
Introduction

The subject of this thesis is to understand how the complexity of the earth’s subsurface
is transferred to the scattered acoustic wavefield and, vice versa, whether the recorded
scattered wavefield is capable of describing the medium'’s heterogeneity. Given the
variety of scales and strong inhomogeneity of the earth’s medium encountered in
geophysics. [ believe it is necessary to use efficient approximations to study wave
phenomena. For inverse scattering problems the approximate methods are especially
appropriate.

Wave scattering problems deal with the phenomena that occur when a specified
wave, assuming a source whose field “when isolated” is known, interacts with the
scatterers or the inhomogeneities of finite dimensions in a medium. As one illustra-
tion, an electromagnetic “primary wave” induces charges and currents in the objects.
and these generate the “secondary waves” that constitute the scattered field. The
scattered field includes the waves reflected by the illuminated side of the objects.
the waves which cancel the incident field in the shadow zone. as well as the waves
diffracted into the shadow zone. It is convenient to express the total field as a sum
of incident and scattered fields in order to obtain the integral representation which is
essential in inverse scattering problems. Because a background medium and hetero-
geneity relative to the background are involved, scattering theory can be viewed as a
branch of perturbation theory.

Inverse scattering poses the problem the other way around. It determines the
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1.1  Goal of the thesis 2

sources of the scattered fields or medium properties by analyzing the measured scat-
tered field, i.e., the transmissions, reflections and diffractions of a probing wave prop-
agating through the media. The inverse scattering problem has a wide range of

applications in geophysics and other imaging sciences.

1.1 Goal of the thesis

Given the variety of scales and strong inhomogeneity of the earth’s medium. travel-
time tomography. diffraction tomography, and well-logs are combined to image the
subsurface. Traveltime tomography is used to image the large scale inhomogeneity
while diffraction tomography is used to the intermediate scale inhomogeneity with
traveltime tomgrams as background. For the scales too fine to image using tomog-
raphy. their statistical properties are estimated and the well log is used to condition
the probability distribution. Figure 1.1 illustrates the scales of the above mentioned
methods.

In its common form the inverse scattering problem, or diffraction tomography. is
formulated as an inversion of the Helmholtz equation with a spatially varying coeffi-
cient. Solutions to inverse scattering problems are often mathematically intractable.
The techniques for constructing solutions of inverse scattering problems have been
studied with linear approximations, such as Born! or Rytov solutions. These tech-
niques substantially simplify the inversion problem and lend themselves to the com-
putational advantages of the fast Fourier transformation. Computational efficiency

and algorithmic simplicity, however. are accompanied by limitations on the ranges

'Max Born was born in Breslau in 1882 into a Polish Jewish family. He worked in the Physics
Department at Gottingen University and later became its Director. Despite his pacifism, chronic
asthma and bronchial problems, he was required to serve in the German army on no fewer than 3
occasions. He prudently left Germany for Cambridge in 1933 in order to avoid the Nazi scourge.
Following this, he spent a time at Bangalore University prior to settling in Edinburgh as Tait
Professor of Natural Philosophy. He retired to a German spa town in 1953 shortly before receiving
the Nobel Prize for fundamental work on Quantum mechanics and for his statistical interpretation
of the wave function. Born also introduced a useful technique, known as the Born approximation.
for solving problems concerning the scattering of atomic particles. His tombstone bears the gnomic
inscription pg — gp = ih/2x (Encyclopedia Britannica, Internet edition, 1997).
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1.1 Goal of the thesis 3
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Figure 1.1: Multi scales imaging of the earth's medium: The left panel is the seismic
profile corresponding to the area of the crosswell imaging; the middle left panel is a
traveltime tomogram; the middle right panel a diffraction tomogram; and the right panel
is the well-log and a profile from the diffraction tomogram.

of validity for these methods. since they may not provide sufficiently accurate repre-
sentations of the underlying physics. The goal in this thesis is to develop diffraction
tomographic inversion algorithms that preserve the efficiency and simplicity of con-
ventional diffraction tomography. but have fewer limitations in real applications where
media are not just slightly inhomogeneous. By expressing the scattering equations
into operator forms. new insight into the inversion problem is obtained. This leads to
various approximations to the scattering operators. resulting in an array of inversion
methods.

It has become a fundamental task. in geophysical exploration. to predict and
monitor the fluid flow in the subsurface. The techniques developed in this thesis
can be used to image fine scale structures in the subsurface with a higher degree of
resolution and accuracy which are impossible to achieve using traditional methods.

While the algorithms are formulated for seismic (scalar and tensor) waves. they are
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1.2 Previous work 4

equally applicable to electromagnetic waves. This is significant. since electromagnetic
methods are becoming progressively popular in the characterization subsurface fluids

as more sophisticated instruments are developed.

1.2 Previous work

The work of Mueller et al. (1979) was responsible for focusing the interest of many
researchers on diffraction tomography, although the technique can be traced back to
the classic paper by Wolf (1969). Diffraction tomography was introduced to geophys-
ical application by Devaney (1984), and reformulated for cylindrical incident waves
by Harris (1987) and Wu et al. (1987). In the early treatment of diffraction tomog-
raphy. Born and Rytov approximations were applied for constant background media.
The inversion algorithms were based on the so-called generalized projection-slice the-
orem that holds within these approximations (Muller, et. al., 1979: Devaney, 1982.
1985. 1986). The spectrum of heterogeneity can be related to the measurement of the
acoustic field scattered from it by the Fourier ? transform. Its application is successful
only if the scattering is weak, e.g., the heterogeneities are small deviations from the
background or if the correlation lengths of the deviations are small compared to a
wavelength. The small perturbation approximations that are used for developing the
diffraction tomography algorithms have been discussed, e.g., by Ishimaru (1978).

A discussion of the theories of the Born and the Rytov approximations was pre-
sented by Chernov (1960). A comparison of Born and Rytov approximations is pre-
sented in Kak and Slaney (1988). The issues relating to uniqueness and stability of
inverse scattering solutions are addressed in Backus and Gilbert (1968) and Devaney
(1989). The mathematics of solving integral equations for inverse scattering problems
is described in Colton (1983).

2 Joseph Fourier was born in 1768 and became a personal friend of Napoleon Bonaparte. accom-
panying him on his invasion of Egypt in 1788. The desert heat made a lasting impression on Fourier.
who believed it to be the ideal climate. Consequently, he swaddled himself in thick clothing and
worked in over-heated rooms. The series which bears his name was formulated in connection with
his studies of heat conduction in 1822. He died in 1830 (Encyclopedia Britannica. Internet edition.
1997).
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1.2 Previous work 5

The filtered back-propagation algorithm for diffraction tomography was first ad-
vanced by Devaney (1982). More recently, Kak and Slaney (1987) showed that by
using frequency domain interpolation followed by direct Fourier inversion. reconstruc-
tions of quality comparable to that produced by the filtered back-propagation algo-
rithm can be obtained. Interpolation based algorithms were first studied by Mueller
et al.. (1979). An extensive review is given by Kak and Slaney (1987).

Due to the limitations of conventional diffraction tomography, recent works have
attempted to extend the applicability and interpretation of these methods to include
stronger scattering effects. One approach bases reconstruction algorithms on the dis-
torted wave Born and Rytov approximations, in which it is assumed that a prior
estimate for all but a weakly scattered component of the heterogeneity is available.
for example. for small heterogeneities of velocities superimposed on large 1D stratified
variation. Various signal processing scenarios based on a layered background model
have been extensively studied. One such method uses slant stacks to pre-process and
map tomographic data with a layered background into an equivalent constant refer-
ence background data set, and then applies the conventional diffraction tomography
algorithm to the pre-processed data (Devaney and Zhang, 1991). Another applies
a WKBJ solution for the Green’s ? function to simplify propagation, thereby ex-
tending the constant background back-propagation algorithm to smooth background
variations (Huan and Wu, 1992; Williamson, 1993). Yet another decomposes the
wave fields of the layered host medium into vertical eigenstates and numerically re-
formulates the problem (Pai, 1990; Dickens. 1994: Harris and Wang, 1996). These

3George Green was born near Nottingham in 1793 and is a remarkable example of being a self-
taught mathematician. After attending school for one year, he left at the age of nine to work in his
father’s bakery and later became a miller. No firm details about his education or development exist
until he reached the age of 35, when he published (at his own expense) ‘An Essay on the Application
of Mathematical Analysis to the Theories of Electricity and Magnetism’. This remarkable work
introduced the theorems bearing Green’s name, the technique of using Green’s functions to solve
nonhomogeneous boundary value problems, and also established the concept of the 'potential” in
electricity and magnetism. At the age of 40, he went to Cambridge to obtain a formal mathematical
training, later to become a Fellow of Caius College. Despite siring 7 children, he never married the
mother, possibly to enable his election to a Fellowship at Caius (which required the recipient to
be celibate). Green died of influenza at his mill in Nottingham in 1841 (Encyclopedia Britannica.
[nternet edition. 1997).
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1.3 Organization 6

algorithms offer different approaches either in data space or model space and indicate
that more and more effort is being made to utilize diffraction tomography in practical
applications.

Besides the linearized approaches, there are also well developed nonlincar meth-
ods to the solution of the inverse scattering problem. Iterative diffraction tomography
methods which calculate the higher order terms in the Born series (Vainberg, 1988)
and the nonlinear solver using base functions (Chew, 1990. Thompson, 1994) are ex-
amples. Although those nonlinear methods have not entered geophysical application
in a wide sense. a generalized least-square method is gaining popularity for surface
seismic data (Tarantola, 1984). However, the application of these nonlinear meth-
ods to practical problems requires extremely intensive computation. which is not vet

practical for real problems.

1.3 Organization

The mathematical methods used to solve inverse scattering problems can be clas-
sified according to the frequency of the wave and the scale of the detectable inho-
mogeneity. The parameter ka distinguishes different theoretical regimes. where k is
the wavenumber and a is a characteristic dimension of the scatterer. The so-called
Rayleigh' scattering and high frequency scattering correspond to the regime where
ka << 1 and ka >> 1. These two regimes allow approximations to be made which
render the inversion of the scattered field more tractable. For the case of ka << 1.
one can make assumptions about the nature of the field within the inhomogeneous
region, e.g. that the scattering is weak and the phase of the field inside the scattering
medium is not too different from what would occur if no scatterer were present. When
ka >> 1 one can adopt wave asymptotics, or ray-like models. The reconstruction

methods developed in this thesis follow this classification and are presented in the

4 John William Stutt. 3rd. Lord Rayleigh was born in 1842. He became a student of Routh at
Cambridge, but after studying at university he returned to his country estate to perform experiments
and formulate theories. Among these were his explanation of why the sky is blue and the discovery
of the gas Argon. for which he won the Nobel Prize for physics in 1904 (Encyclopedia Britannica.
Internet edition, 1997).
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1.3 Organization 7

four subsequent chapters.

1.3.1 Wave scattering operators, imaging, and resolution

Following this introduction, Chapter 2 briefly describes the mathematics of the scat-
tering theory and defines the symbols and terminology used throughout the thesis.
The scattering integral equations are expressed into operator forms. These scatter-
ing operators can be formally analyzed and lead to various nonlinear approximations
and an array of tomographic inversion methods for complex media. The equations de-
scribing the resolving power of the resultant inverse operators are formulated. and the
analysis is consistent with the assessment that diffraction tomography has a resolution
comparable to the wavelength of the probing wavefield (transmission tomography has

a resolution comparable to the Fresnel * zone).

1.3.2 Inversion of strong scattering using renormalizations

To extend the first Born approximation in real space, Chapter 3 utilizes the fact that
the dominant contribution to the scattering integral comes from the points in the
vicinity of singularity of the Green's function. While the total field is approximated
bv the incident field in the first Born approximation, in this chapter. the total field is
replaced by the renormalized or rescaled incident field. The advantage of the approach
is that analytic Green’s functions can be used in the computation. The nonlinear
inverse problem is then solved in two steps, in each of which a linear problem is
solved.

In the spectrum domain, the total field in the integral kernel is estimated by back-
propagating the field at the boundary, in an attempt to overcome the limitations of
the linearized solutions. Individual diffracted projections for a fixed incident wave
vector, which is independent from other projections with different incident wave vec-

tor, is obtained by solving a Toeplitz recursive system. Once the spectrum of the

5 Augustin Jean Fresnel, the French physicist, was born in 1788. Before embarking on his studies
in optics he trained as a mathematician and civil engineer. While being responsible for the first
mathematical treatment of diffraction he also concerned himself with engineering problems such as
design of low mass lenses for use in lighthouses, (Encyclopedia Britannica, Internet edition. 1997).
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1.3 Organization 8

perturbation function is obtained, the perturbation function representing medium
inhomogeneity is reconstructed by the inverse Fourier transformation.

A stratified background of the media may be determined from well logs or trans-
mission tomography and, according to the normal mode solution to the wave equation.
the determined background can be used to rescale the incident field in order to main-
tain the perturbation small relative to the background. The perturbation function
in each layer is sorted out from spatial Fourier spectrum of the scattered fields using

the selection rule described in the last section of chapter 3.

1.3.3 Inversion of strong scattering using wave asymptotics

Chapter 4 describes wave phenomena using a ray model and the incident field is
renormalized to a variable background medium. The Green’s function is constructed
using traveltimes from raytracing according to Hamilton's principle and the ampli-
tude from the paraxial approximation. In the neighborhood of caustics, where the
formal asymptotic solution does not exist. one may find the asvmptotic solution in
phase space and then return to real space (Maslov, 1988). The inverse problem is re-
formulated according to pseudodifferential operator theory. The resultant algorithm
is similar to that of the Kirchoff migration, which is simple to implement. The syn-
thetic and field data inversions demonstrate that the method is flexible and effective

in applications to real problems.®

1.3.4 Inversion of random media

The basic difficulty of the inverse problem is to determine unknown Earth properties
by analyzing the waves propagating through the media. When the distribution of
the small scale inhomogeneities is too complicated to describe deterministically. we
may treat them as random. Although Earth science data sets are not random usu-

ally, they are merely complicated and, essentially, deterministic. Nevertheless. the

6Sir William Roman Hamilton had in 1827 the remarkable distinction of being appointed Professor
of Astronomy at Trinity College, Dublin, while he was still an undergraduate there (Encyclopedia
Britannica, Internet edition, 1997).
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1.3 Organization 9

random model works in practice and is an effective tool. Chapter 5 does not consider
conventional approaches of effective medium, but uses the full wave representations
of random media to invert the second order statistical properties of the media. The
diffraction tomographic inversion procedure is used to recover the correlations of het-
erogeneity in the complex media. The resolved statistical quantities can be used to
identify, e.g., fracture scales and orientations or to facilitate geostatistical simulations.

Numerical results based on the approach are presented for various situations en-
countered in practice. Notice that the recovered correlation function of the medium is
multi-dimensional and may not necessary be a simple analytic form. such as Gaussian’

as often assumed in geostatistical simulations.

"Karl Friedrich Gauss (1777-1853), was a German mathematician, astronomer and all round
genius. His father was a bricklayer and expected Gauss to follow the same trade. His school
teachers, however spotted his precocious talents and urged him to attend the university. For his
doctoral thesis, he proved the fundamental theory of algebra and was also responsible for prime
number theorem and the foundations of non-Euclidean geometry. His abilities were not confined to
just mathematics. He designed many surveying instruments, was one of the inventors the electric
telegraph and was the first to use paraxial ray approximation in optics. He was appointed professor
of astronomy at Gottingen at the age of 30, but strongly discouraged students from attending his
lectures. He published surprisingly little of his work, preferring to keep most of it in his drawers.
Jacobi recounts visiting Gauss on a number of occasions to show him his latest work, only to have
Gauss fish out some papers containing the same results (Encyclopedia Britannica, Internet edition.
1997).
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Chapter 2

Wave Scattering Operators,

Imaging, and Resolution

The essence of inverse scattering or diffraction tomography is to relate scattered
wavefields to inhomogeneity or perturbations of the medium. By expressing the scat-
tering integral equations in operator forms, new insight into the inversion problem is
obtained. This approach leads to an array of tomographic inversion methods devel-
oped in subsequent chapters of the thesis. This chapter discusses scattering theory.
diffraction tomography, and the resolution of the imaging operators. The first section
describes the theory and formalism of wave scattering and defines the notation and
terminology used throughout the thesis. The second section presents the scattering
operators corresponding to various approximations to the scattering integral. The

final section assesses the resolving power of the scattering operators.

2.1 Theory of wave scattering

Although scattering problems are most frequently formulated in the form of boundary-
value problems for the wave or Helmholtz equations. it is also customary and useful
to employ representation theory of wave fields to reformulate the problem as integrals
over the scattering volume. These integral representations are central tools in inverse

scattering.

10
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2.1 Theory of wave scattering 11

2.1.1 Scalar waves

Let ¢(x) denote the local velocity of propagation. The scalar wave equation for a

fixed source position s can be written as,

Cz(lx)afu(x, s.t) — uj(x.s,t) = f(s, 1), (2.1)
where
x.t = spatial and time coordinates respectively.
u = scalar wave field,
c(x) = local wave propagation velocity,
(-),, = second order spatial partial derivative.
0? = second order time derivative,
f(s.t) = volume source density function.

In (2.1) the summation is implied over repeated indices and j = 1.2.3.

One can decompose the medium property, e.g. local velocity. as components of
the background and perturbation, i.e., 1/c?(x) = l/co( x)(1—o(x)), where cg(x) is the
background velocity and o(x) = (1 — c3(x)/c*(x)) with a bounded support is called
the object function and represents 1nhomogene1ty or perturbation of the subsurface
medium. One can also decompose the total wave field u as a summation of the
background field ug and scattered field u®. They correspond to the wavefield in a

medium without and with the presence of inhomogeneity, i.e.,
u(x,s.t) = ug(x,s,t) + u°(x,s. t).

The scattered field u® satisfies the equation (see appendix A):

o
o
—

Cg(lx)afw(x,s, t) — u’),(x,s.t) = c{,(( )) dPu(x.s, t). (2.
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2.1 Theory of wave scattering 12

The term on the right hand of equation (2.2) may be interpreted as equivalent sources
resulting from interactions between the wave field u and inhomogeneity of the medium
o(x).

Let G = G(r,x,t) be the Green’'s function of (2.2) which propagates waves from

point x to receiver location r. G satisfies the following equation:

1

cj(z)

#G -G, =06(t)d(x —r), (2.3)

where G ,, denotes G /&z,. Utilizing Green’s theorem (Aki and Richards. 1980).

one obtains

. o(x) .

u’(r.s, t) =/ 2’—)dfu(x. s, t) ¥, G(r.x. t)dx, (2.4)
v 65(x)

which is the integral representation of scattered fields. The symbol %, is used to

denote the convolution with time. The integration domain 1" is the support of o(r)

and is called scattering volume. The frequency domain equation (2.4) can be written

as a Fredholm integral equation of the first kind:

| %)
ot
—

u(r,s.w) = —-/ m(x)u(x,s.w)G(r, x. w)dx. (2.
v

where m(x) = w?0(x)/c3(x) is denoted as the reduced model parameter and w is
angular frequency. The physical interpretation of equation (2.5) is depicted in figure

2.1

2.1.2 Elastic waves

As in the case of scalar waves, we convert the differential wave equation into its

integral representation. The elastic wave equation can be written as

pa;zu][ - (ClmpunP'Q).m = f] ) (2.6)
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2.1 Theory of wave scattering 13

scattered waves
r

incident wave
8

small scale inhomogeneity
Figure 2.1: An inhomogeneity is characterized by a distribution of velocity perturbation

in the host medium. An incident wave is launched from a source location s towards the
inhomogeneity centered at x from which it is scattered to receiver locations .

where

f, = the volume source density function,
p = p(x), the density.
Clmpg = Cimpe(X), elastic constants of the medium.

uy = uj(x.t), l-component of the wave field due to f,.

For an isotropic solid. the general tensor ¢;p,;,, is simplified as

o
~1
e

Clmpq = /\6lm‘5pq + u(dlpqu + (5lq6mp)v (-

where A and p are the two Lamé constants and ¢, is the Kronecker symbol. Suppose

the density and Lamé constants can be written as
p=p+p. A=A+ XN, p=p 4+

where p% A%, and p° are the background density and Lamé constants. and p'. \'. and

/' their perturbations. As in the case of scalar waves, the scattered field uj, is the
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2.1 Theory of wave scattering 14

solution of the equation

032 0 2 ! .
P at u;t - (Clmpqu;p,q).m = —plat Uji + (Clmpunqu)Jn ' (')'8)

Let Gy = Gr(r, x.t) be Green's tensor that satisfies the equation:
PGt = (CrpgGrpa).m = Suid(1)S(r — x), (2.9)

and utilizing Betti’s Theorem (the vector equivalent of Green’s Theorem for scalars).

the integral representation of the scattered wave field uj, can be obtained as
ujp(s.r.t) = — / [P 07wy . G + Cmpqtip.q *t Gri.m)dx. (2.10)
v

where Gy, is Green's function from point x to receiver location r. Gk[.m is the spatial
derivative of G1;. Notice that the second term on the right is obtained via integrating
by parts and the boundary term vanishes because the perturbations ¢, are zero
on the boundary 9V (see Appendix B). Again, the symbol *, is used to denote the

convolution over time. In the frequency domain. (2.10) resumes following form
uSy(s.Tow) = /‘ 1702, Cit = ChnpgttypaGrtmldx. (2.11)

2.1.3 Wave scattering formalism

One might consider the measured wave field u as the elements of the data matrix
D. The model parameters m of the media can be represented as elements of model
parameter matrix M. The data and model parameter matrices are related by the

following implicit equation
f(D.M) =0,

where f is a functional relating the data set D to model parameter set M. Obviously.
for a forward problem, functional f maps a set of model parameters onto the set of

data. provided that f and the parameter set are known. For an inverse probleni. on
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2.1 Theory of wave scattering 15

the other hand. f constructs the parameter set from the data set. provided f and the

data set are known. These mappings are shown schematically in figure 2.2.

forward mapping

e

£(D, M)

-\_‘___’/

inverse mapping

Parameter set M Data set D

Figure 2.2: lllustrating the forward and inverse scattering processes as mappings between
parameter and data sets M and D via functional f(D, M).

In order to get an explicit description of functional f. we write integral equa-
tion (2.5) or (2.11) into operator forms. For example, equation (2.3) in the interior

scattering volume can be written as

u(x.x') = ug(x,x") +/ u(y. x')m(y)G(x,y)dy. (2.12)
v

in which u = ug + u® is used. The source location s and receiver location r are
generalized to any position within the domain V'. The variable w is omitted without
confusion. Within the domain V', the wave field u(x,x’) has two indices, one associ-
ated with the observer x and the other one associated with the source x’. i.e.. u may

be regarded as a matrix. Similarly, G is also a matrix, and m(y) is a diagonal matrix.

INote that if these general concepts are related to a real scattering experiment. then the com-
plicated relationship between the mapping and the respective sets soon becomes apparent. The
parameter set is unlikely to represent a complete description of the medium, being deficient of spe-
cific parameters which may contribute to the scattered field, or of geometrical constraints which
modify the effect these parameters may have. This limitation is due to the facts that inverse prob-
lems are generally ill-posed and therefore the noise affecting the data may have produced arbitrarily
large errors in the solution. As a consequence one can only estimate an approximated solution.
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2.1 Theory of wave scattering 16

Consequently. equation (2.12) may be written in operator form:

U =U +GMU. (2.13)
where the calligraphic symbols
U = operator corresponding to total field w.
U, = operator corresponding to incident field field uo.
G = operator corresponding to Green's function G.
M = operator corresponding to object function m.

The ordering of the operation is important and cannot be altered at will. the operator
equation (2.13) is a form independent of linear vector spaces. which is valid regardless
of. e.g.. whether «.G and M are in spatial or wavenumber domain representation.

Using operator equation (2.13). the functional f can be expressed explicitly as
f(D.M)=D—-GgMU =0. (2.14)

where D = U — Uy. Furthermore. one can find the solution to equation (2.13) in the

operator sense. By solving for U, one obtains

U= (Z-GM) 'U. (2.15)
By substituting equation (2.15) back into (2.13), one has
U=Uy+GM(IT - GM) ' Up. (2.16)

From the structure of equation (2.16), we can see that the scattered field which is
the second term on the right hand of equation (2.16) is nonlinearly dependent on

the operator M. The operator (Z — GM)™! is accounts to multiple scattering. This
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2.2 Scattering operators 17

becomes obvious if it is expanded in a geometrical series, i.e.

[V
—
-1
—

U=U +GMU + GMGMUp + ... (2.

The n-th term in the above series corresponds to the incident field being scattered n
times. Although the above operator equations do not solve new problems. they pro-
vide new insights to the scattering equation in coordinate representation and facilitate

solving inverse scattering problems.

2.2 Scattering operators

Obviously. the relation (2.14) is nonlinear and approximations have to be made in
order to apply to inverse problems. For the purpose of implementation. equation

(2.14) can be written as the following matrix form:
d - Am = 0.

where d and m are the vectors of data (scattered field) and the model parame-
ter (inhomogeneity of the media) respectively. The matrix A is the data kernel 2
of equation (2.13) and called the scattering operator. In the following sections we
present the various scattering operators resulting from the approximations to oper-
ator equation (2.14) from the perspective of linearization either with respect to the

model parameters or data.

2.2.1 Single scattering

The series (2.17) may or may not be convergent depending on the strength and size
of the inhomogeneity. A homogeneous background medium is considered in the fol-

lowing. Under favorable conditions (Kelley, 1958), the series (2.17) can be truncated

2In the theory of integral equations, the data kernel is the kernel function of a integral equation.
Here. d — Am is analogy to d(y) = [ A(y, x)m(x)dx (see equation (2.12)).
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2.2 Scattering operators 18

and considered as single scattering:
U = Uy + GMU, (2.18)
or in matrix form
d-Am=0, (2.19)

where data d = u — uy and m are the model parameters. The matrix A4,. the data
kernel of (2.18) is called the single scattering operator which relates the scattered field
and model parameters linearly. The equation (2.18) constitutes the first-order Born
approximation or single scattering approximation, one of the most widely used solu-
tions for inverse scattering problems. The relation (2.19) is linear in both data and
model parameters. It can be evaluated with a Fourier transformation. We summarize
the Born or Rytov® approximations and diffraction tomography in Appendix A. As-
suming single scattering, conventional diffraction tomographic inversion requires that
the perturbation function to the background be small. This is a strong restriction in

applications.

2.2.2 Renormalized scattering

From equation (2.15), one can see that the total field operator is a product of the
multiple scattering operator and incident field operator. Based on equation (2.13).
we propose an approximation (see Chapter 3), in which the unknown total field is

simplified as a modified incident field, i.e.,

u(x) = uq(x) = [(x)ue(x) (2.20)

3During the course of his investigations into the diffraction of light by ultrasound, Rytov employed
an approximation which is now frequently used in many scattering problems. Although the Rytov
approximation results in a simplification of the wave equation and leads to simple solutions of the
direct scattering problem, it is also another of those rare schemes which facilitates an inverse solution
in closed form.
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2.2 Scattering operators 19

where u is the total wave field, ug is the incident field, and ['(x) is the Rayleigh

normalization factor accounting for multiple scattering effects, i.e..
Mx)=(1- / m(x')G(x,x)dx')~L. (2.21)
v

Substituting the approximation U =~ U, where U, is an operator corresponding to
the approximated total wave field ., into the right hand of the operator equation
(2.13). one has

U=U +GMU,. (2.22)
Equation (2.20) can also be rearranged into
U=U + g./\;in. (2.23)

where M is the operator corresponding to the combined function I'(x)m(x). There-
fore, equation (2.19) can still be applied in this approximation but for the combined

parameters m = [(x)m(x), i.e.
d-Am=0, (2.24)

Equation (2.24) is linear for data but still nonlinear in the model parameters through
the parameter m. We can use the procedure of single scattering to invert m first and

solve m(x) using equation (2.21) (see Chapter 3).

2.2.3 Wave field back-propagation

In the above sections we approximate the unknown total field in the spatial domain.
Now, we want to estimate the total field in the data kernel from the spectrum of
the observation. If we replace unknown U on the right hand equation (2.13) by the

Fourier extrapolation of the observed wave field, one can obtain a similar result to
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2.2 Scattering operators 20

that of the Ravleigh renormalization (see Chapter 3). That is

N
[ V]
wn

U = Uy + GMU,, (2.

where the operator . corresponding to the total wave field on the right hand of
equation (2.12). is replaced by the operator U, corresponding to the extrapolated

wave field u, from the observed field at the boundary:
ue(x. kg) = / u(ks, ky)eCo=Fe3dk, (2.26)
J D,

where u(ks, k,) is the spectrum of the received wavefield, &, and k, are the wavenum-
bers along the receiver array and source array respectively, v, = [k3 — lcg, and Dy is
the integrating domain defined by the receiver aperture. This extrapolation assumes
a constant velocity, as in the case of the Fourier phase migration. Under this scenario.

the corresponding matrix equation is:
d-Am=20. (2.27)

where the matrix A, is the data kernel of equation (2.25) and is called the extrap-
olated scattering operator. Equation (2.27) is linear for the model parameters but
still nonlinear in the data through operator A,. The diffraction projections of m
are obtained by solving the above system numerically. The model parameter m is

obtained by taking the inverse Fourier transforms of the projections (Chapter 3).

2.2.4 Distorted single scattering

In the distorted single scattering, the incident field uq of a homogeneous background
is replaced by the distorted field of a variable background. The background medium
is chosen such that the strength of inhomogeneity against the variable background is

small. Therefore, the Born series is insured to converge rapidly. The corresponding
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2.3 Resolution of the scattering operators 21

operator equation can be written as
U =Uy + GaSMU, (2.28)

where U is the operator corresponding to total wave field u. Uy is the operator cor-
responding to the background field, G4 is the operator corresponding to the Green's
function of variable background medium, and dM is used to denote the operator
corresponding to the model parameter perturbation with regard to the variable back-
ground medium. For inverse scattering problems. M is unknown and to be sought.

As in the case of the Born approximation, one may replace & by U, on the right

hand of equation (2.28). i.e..
U=U;+ GaOMU,. (2.29)

This approximation is called the distorted wave approximation and the corresponding

matrix equation is:
d - Aym =0, (2.30)

where data d = u — u, are scattered fields and the matrix Ay is the data kernel
of equation (2.29). Equation (2.30) is linear both in data d and dm. but matrix
A, depends on prior knowledge of the variable background medium. This approach
is appropriate in the case of a high frequency scattering regime where the Green's
function of variable background medium can be constructed by the WKB ray method

(see Chapter 4). The matrix Ay is called the asymptotic scattering operator.

2.3 Resolution of the scattering operators

The spatial resolution is the detection limit of the size of heterogeneities in an artifact
free image, which is determined by the aperture of the source, the focal spot. and the
aperture of the receivers. Recall that, for traveltime imaging, the lateral resolution

of the slowness image is proportional to the first Fresnel zone (Claerbout. 1984)
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depicted in figure 2.3 (Woodward, 1989).  The goal of diffraction tomography is

source receiver

reflection
wave patph

/ \ \.\\.\
AT
\ \_\22_ Zl/{_,é/ Lf/}\/ } |

\\__//7 7%/ gy

Figure 2.3: The lateral resolution of traveltime tomography is in the order of the first
Fresnel zone. Left panel shows the estimation of the Fresnel zone: w ~ VdA, since
d? + w? = (d + 0.5\)%. S and R are source and receiver locations respectively, d is the
source-receiver separation, and ) is the dominant source wavelength. Right panel shows
the zone affecting lateral resolution of traveltime imaging.

to sample the spectrum of object function then invert it to vield the object image.
The resolution of the image is determined by the temporal bandwidth of the probing
wavefield and the spatial bandwidth of the observation system. Figure 2.4 shows a
scattering experiment and the projections in the wave number domain under the single
scattering approximation. The spatial bandwidth is achieved with the combination
of the multifrequency or multiple source-receiver views. It can be proven that the
horizontal resolution is generally proportional to the wavelength of incident waves.
and vertical resolution depends on the sampling interval of the source and receiver
apertures (see Appendix A).

In the following subsections, [ examine the resolution attainable through the scat-
tering operators obtained in the previous section by analyzing the model resolution

matrix * and the image of point targets. Some factors that affect resolution also are

‘Suppose that data d and model parameters m are related by d = Am. Model parame-
ters can be inverted as i = A~'d, or m = Rm where R = A~'A is called model resolu-
tion matrix. If R = Z, model parameters are perfectly resolved. In terms of integral operator
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Figure 2.4: Plane wave scattering (left panel) and the information it carries on the object
in the wavenumber domain (k.. k) (right panel). k, and k, are the propagation vectors
of the incident wave and scattered wave respectively.

analvzed.

2.3.1 Case of the single scattering operator

The model resolution matrix of the single scattering operator is defined as
Rb = AElAb.

Notice that A, is linear both for data and model parameters. In general. it can
be evaluated through Fourier analysis. For a two dimensional problem. the model

resolution matrix has the analytic form:
Ry = 4R ™™ K ™*sinc(KT*(x — x'))sinc(ky™(z — 2')) (2.31)

where K™ and K'™* are the wavenumber bandwidths in the horizontal and vertical
directions respectively, and function sinc(x) = sin(x)/x. In the case of the cross well
survey, K™ = ky where Ky = w/cgand K™ = 7/A, and A is the sampling interval

of the receiver aperture. One can see that to provide sufficient resolving power.

R(x.x") = [p A7y, x)A(y. x)dy.
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the bandwidth of sampled wavenumber A, and K, should overlap the wavenumber
spectrum of the heterogeneity being imaged. The resolution is approximately 1\ in

x and 0.5 in z, independent of target location.

Resolution matrix (horizontal) Resolution matrix (vertical)

x'(m)
z'(m)

0 0.2 0.4 0.6 0 0.2 04 0.6

Figure 2.5: The resolution matrices of a single scattering operator. Sampling interval along
the receiver aperture is 1 m, background velocity is 4000 m/s, and temporal frequency
of incident wave is 500 Hz. The resolution matrix in regard to horizontal and vertical
directions are displayed in the left and right panel respectively. Note that the maximum
value of the images is zoomed at 0.6 from 1 for the purpose of display.

In figure 2.5 the model resolution matrices in the horizontal and vertical directions
are displayed. One can see that the model resolution in the vertical direction is closer
to the identity matrix. Notice that the model resolution matrix only represents the
maximum resolution achievable through the scattering operator A,. The quality of
images reconstructed using diffraction tomography are also dependent on the specific
sampling geometry. The wavenumber coverage is restricted by the sampling geometry
of the survey (see appendix A). In figure 2.6, the wavenumber coverage of the crosswell
survey geometry is displayed. The left and right panels of figure 2.6 are multi-view
at a single frequency and multi-view with multi-frequency coverage respectively. The

horizontal coverage is limited and therefore horizontal resolution is reduced. The
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(a)

Figure 2.6: Fourier coverage for crosswell seismic profiling of a infinity long source and
receiver aperture. The background velocity is 3000m/sec. (a) depicts the the multi-view
coverage of a single frequency at 1000 Hz and (b) shows the multi-view coverage of the
multi-frequencies from 10 to 1000 Hz.

(a) (b)

Figure 2.7: The inversion of a diffractor model with the single scattering approximation.
Background velocity is 3500 m/s, velocity of diffractor is 5000 m/s, and temporal fre-
quency is 500 Hz. (a) depicts the model and (b) shows the first Born approximation
reconstruction from crosswell synthetic data.
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coverage can be improved by using muitiple frequencies. Figure 2.7 shows an image
of point targets at four locations, for a crosswell experiment with 128 source and
128 receivers. The pixel spacing in the image is A/4. The point target scattered data
were generated by the method of moments. As expected, the resolution is significantly

poorer in the horizontal direction because of poor coverage in K.

2.3.2 Case of the renormalized scattering operator

The analysis in the previous section is based on a linear system which results in the
single scattering approximation in a homogeneous background medium. However. if
multiple scattering is taken into account, the above analysis becomes invalid because
a nonlinear svstem is involved. The operator A, is linear for model parameters but
nonlinear for data: i.e. A, is data dependent. By extending the work of Berryman.
(1994). we define a generalized resolution matrix, e.g. for renormalized scattering

operator Ag:

[SV]
(W]
|8
~—

R, =T — e ™A (2.3

where R, is the generalized resolution matrix, Z is the identity operator. AT is the

transpose of A., and n is the number of iterations.> The generalized resolution

5Suppose equation A.v = d is solved iteratively starting with a initial model vO ie..
40,0 _ 1,0 _ 0
Avl =d, A,v =d - Avh,
For the n'” iteration, it can be written, formally, as

Arv = (I - A.X(n))d,

where X is an unknown inverse of A("~!). We want the residual Ad = ||[(Z — A.X)d|| as small as
possible to produce an optimal solution. To minimize Ad, a sufficient condition is
X
oX _ AT(Z - A.X),
on

(Berryman, 1994). Following conventional definition, the effective resolution matrix is defined as
R. = X A.. Obviously,
dR. _0X R,

ot = e, or =t = ATA(T - Re).
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matrices with different iterations are displayed in figure 2.8. The data (total wave
field spectrum) is generated using the moment method for a five diffractor model.
One can see, as expected, that as the number of iterations increased, the resolution
matrix is closer to the identity matrix. The generalized matrix is also useful when
the system is solved with iteration methods such as the conjugate gradient method.
Iteration methods demand less computer memory compared to, e.g.. the singular

value decomposition (SVD) method.

10 20 30 40 50 10 20 30 40 50
n=1 n=10

10

20

30

40

50 : 0 .
10 20 30 40 &0 10 20 30 40 S0

n=20 n=30

Figure 2.8: The generalized resolution matrices of the extrapolated scattering operator.
The displayed matrices are for horizontal resolution. The background velocity is 3500 m/s,
and temporal frequency of incident wave is 500 Hz. The wave field spectrum embedded
in the operator A, is the synthetic data of a diffractor model. n is the iteration number.

If system d = A.m is solved by SVD, it is also possible to analyze the model

from which R, can be solved in terms of AZAC and number of iterations.
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resolution by examining the diagonal matrix :\ matrix ® of SVD. Figure 2.9 compares
the singular value distributions of the operator A, of a diffractor model with that of
the single scattering operator A,. We can see that the distribution of the singular
value from the extrapolated scattering operator is flatter than that of single scattering

operator, and, therefore, has better resolution.

o o
o 4] (o]
L] T
.

Singular value
o
\‘
Ld

0.6 1
0.5F 1
linear
— nonlinear
0.4 : : -
0 50 100 150 200

Singular value number

Figure 2.9: The singular value distribution of scattering operators: the extrapolated scat-
tering operator versus the single scattering operator.

We invert the diffractors from the synthetic data to demonstrate how good the
resolving power of the operator A, is compared to that of the single scattering operator
A,. For the forward modeling, both source and receiver lines are 200m, respectively.
and the spatial sampling interval along the source and receiver aperture is 2m. The
background velocity is 3500m/s, velocity of the diffractors is 5000m/s, and frequency
of incident wave is 500 Hz. The reconstructions are displayed in figure 2.10. One can

see that the overall quality of the reconstruction from operator A, is better than that

6The number of significant singular values as well as their distribution, i.e. the rate that the
eigenvalues of A. approach 0, demonstrates the influence of the data structure which is determined
by the survey geometry and bandwidth. The number of singular values that fall below the cutoff
value and are set to zero measures the amount of information lost in pseudoinverse. Often this
cutoff value is chosen to be percentage of largest singular value based on up the knowledge of the
signal-to-noise ratio. The value of the largest singular value is dependent upon the the spacing of
the original samples.
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from operator Ay, especially in the magnitude. But the resolutions of the operator A,
and A, are, more less, the same. This confirms that, usually, resolution analysis with
linear approximation is good enough since the main factors to influence the resolution

are spatial and temporal frequency bandwidth given an observation geometry. The

5000 5000 5000
5 n 0
; 4 2 4500
E 4500 E 500 E 0
> > >
§ 4000 S 400 g 4000
g g 9

3500 100 3500 100 3500

_— — 50 S
100 0 100 0 100 0

(a) (b} ©

Figure 2.10: The comparison of the resolution of a diffractor model using single and
extrapolated scattering operators: Spatial sampling interval along the source and receiver
aperture is 2m, the background velocity is 3500m /s, velocity of diffractor is 5000m/s, and
temporal frequency is 500H z. (a) is the model of five diffractors, (b) is the reconstruction
from the single scattering operator A,, and (c) is the reconstruction from the renormalized
scattering operator A.. The average absolute differences are 21.3 between (a) and (b),
and 6.7 between (a) and (c).

average absolute differences between the model and reconstructions, i.e.. error =
E(|z — y|), are calculated. The difference between the model and reconstruction
using the single scattering operator A, is 21.3, while the difference between the model
and the reconstruction using the renormalized scattering operator A, is 6.7. This

demonstrates that one can image better using the renormalized scattering operator.
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2.3.3 Case of the asymptotic scattering operator

The model resolution matrix of the asymptotic scattering operator Ay is defined as
Rd = .A;I.Ad (233)

As with the single scattering, the resolution matrix R4 can be expressed analytically

(Chapter 4):

Ry(x.x") = / |J(k: r.s)|e* % =) drds, (2.34)

where k,(x) = w(c,ij(x.s) +dA'>J(x,r)), and j = 1,2,3. Notice that ® and o are eikonal

functions from the source to the image point and from the image point to the receiver

respectively. The Jacobian transformation is

d6(x,s) 00(g, x)

J(k:r,s) = k2(x)sinf(g,s) s 99

(2.35)
where 6(x, s) and (g, x) are the incident angle and scattering angle at the location x.
respectively: #(g, s) is the difference between 6(x,s) and (g, x). This form is derived.
under the distorted single scattering approximation. using pseudodifferential operator
theory (Appendix B). The resolution matrix R, a function of frequency. background
velocity, and survey geometry, provides insight into how these factors influence the
resolution of the operator A4. Certainly, the temporal and spatial bandwidth play
the same roles as demonstrated in previous sections.

Instead of using the procedure of SVD to analyze the eigenvalues of Ry, we invert
the diffractor model to assess directly the resolving power of the operator A, Figure
2.11 shows an image of diffractors at five locations, for the crosswell experiment with
128 source and receivers. The pixel spacing in the image is A/2. The diffractor

scattering data were generated by the moment method.
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20 40 60 80 20 40 60 80

Figure 2.11: Reconstructed diffractor model using the distorted single scattering operator
Ay: the left panel is a model of five diffractors in a two layer background; the right panel
is the reconstruction.

Effects of irregular sampling

In order to show the effects of irregular sampling along source/receiver aperture.
singular value decomposition is applied to Rq4. In figure 2.12. 10 different versions of
sampling schemes are displayed. The singular values of the ten different R4 matrices
corresponding to ten different receiver apertures are plotted in figure 2.13. One can
see that as irregularity increases from curve 1 to curve 10 of the aperture, the first
singular value of the resolution matrix increases and the drop-off of the singular values

becomes steeper.

2.4 A remark on migration and inverse scattering

Seismic imaging techniques can be subdivided in migration and inverse scattering.
The object functions for inversion and migration are, respectively, the medium per-
turbation parameters and reflectivity. The perturbation describes the difference be-
tween the medium parameters of the actual medium and the background medium
while the reflectivity is proportional to the discontinuity in the actual medium.
Migration can be viewed as either backprojection (diffraction-stack) or backprop-
agation, i.e., the recorded waves are extrapolated either downward in space or back-

ward in time and the image extracted from the extrapolated wavefield by an imaging
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Figure 2.12: lllustration of different deviated receiver apertures: Ten different receiver
apertures are used to simulate deviated wells. The sampling interval is irregular due to
the deviations as indicated from curve 1 to curve 10. Circle symbols represent receiver
positions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4 A remark on migration and inverse scattering 33

Singular value distribution
251

Singular value

1 2 3 4 5 6 7
Order of the singular value

Figure 2.13: Effects of irregular receiver aperture on model resolution: the distribution of
the normalized singular values of operator R4. The first singular value of the resolution
matrix increases and the drop-off of the singular values becomes steeper (from curve 1 to

curve 10).
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condition. With the introduction of wave equation methods by Claerbout (1971). the
backprojection methods were largely replaced by backpropagation methods.

With multidimensional linearized inversion (Born inversion), the imaging problem
is recast from that of extrapolating a scattered wavefield to one of recovering the
perturbations of medium parameters that gave rise to the scattered field. The ability
to separate incident field and scattered field enables the inverse scattering problem to
have a unique solution given complete measured data and complete angular spectrum
of incident wave (Hoenders, 1978). Uniqueness is also obtained when the incident field
has a complete set of frequencies (causality requirement).

Addition to the complete measurement. migration or inverse scattering has a
unique solution if and on if all evanescent components of the wavefield are zero (or
known). The fundamental “problem” caused by the evanescent wavefield is that they
do not produce fields which contribute to the measured data, i.e.. evanescent field
represent a component that can be added to the source term in the wave equation
without a corresponding alternation to the fields.

A relationship between the migration and asymptotic inverse scattering is derived
in Chapter 4 in which the multifrequency diffraction tomography and migration are

essentially the same algorithm.

2.5 Conclusions

The developed scattering operator can be classified as renormalizations in the spatial
domain, Fourier domain, and wave asymptotic domain where spatial and Fourier
domains are superimposed. The renormalized scattering operator is used to effectively
sum the the Born expansion and enable one to decompose the original nonlinear
problem into two cascaded linear problems. The extrapolated scattering operator is
used to obtain individual diffraction projections independently and then perform the
inverse Fourier transformation to obtain the image. The distorted single scattering
operator relates scattering data to the spectrum of the inhomogeneity function via
asymptotic Fourier transform. The quality of the image reconstructed using a given

scattering operator is quantified by means of the temporal and spatial bandwidths
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that relate to the size of the smallest details that can be recovered. The resolution

also depends on the type of approximation methods applied.
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Chapter 3

Inversion of Strong Scattering

Media Using Renormalizations

A number of previously intractable problems in several very different areas of physics
have been successfully solved using renormalization techniques. Renormalization the-
ory is a broad concept whose content can be understood from various perspectives. It
can be viewed as a device that eliminates infinite results in quantum electrodynam-
ics. an up scaling theory in statistical mechanics, or as a regularizing principle in the
inverse problems.

To calculate wavefield in the media with strong fluctuations, the first Born approx-
imation is not valid. Rayleigh (1917) designed a renormalization method to generalize
the scattering from a thin slab to the scattering from many slabs. This chapter ex-
tends the first Born approximation by replacing the total fields in the scattering
integral with the renormalized or rescaled incident field. This can be achieved either
in spatial domain or in wave spectral domain. These algorithms can be applied to
wave field modeling with reasonable accuracy and to inversion of the complex media
with the same efficiency as that of conventional diffraction tomography using the first

Born approximation.

36
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3.1 Wavefield renormalization 37

3.1 Wavefield renormalization

[n this section. starting from the scattering formalism, [ explore the renormalization
or rescaling schemes to simplify the scattered wavefield modeling and inversion. The

integral representation of the scalar wave equation is expressed as
U=U +GMU, (3.1)

where the svmbols U. Uy, G and M stand for the total field, incident field. Green's
function and medium perturbation function operators (e.g.. matrices), respectively.
Their ordering is important and cannot be altered at will (see Chapter 2). In the
operator notation, Equation (3.1) is valid regardless of whether #.G and M are in
the spatial domain representation or in the spectral domain representation.

The exact solution to equation (3.1) is intractable for it has hardly any rigorous
mathematical foundations. The appropriate method. for practical purposes. is to
treat the multiple scattering, i.e.. the nonlinear terms, as a perturbation and look for
a power series expansion in terms of the perturbation function M that represents the

inhomogeneity in the media. That is
U=U + GMU + GMGMU + ... . (3.2)

which is obtained by iterating on 4. For the small perturbation, i.e., for low frequency
and weak contrast, expansion (3.2) converges in low orders. For strong fluctuations.
however, when the strength of the expansion parameter M is of an order larger than
one, the expansion does not converge at all. Physically, those secular terms of the
expansion. represent highly Intuitively. we may rescale or renormalize the incident
field such that some of the effects of the multiple scattering are included in the
renormalized incident field. In terms of rescaled incident wave, wave field modeling
and inversion in a strong inhomogeneity medium are simplified.

Formally, we can express the concept of the renormalization as

U= (T -GM) U, (3.3)
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which is an alternate form of equation (3.1). This means that the total field is ex-
pressed as a rescaled incident field. The effects of nonlinearity resulting from strong
scattering are included in the modified incident field. To actually achieve such renor-
malization, approximations have to be made to decouple the quantities involved in
equation (3.1).

Before proceeding to the renormalization techniques, some explanation should
given why the equation (3.1) or (3.2) is not convergent in general and there are two
reasons for this. The equation (3.2) may not satisfied the causality condition in a gen-
eral situation and it may divergent even without the expansion. The second source
of the divergent of the equation (3.2) is because of the the expansion in terms of the
power of the perturbation function m or multiple scattering. For a causal time wave-
form initiated at ¢ = 0, its spectral characteristics must meet certain requirements
so that complete time cancellation occurs for ¢ < 0. The requirements are 1) the
spectral are square-integrable along the real axis, 2) the spectral are analytic on the
upper half-plane and their real and imaginary parts are related by Hilbert transforms

(Titchmarsh, 1948). For some simple models' the Kramers-Kronig relation is strictly

IConsider a scattering by a spherical target of radius a

scattered wave

incident wave

asing@n2

The total wavefield can be written as

) i e—r..;(t~R/v)
u=uP(t-x/v)+u'(t— Rjv) = /L’P(u)e"”"‘x/"m + / U* (w) ——p——dw

The causality implies that the scattered wave front can not reach the distance R until vt > R -

2asinf/2. The term —2asinf/2 is present because the shortest path for the scattered wave to reach

the radial distance R is 2asin@/2 shorter that the path going through the center as illustrated in the

figure. In terms of the Fourier transforms, the statement of causality becomes that UP(w) is analytic
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held and the relation between the real and imaginary parts of the wavefield spectral
can be determined. Consequently, the causality is guaranteed. However. for the scat-
tering of general inhomogeneities the causality condition in frequency may be weaken
and even broken. This is primarily due to the fact that the incident and scattered
wave are complicated functions of w and this could result the divergence of (3.1).
Another source of the divergence of (3.1) is due to the mathematical technique to
solve the Fredholm integral equation of the second kind. It can be proven, the series
(3.2) is convergent only on the condition of small perturbation assuming the causal
condition is satisfied. For example. the integral equation (3.1) can be solved using
the method of successive approximations. as shown in (3.1). ? The error by taking
only the linear term of the )\, i.e., the single scattering approximation. is is given in
Appendix A. In later sections, we will present the algorithms derived using specific

approximations.

3.2 Localized approximation

To decouple the nonlinearity involving the field and the medium perturbation func-

tion. we first consider a single scatterer or a localized scatterer cluster. Under the

on the upper half w-plane implies that U®(w)e***~/vs:"%/2 for fixed 6, is analytic on the upper half
w-plane. For 8 = 0 Kramers-Kronig relation reduces to the forward dispersion relation which gives
the real part of the forward scattered field in terms of the imaginary part. For § # 0, the dispersion
relation becomes less useful since the real and imaginary parts of U*(w, ) will be mixed due to the
exponential factor. This can be considered as a weakening of the causality condition.
2Substituting this series in equation (3.1) and equating the coefficients of powers of . one obtains

Uity) = [ mix)Glx.y)Ua(x)dx
Gay) = [ mix)Glxy)Us (x)dx
Uny) = [ mx)Gxy)Un1 ()
From these equations there may successively be determined all the function Uy, Us, ..., explicitly.

It can be proved the series will be uniformly convergent for the integral kernel m(x)G(x,y) < M.
where Af is a bound, if A satisfies |A\| < 1/(M D) where D is the diameter of the scattering volume.
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first Born approximation, the total field at the vicinity of the scattering center can

be written as
u(x,5) = uo(x.s) + uo(x. s) / m(y)G(x. y)dy (3.4)

where u and ug are the total field and incident field respectively; m(x) is the reduced
perturbation function representing the scatter (see Chapter 2); G is the Green's func-
tion: and v is the volume of the scatterer or scatterer cluster. An argument in favor of
this approximation is that, with the singular nature of G(x.y) at x =y, the dominant
contribution to the integral comes from points in the vicinity of x = y. Therefore.

the error of the approximation
[ ()G x.3)ux.5) = woly.5))y.

is small and can be ignored. The validity of the local nonlinear approximation is

shown in figure 3.1.
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Figure 3.1: The validity of local nonlinear approximation: the dominant contribution to
the scattering integral comes from points in the vicinity of singularity of the Green's
function.
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For a problem involving many scatterers, the contributions of the multiple scat-

tering may be significant and cannot be neglected. Analogous to Rayleigh’s renor-

malization 3. we recast equation (3.4) into the following form:.
uo(X.s) .
.8) = ———-, 3.
u(x.s) = 7 (3.5)

where £ = [ m(y)G(x.y)dy. The rationale to recast equation (3.4) in such a form
is that the secular terms of the divergent series. or. high order terms representing

multiple scattering,
(1+ L+ LL+ ...)uy,

can be effectively summed. Notice that the above divergent series is similar to the
divergent series

(Z+GM +GMGM + ... ) Uy,

except that the latter involves operators and has its coupling embedded.
Substituting the approximated total field into the scattering integral. the scatter-

ing problem can be modified as
U(s,r) = / m(x)R(x)G(x.s)G(r, x)dx, (3.6)

where R(x) = (1 — L(x))~! is called the renormalization function. and the incident
field is replaced by the Green’s function G. While in the first Born approximation the
total field u is replaced by the incident field ug, here the total field is approximated
with a rescaled or renormalized incident field ugR. The improved approximation has
less limitation in terms of strength of the scattering since some of the multiple scatter-
ing is taken into account by the renormalization function R, as sketched in figure 3.2.

This technique is appropriate for the localized inhomogeneity. For arbitrary inho-

3Rayleigh developed a renormalization scheme to generalize the scattering from a thin slab to
scattering from many slabs. He obtained an expansion of the form u = e**o (1 + ikgnz) for the first
scattering from one slab, where konz << 1 and n is refraction index. To obtain a solution valid
for many slabs. he recasted this expansion into an exponential form, i.e.. u = e'fo*+komz In this
manner he effectively summed the sequence anc:l (tkonz)™ /m'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Localized approximation 42

R ST e

Figure 3.2: lllustration of renormalization: the left panel show intractable multiple scat-
tering; and the right panel depicts that some of the muitiple scattering can be taken into
account by modified incident waves.

mogeneities, further approximations are necessary, such as the static approximation.
(Habashy, 1992).*

3.2.1 Application to the wavefield modeling

A well defined disk model is used to demonstrate the validity of the renormalization
algorithm in terms of the contrast of the inhomogeneity. and the frequency of the
wavefield. Usuallv, these two factors are the sources that cause the first Born approx-
imation to fail. The background velocity of the model is kept constant at 3500m/s.
frequency at 350H z, while the velocity of the sphere is varied. The distance between
the source and receiver is 100m. A disk of 10m in diameter is located between the
source and receiver. The wave field of a disk model is calculated by using the first
Born approximation, the renormalization algorithm and the moment method.” re-
spectively. In Figure 3.3, we compare the results of three different methods. One

can see that the renormalization method provides acceptable estimations compared

4 Assuming the total field is static, Habashy obtained
) = uolx.s) + u(x.s) [ m(y)G(x.y)dy

It can be rearranged such that u(x,s) = (1 = [ m(y)G(x,y)dy) ' uo(x,s).
5The moment method is often applied in calculation of the scattered field. The scattering region
is divided into N square cells and wavefield and the inhomogeneity are represented as a summation
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to the solution achieved by the moment method regardless of the velocity contrast.
The Born approximation, on the other hand, is invalid except when the velocity

perturbation is within ten percent.
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Figure 3.3: Comparison of wavefield amplitudes calculated using the moment method, the
first Born approximation and renormalization over a sphere model with different velocity
contrast.

The accuracy of wavefield modeling using the renormalization method with regard
to frequency variations is examined. The model is the same as in the previous exam-
ple. The velocity perturbation is fixed at 50 percent of the background. Figure 3.4
shows that the amplitude calculated using the renormalization method is consistent
with the solution by the moment method regardless the the range of the frequency
variations, while the result of the first Born approximation is only acceptable at lower

end of the frequency range and begins to break down at 200H .

of basis functions over the N cells, i.e.,
m(r) = Ze(rij)bij; u(r) = Za(r,-j)b,-j
[} t.g

where b;; is the basis function, e;; and a;; represent the coefficients describing the inhomogeneity
function and wavefield over the basis function. Usually a pulse basis function is chosen (Chew. 1990)
and the scattering integral can be written as a linear algebra system.
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Figure 3.4: Comparison of wavefields calculated using the moment method, the first Born
approximation and renormalization over a sphere model with frequency variations, the
perturbation contrast is fixed at 50 percent.

In figure 3.5. we show time sections of the wavefield over a two layer model. Again
the calculations are carried out using the moment method. renormalization and the
first Born approximation and renormalization. Through this comparison. we can see
that the amplitudes of the scattered field by the moment method and renormalization

are stronger than that achieved by the first Born approximation.

3.2.2 Application to the inversion

If the combination m(x)R(x) is treated as a new variable D(x), then the conventional
diffraction tomographic procedure can be applied to invert the variable D(x) as de-

scribed in Appendix A. The perturbation function itself can be evaluated through

equation

D(x) = m(x)(1 - / n(y)G(x, y)dy) ™. (3.7)

To test the algorithm, the first example is to invert a simple model of five diffrac-

tors. The scattering field is calculated using the moment method. The model and
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Figure 3.5: The comparison the wavefield by the moment method (top panel), renormal-
ization (middle panel), and the first Born approximation (bottom panel) over a two layer
model: (a), (c). and (e) are total fields; (b), (d), and (f) are scattered fields.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Localized approximation 46

the field are shown in figure 3.6. Figure 3.7 shows the inversion results using the first

Born approximation and the renormalization method, respectively.

z(m)
source

20 40 60 80 100
x (m) recever

Figure 3.6: Diffractor model and the scattered field: the left panel is the model with
five diffractors; the right panel is the real part of the scattered field calculated using the
moment method.

(b)

20

40

z{m)
z (m)

60

80

100
20 40 60 80 100 20 40 60 80 100

x (m) x (m)

3500 4000 4500 5000 3500 4000 4500 5000

Figure 3.7: Reconstructed image: panel (a) and panel (b) are the inversions using the
renormalization and the first Born approximation, respectively. The average absolute
differences are 6.7 between the model and (a), and 21.3 between the model and (b).

The two images essentially are the same except that the intensity of the off center
diffractors is more balanced relative to the center diffractor in the image recovered
using the renormalization. This is expected for the isolated diffractors since the first

Born approximation is valid.
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In the next numerical example, an inversion is conducted on the synthetic data of
a complicated model of three fractures. Figure 3.8 displays the model and the wave-
field. The velocity of the background and inhomogeneity (fractures) is 3500m/s and
4500m. /s, respectively. The wavefield is calculated using the moment method at the

frequency of 500H z. Figure 3.9 shows inversions using the renormalization and the

(a} (b)

source

x receiver

Figure 3.8: (a) is the model of three fractures and (b) is the wavefield of the single
frequency at 500 Hz.

first Born approximation. The reconstruction recovering the strength of inhomogene-
ity using the renormalization is better than that of using the first Born approximation.
The average absolute difference between the model and the reconstruction using the
first Born approximation, and between the model and the reconstruction using the
renormalization is 72.8 and 19.4, respectively.

We also apply the algorithm to field data from the McElroy reservoir in west Texas.
See Harris et al. (1995) for a description of the site, geology, and data acquisition. A
tvpical common receiver gather is plotted in figure 3.10a and the data is recorded at
202 receiver and 202 source locations. The amplitudes of the wave field are normalized
relative to the one at the nearest offset 3.10(b). For convenience, the source line and

receiver line are padded with zeros to form a 256 by 256 matrix and then Fourier
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Figure 3.9: Comparison the renormalization with the first Born approximation inversions
on a model with three fractures. Panel (a) is the inversion using the first Born approxima-
tion and panel (b) is from the renormalization inversion. The average absolute difference
between the model and the inversion using the first Born approximation, and between the
model and the inversion using the renormalization is 72.8 and 19.4, respectively.

transformed to the wave number domain as shown in figure 3.10c.

The near-offset images are reconstructed with wavefield at 1000 Hz. The results
are shown (Figure 3.11) in terms of structure, the diffraction tomograms reconstructed
using the renormalization and the first Born approximation methods have no signif-
icant difference. However, in terms of strength of the inhomogeneity, the diffraction
tomogram reconstructed using renormalization have higher contrast of the inhomo-
geneity (up to 7 percent). Notice that because, in this example, we want only to show
the algorithm is working and did not perform any processing on the data set. and the

results may not be optimal.
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time

source array

amplitude = l/r

Depth

(a} (b)

receiver receiver

source

(c) (d)

Figure 3.10: McElroy near offset data: (a) a typical common source gather from McElroy
near offset survey, (b) the amplitude of the wave field at the zero offset is normalized to
a geometrical spreading factor 1/r, and (c) and (d) are the real and imaginary parts of
the wave field at 1250H z, respectively.
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Figure 3.11: The reconstruction of McElroy near offset data. The left panel is recon-
structed with renormalization; The middle panel is reconstructed with the first Born ap-
proximation; and the right panel is their relative difference in percentage. The unit of the

velocity is in Kft/s.
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3.3 Back-propagation in the spectral domain

In the previous section, we discussed the localized renormalization in the spatial
domain. Such a method is limited to situations where the inhomogeneity is not
localized. As a complement to the localized spatial renormalization, the wave fields
may be back-propagated directly in the spectral domain to obtain the diffraction
projections. The inversion is carried out efficiently by taking advantage of the Fourier

transform.

3.3.1 Spectral representation

The integral representation of scattered fields can be rewritten as two parts. i.e..
Ul(r.s) = /m(x)G(r,x)(G(x, s) + U(x. s))dx, (3.8)

where U is the scattered field; m is the reduced perturbation function representing
inhomogeneity in the medium: and G is the Green'’s function. The second term on the
right hand of the equation (3.8) represents the multiple scattering which is responsible
for the nonlinear effects of the interaction between the scatterer and scattered waves.

as indicated in figure 3.12.

source

N =d

interaction

receiver

Figure 3.12: lllustration of muitiple scattering.

For multi-source and multi-receiver configurations, we may perform the Fourier

transform of the scattered field along the source array and receiver array. Then, the
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counterpart of equation (3.8) in wavenumber domain is:
U k) = [ mx)Glr x)(Glox k) + Ul k)i (3.9

where U(k,,k,) is the spectrum of the scattered field, k, and k, are the incident
wave vector and scattered wave vector, respectively. In general, equation (3.9) can

be arranged such that it is a Fourier transform of the perturbation function m. i.e.
Ulkr.ks) = _-1(kr,k5)/m(x)e““‘"k’)"‘dx+ B(k,) /m(x)U(x. ky)e " *dx.

(3.10)

where A(k,, k) and B(k,) are the functions resulting from plane wave decomposition

of the spherical or cylindrical waves.®

3.3.2 Nonlinear diffraction projections

As in the case of the phase shift migration (Gazdag and Sguazzero, 1978). the scat-

tering field at the receiver location is back-propagated to arbitrary locations. i.e. to

6For a two dimensional problem, the Green’s function in equation (3.8) is the first kind and zero
order Hankel function, i.e.,

i , i
G(x.s) = TH(klx =sl),  Glg.,x) = {Ho' (klg — x)).
The spectra of the Hankel function along the source line and receiver line are

T, P
G(x,ks) = —elivezatiksx) Glkr, x) = — el v e —tkF x)'
475 475

which are in the form of plane waves. Where v, = Vk3 —k?and vs = V' ki — k2. After plane wave
decomposition, the spectrum representation of equation (3.9) take the form of

Ulkr ks) = A(k,,k,)/m(x)e“{"’g"")”‘k'*k'“]dzdz+B(kr)/U(x, ky)e e k-3 dpdz,

where A = —ezp(—iv,z, + 1Y:sTs)/ 16775, and B = exp(—iv,rz,) /47,
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express U(x.k;) in terms of U(k,, k). In general, the spatial filter is given as

e** for kZ + k2 + k2 = kg,

0 otherwise,

H(k:x):{

With the continuation process, the scattered wavefield at a arbitrary location is ex-

pressed in terms of the scattered wavefield at the boundary, i.e..

. 1 .

Ulx.kg) = —(;r-/L/(ks.k,)H(kr,x)dkr. (3.11)
where U(k,.k.) is the wavefield spectrum at the received locations. By noticing
that the integrals on the right side of equation (3.10) are Fourier transforms and

substituting (3.11) into (3.10). we have

Uk, k) = AM (k, — k,) + %/U(k',ks)M(k' - k,)dkK'. (3.12)
where K’ C k,. Equation (3.12) is recognized as a convolution integral equation for
the transform of the perturbation function in terms of the measured scattering field.
Equation (3.12) is more manageable than the integral equation (3.8) in the spatial
domain.

Notice that when the strength of the scatterer is weak, only the first term on
the right side of the equation (3.12) is taken into the consideration, which is the
case of the first Born approximation. However, when multiple scattering is strong.
the convolution integral in equation (3.12) cannot be ignored and the linear relation
under the first Born approximation is not adequate.

[t can be shown that, in equation (3.12), M (k. —k,) is a single diffracted projection
for a fixed wavenumber k,, which is independent to other projections of different
wavenumber k, and can be solved independently.

For a fixed k,, the above linear system can be solved for one trace of the spectrum
of the object function M as indicated in figure 3.13a. With a Jacobean transfor-
mation, the above linear trace of object spectrum in (k, — k) becomes a curve in
(kz.ky. k;) domain (see figure 3.13b).
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Figure 3.13: Nonlinear diffraction projection: (a) is the projection in (k. k) domain, and
(b) shows the projection in (K, K.) domain

The discrete form of equation (3.12) can be written as

Uk,.k,) = AM(k, — k,) + BZ MK -k,) /U(k',kr)dk’. (3.13)
where j; U(k'.k,)dk’ is the integral over a pixel volume.” The system in equation
(3.13) can be rearranged into a Toeplitz type with the matrix elements consisting of

the Fourier coefficients of the observed scattered field. i.e.,

1—®, &, ... o,
®, 1-® ... @, (3.14)
(Dn ©n—l 1"@0

where

@k!_kl = EB;I'- /U(ks - k,)dkl

"For a crosswell survey, it can be rewritten as

etsts iexp(—ivgIy)

"(ks. = ]
Ulks k) 167v,7s iz

/M(k’)Uk,, - k' . ky(k')dk'.
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3.3.3 Examples of the inversion

This section illustrates the spectral domain back-propagation method with the nu-
merical examples. In the first example, an infinite cylindrical disk model is considered.
which has a analytical solution®. The geometry and parameters are shown in figure
3.14.

receiver

source

Figure 3.14: Scattering geometry of a cylindrical disk.

Figure 3.15a shows the velocity model used for the two-dimensional experiment.
An anomalous circular region 20 m in diameter with a velocity of 5000 m/sec is
located at the center of the medium. The background velocity is 3000 m/sec and the
frequency is 1000 Hz. The scattered field calculated using the analytical solution of
a cvlinder is shown in figure 3.156. We can see that the scattered field is stronger
in the forward direction as expected. The difference between the projection obtained
by using the first Born approximation and by using the wavefield backpropagation
is shown in figure 3.16. One can see that the largest difference (around 10 percent)
occurred at the high frequency, which is expected, since the multiple scattering has
higher spatial frequency usually.

The inversion is shown in figure 3.17. The shape reconstruction is consistent with

8That is
U — L -0 =0npr(l) (. oy pp(1) Cout
(r,8) = 1 E e H (kor')H (kor)—c it
where

Cout = pkoJ,,(ka).f,,(ka) - pokjn(ka)Jn(koa),
Cin = pokH (ko) Jn(ka) — pko H ,(koa) s (ka),

and p,v.po, and vg is density and velocity of disk and background medium, respectively.
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j¢—50(m)—s] source

150 {m)
receiver

(a) (b)

Figure 3.15: Synthetic data modeling using analytical solution: a) an infinite cylindrical
disk model; and b) calculated scattered field (real part). Frequency=1000H =.

the model by using both the first Born approximation and nonlinear projections. Note
that the disk is elongated in the x direction, both in figure 3.17 b and c, as is expected
since the resolution is poorer in that direction for limited source/receiver aperture.
However, compared to the result using the first Born approximation. the velocity
reconstruction using nonlinear projection algorithm has significantly improved. espe-
cially in the middle of the disk (see figure 3.17 c¢). The average absolute difference
between the model and the reconstruction using the first Born approximation is 54.6
while it is 32.4 between the model and the reconstruction using nonlinear projection
algorithm.

In the second example, the model, representing fracture zones, has a background
velocity of 3000m/sec and two linear velocity abnormal features of 5000m/sec. sce
figure 3.18a. The moment method is used to generate the wavefield (Wang, 1995). A
50m horizontal by 150m vertical area is considered with a sampling interval of 0.5m.
Frequency is 1000Hz. The calculated scattered field (real part) is shown in figure
3.18b.
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Kg

0 percent 10

Figure 3.16: The difference of the diffraction projections between the the first Born approx-
imation and the nonlinear projection. The largest difference occurs at high frequencies.

The scattered field is from the synthetic data of the disk model.

e 50m —sf

5000

150m

m/sec

3000

(a) (b) (c)

Figure 3.17: A comparison between the first Born approximation and nonlinear projection
diffraction tomography: a) is a disk model; b) shows the reconstruction with linear pro-
jection; and c) shows the reconstruction with nonlinear projection. The average absolute
difference between a) and b), and between a) and c) is 54.6 and 32.4, respectively.
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F——- SOm ———4 source

150m
receiver

N

(a) (b)

Figure 3.18: Scattered field generated using the moment method: a) a fracture model;
and b) scattered field (real part). Frequency = 1000H z.

The inversion results are shown in figure 3.19b and c. We can see that the diffrac-
tor lines are thicker comparing to input model and the diffractors in the lines are not
distinctly resolved as can be seen by a comparison with the original image. This is
caused by the wavenumber domain coverage being constrained to low wavenumber
in the crosswell case. In this example. the reconstructed images with Born approxi-
mation and nonlinear projection don’t show much of a difference, since the multiple
scattering is insignificant in forward direction.

When the scale of inhomogeneity is relatively large, effects of multiple scattering
become stronger. Figure 3.20 shows a reconstruction from a fault model. One can
see that the recovered amplitude agrees with that of the model. The average absolute
difference between the model and the reconstruction is 60.3.

Numerical examples in this section demonstrate that the computational efficiency
and simplicity of the traditional diffraction tomography can be preserved while the
nonlinear effects of multiple scattering are taken into account. Results show the
improvement to the first Born approximation for the models that have strongly scat-

tering.
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j— 50m —sf

500C
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Figure 3.19: A comparison between the linear and nonlinear projection inversion: a)
fracture model; b) the reconstruction with linear projection; and c) the reconstruction
with nonlinear projection.

5000

150 m

velocity (m/sec)

3000
(a) (b)

Figure 3.20: Reconstruction of a fault model: a) model, b) tomogram reconstructed
using nonlinear inversion. The average absolute difference between the model and the
reconstruction is 60.3.
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3.4 Renormalization using a stratified background

A stratified background may be determined from well logs or transmission tomog-
raphy. In this section, the stratified background is used to rescale the incident field
to maintain the small perturbations assumptions relative to the layered background.
according to the normal mode solution to the scalar wave equation. The Fourier
spectrum of the scattered fields is first decomposed into contributions from different
layers. Then. a selection rule is applied to sort out the heterogeneity spectrum of the
individual layers.

The scattered field in the layered background media can be written as
N
Ul(x,,xg) = Z/ M, ()G (%,, X)G™ (x, x,)dx (3.15)
where Uj(x,,X;) is the scattered field in the {** layer. M, is the reduced perturbation

function embedded in n!* layer: G!(x,, x) and G™(x, x;) are the corresponding Green's

functions; and .V is the number of layers as shown in figure 3.21. It can be shown

vl
el
source \ / v2
) -~ A ]
— s
E.v_-* ................................ e o o J
[ )
[ J
o

Figure 3.21: The scattered wavefield a layered background medium. The field is con-
tributed from the inhomogeneities embedded in all the layers.

(Harris and Wang, 1996) that, in the spatial frequency domain. equation (3.13) can
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be transformed into

Ur(kr ko) = Y Fin(ke ko) Mo (k, — k), (3.16)

where Fl, = f™(k,. k) (A (k,)A"(k,) + B'(k,) B™(ks); f™ is the weighting function de-
pending on the observation geometry; and 4 and B are the amplitudes of the up-going

and down-going wave. respectively, see figure 3.22. Consequently. the perturbation

°
o
°
F .................................................................................... ]
Al“ll " U
tBl-l Pl
—— B4, S— ;

Figure 3.22: The spectrum of the scattered wavefield in a layer.
function spectrum {M,} can be solved as

[\[1 Fll FlN [jl
: = : : : : (3.17)
My Fyi ... Fyn Un

The perturbation function m(x) itself is obtained by taking the inverse Fourier trans-

form of M;(k, — k;), as the conventional diffraction tomography (see Appendix A).
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3.4.1 Synthetic data inversion

The synthetic model consists of several thin beds embedded in a 3-layer reference
medium. The total field and background field, illustrated in figure 3.23. are calculated

respectively in the frequency domain for a point source. Instead of averaging the

receiver receiver receiver

source

(b) (c)

Figure 3.23: The wave field spectra of a three layer model: (a), (b) and (c) are the
amplitude of the background field, total field and the scattered field, respectively.

reconstructed images from different frequencies, the calculated frequency responses
are averaged in the range between 995 to 1005H z. with 5 H z incremental frequency, to
give a nominal 1000H z response. The scattered field is then obtained by subtracting
the background from the total field. The vertical aperture is 256 ft. well separation
is 100ft, and sampling interval is 2.5ft. The reconstructed image for this model
is shown in figure 3.24. The image provides an clear reconstruction of the small

perturbations in the model, especially for the location of the thin beds.

3.4.2 Field data inversion

We apply the algorithm to the field data from McElroy test site in west Texas. The
measurement geometry is shown in the left panel in figure 3.25. For the well A and
well B (separation is 180ft), both the source and receiver spacing were 2.5 ft apart.

For well B and well C (separation is 600ft). the sources and receivers’ intervals are
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(a)

Figure 3.24: 1-D synthetic inversion: (a) is the inversion from the synthetic data; (b) is
the cross sections along the depth axis, solid line for the model and dashed line for the
reconstruction.

5ft. According to prior known geological information, the reservoir is located at the
depth between 2850 and 2950 f¢.
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Again, source function and coupling factors are eliminated by normalizing the
amplitude of the wave field at the nearest offset receiver position according to geo-
metrical spreading. The amplitudes of the wave field at the remainder of the receiver
positions are normalized relative to the one at the nearest offset. A traveltime tomo-
gram, the right panel in figure 3.25, is used to create a background model, which is
used to generate reference field used in diffraction tomography. Notice that although
the reservoir zone can be seen, its internal structure is not resolved by the traveltime
tomogram.

The diffraction tomogram is reconstructed with the data at frequency 1400H =
and the results are shown in figure 3.26. From the object function image and velocity
image one can identify the internal structure of the reservoir. This is not surprising.
because in essence, with the traveltime tomography one reconstructs the low frequency
components of the inhomogeneity. With the diffraction tomography one recovers the
higher frequency components. Most of the structures in the reconstructed images here
are comparable to those using crosswell reflection imaging and migration techniques
(Lazazatos. 1993).

The inversion results of the McElroy far offset data are shown in figure 3.27. From
the perturbation function image and velocity image, we can see the improvement of
the resolution compared to the traveltime tomogram. especially around the reservoir
area. Notice that although the resolution is lower, the far offset images can still be
tied to the near offset images, as indicated in figure 3.27.

In an ideal situation in which the source and receiver lines are extended to infin-
ity. the maximum vertical wave number is 27/D and the maximum horizontal wave
number is 27/\. If the wavelength is 10ft and spatial sampling interval D is 2.5 ft
(one quarter of the wavelength), then the best resolution of the image would be 2.5 ft
in the vertical direction and 10ft in horizontal direction. Due to the limited aperture
and relatively low frequency, the wave numbers in both vertical and horizontal direc-
tions can not reach these maximum values and the reconstructed image is blurred.
The resolution of the reconstructed images is reduced. Taking into consideration both
resolution limits and distortion effects of limited aperture, the resolution of the image

can be estimated as approximately half the wavelength or 5 ft in the vertical direction
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Figure 3.26: Inversion for McElroy near offset data: (a), (b). (c) and (d) are sonic log (well
1202), recovered object function, diffraction tomogram, and 1-d traveltime tomogram,
respectively.
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Figure 3.27: Inversion for the McElroy data: (a) and (b) are the far offset and near offset
diffraction tomogram, respectively.
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and one and one half wavelength, or 15f¢ in the horizontal direction.

3.5 Conclusions

Given the variety of scales and strong inhomogeneity of the earth’s medium encoun-
tered in geophysics, it is necessary to use efficient approximations especially for inverse
problems. The renormalization schemes discussed in this chapter are, essentially. to
regulate the Born series and extend the first Born approximation when strong fluc-
tuations are involved. The technique renormalized in the spatial domain is more
appropriate for forward modeling, while the renormalization in the spectral domain
is more appropriate for inverse problems. Effectiveness of the layering renormaliza-
tion method is achieved by properly choosing a stratified background medium. using
well log or a traveltime tomogram. to maintain the validity of the small perturbation

assumption.
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Chapter 4

Inversion of Strong Scattering

Media Using Wave Asymptotics

In subsurface imaging, another way to describe wave propagation is using rays rather
than the wave field itself in the short-wavelength limit. The crux of this formalism
lies in the assumption of wave propagation in a medium that is slowly varying in
space compared with the wavelength of the wave solutions. The rays are defined by
the projections of the trajectory of a Hamilton system in phase space. This chapter
reviews asymptotic wave theory and constructs the Green’s function using traveltime
and ray spreading from paraxial raytracing. The Maslov canonical operator method
is used to obtain a uniform asymptotic wave field that is valid even in regions of
caustics, where regular ray theory is not applicable. We apply pseudodifferential op-
erator theory, together with distorted Born approximation, to develop an asymptotic

inversion method for variable background medium.

4.1 Wave asymptotics

Connections between areas of physics often involve limits. e.g., wave optics reduces to
ray optics asymptotically in the limit of small wavelength. A classical description of
asymptotic wave theory for light in the geometric optics limit is given in “Principles

of Optics” by Born and Wolf. 1970. In this section we shall review the assumptions.

69
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methods and results of the conventional eikonal approach to the asymptotic solution

of a wave equation:

2(2) i(x.t) — u,;(x,t) =0, (4.1)
where ii = 6?u and the summation is implied over repeated indices and j = 1.2.3
(u,, = V?u). To apply the high frequency asymptotic solution to the wave equation.
the basic assumption is that the waves described by u(x,t) are characterized by a
tvpical wavenumber k(x) and frequency w which are large compared with the temporal
and spatial rate of variation of the medium. If this is the case, it is reasonable to
assume that at a point x the wave solution looks roughly like a plane wave.! but
over a larger scale, the amplitude, wavenumber and frequency may vary, as do the
properties of the medium. These concepts are embodied in the solution to the wave

equation (Beydoun and Mendes. 1989)
u(x,t) = A(x)e?™H, (4.2)

where A(x) is amplitude and @(x. t) is phase. In analogy with the plane-wave solutions
in a uniform medium where the phase ¢(x,t) is k- x — wt. the local wavenumber and
frequency are defined to be the measure of the local rate of variation of the phase.

le.,
ky(x,t) = ¢, (x. t), w(x, t) = —o(x. t). (4.3)

If the length scales of variation of the medium are L, we can define a small dimen-

sionless parameter e, where

k(x,t)L =€ >> 1, (4.4)

UThese locally quasi-plane waves also called eikonal waves, which are asymptotically associated
with a surface of the dispersion relation in phase space (Ziolkowski, 1984).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.1 Wave asymptotics 71

and impose the conditions

4, k 1

-~ =

A k L’

so that the assumptions about the variation of the amplitude A(x) and wavenumber
are made explicit. All higher derivatives are assumed to be of correspondingly higher
order in €. Inserting equation (4.2) into (4.1), from the real part and imaginary part

respectively, one obtains the eikonal equation and transport equation 2

S ot -k =0 (4.5)
J

and
24,0, + Ao, =0, (1.6)

where k(x) = @/c(x) is the local wavenumber.

4.1.1 Geometrical optics solutions

To solve the eikonal equation and transport equation with the initial conditions. it is
necessary to construct the system of rays. One way of doing this is to write out the
Hamilton system consisting of ordinary differential equations. The Hamiltonian is
directly obtained from eikonal equation by eliminating one coordinate variable. The
Hamiltonian contains all the information that is needed to generate rays and calculate

wave fronts.

2Gubstitute (4.2) into (4.1) and neglect the second order variations. From the real part. one
has (¢*/c® — ¢, + A j;/A4 = 0, which leads to eikonal equation; from the imaginary part. one
obtains Aé;/c2 ~24,¢; + A¢,; = 0, which results in transport equation under the high frequency
assumption of the amplitude. In general, the amplitude should be expressed as a power series in
e A=Y €"4,. As we shall consider only the lowest order in the approximation treatment. this
expansion is not necessary.
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Solution to eikonal equation

Let p; = @ j be the wave propagation vector or wave momentum, and the Hamiltonian

H(z;,p;) = p? — k*(x) °, then the eikonal equation can be written as
H(z,.p)) = p; = k*(x) =0. (4.7)

Obviously, the Hamiltonian H represents the local dispersion relation in this context.
The position vector z, and momentum p; define a six-dimensional phase space.

The rays emitted at r, = 1‘9 can be parameterized by their take-off angle 6 and
the independent variable along a ray, o, i.e.,

z, = 1;(0.9), p, = p;(0.8). (4.8)

The rays are generated in phase space by applying the Hamiltonian equations:

dr, OH  dp, _ _OH

do ~ dp; do ~ 9z, (49)

If ray x(c) is known. the explicit solution for the eikonal equation in terms of the

3Hamilton’s principle assumes a knowledge of the Lagrangian function L(q,q,t) and considers
variational paths in the configuration space. It is also possible to set up an equivalent variational
principle that assumes a knowledge of the Hamiltonian H(q, p, t) and considers variational paths in
phase space ¢, p. Consider the Legendre transformation of H: f(p.q,q.t) = pq — H(q,p.t) for the
variational paths in phase space to be stationary, i.e.

t2
§ | f(pg.qt)dt =0,
tl

if and only if the function H satisfies
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x(o) and initial values ¢q is:
o= ¢o + / k(x(c'))do'. (4.10)
0

Solution to transport equation

The transport equation can also be solved by integrating along the rays. To do so. we

express ¢, in terms of its variation along a ray tube 1 depicted in figure 4.2. Then.

N
6+80

So
Figure 4.1: Wave propagation along a ray tube

the transport equation (4.6) can be written as

A=0, (4.11)

1Consider a region " bound laterally by a tube of rays and capped by two segment of wave fronts.
® = constant which are denoted as ag and a, as shown in figure 4.1. Let N be the exterior unit
normal of V', and apply the divergence theorem in V' i.e.,

/ Vé Nds = / kda ~ / kda % [(kJ|g4de — kJ|o]dEDC,
s ay

aq

/V‘ze&dv ~ VieJdéd(do.

where J is the Jacobian transformation between the coordinates x and (o. €, (), one obtains

_ Ld(kJ)

Vi = ,
? J do

in the limit of do — 0.
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or

2%k d(AVE])
vkJ do

where the Jacobian characterizes the density of the rays in the “ray tube”. Integrating

0. (4.12)

along the ray x(o) from gy to o we have a solution to amplitude in terms of the density

of rays. i.e..

(4.13)

Ravs may intersect at caustics where .J = 0 and at these regions a dramatic
change of wave propagation (the phase and amplitude) occurs. A caustic is shown

in figure 4.2 originates at the instant when the rays intersect. The ray field theory

b x2

rays ~ _
caustic

x1

Figure 4.2: When rays intersect and their envelope is caustic

breaks down as soon as the rays intersect. The solutions to the eikonal equation
and transport equation break down at a caustic in two ways: continuation of the
phase by ray tracing beyond the caustic and the determination of the amplitude by
transport equation at a caustic. The former difficuity arises because the solution to
eikonal equation is generally multi-valued. The caustic coincides with the joining of
the branches of the phase function. As the phase is continued through a caustic, 7 /2

phase shifts are resulted. The ray tracing fails to give a prescription for the choice of
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the branch on which the continuation should proceed for the phase shift. Amplitude
transport fails at a caustic because the tube of rays in which the intensity is being
conserved has a zero cross section there; thus the ray theory incorrectly predicts an
infinite amplitude. Figure 4.3. shows the raypath and traveltime at receiver locations.
The caustics occurred in the low velocity zone for the given source location (the model

used to generate rays to be described in the following section).

10+ \
20+ .
30F 1
0+

z sot

= ‘

2

=
60+ .
70+ .
80} ]
90+ ]

10 20 30 40 50 '0010 15 fo s 30
offset (m) traveitime (ms)

Figure 4.3: Raytracing through a velocity model. The left panel shows the caustics
occurred in the low velocity zone for the given source location; the right panel shows the
triplication of the traveltime at the receiver positions.
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4.1.2 Maslov uniform solution

Maslov introduced the concept of Lagrangian submanifolds (Maslov. 1988) while gen-
eralizing the earlier one-dimensional work of Keller (1958)° to overcome the difficulties
of representing the eikonal wave field at caustics. The main idea of Maslov's method
is that the asvmptotic wave field should be constructed not in the real space but in
the phase space where the rays present no caustics. The phase space M consists of
a position vector x and a wave slowness vector p. The desired field can be obtained

by transforming the phase space solution back to real space. The surface determined

Figure 4.4: The rays and their velocity vector in the space X' and P are projections of
phase space trajectories and their velocity vectors. .\ is a Lagrangian submanifold in the
phase space.

by the dispersion relation in phase space is called the Lagrangian submanifold .\ by
Maslov, on which the bicharacteristics of the Hamiltonian evolve. The importance of
the A\ is to produce global solutions including representations in the caustic regions
(Kravtsov. 1990, 1993, Ziolkwski, 1983, Bregman and Chapman, 1989). as depicted
in figure 4.4. Intuitively, a locally plane wave with propagation vector p; is restricted

to the particular values p; = ¢ ; in the phase phase space and can be projected onto

50Ordinary asymptotic wave theory breaks down when diffraction occurs where the medium scale
length is as small as the wavelength, or near turning points. Keller has developed a geometric
diffraction theory which uses geometric optics away from the bad regions in the medium and glues
in the extra rays due to diffraction emanating from these regions using matched asymptotics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.1 Wave asymptotics 77

x or p space equally.

Analogous to equation (4.2), the wave field in phase space can be written as
u(p, xc) ~ B(p, xc)e'* P, (4.14)

The function ®(p, x.) in phase-space is obtained via the Legendre transformation of
0. l.e..
®(p, xc) = pxe — B(xc),

where x. is the location of caustics. Similarly, the B(p.x.) is calculated using the

Jacobian in phase space. i.e.,
J = (8p, 8x|00, 90 ) y=s. -

Equation (4.14) is defined as the asymptotic Fourier transform F, (see Appendix
C). A suitable choice of coordinates in the phase space can always eliminate the
singularity of B(p.x) at caustics. Thus, the u(x) at a caustic is finite. A choice
of mixed coordinates in which J # 0, though J = 0, relies on the properties of the
Lagrangian submanifold of the phase space. The wave field estimation is completed by
the KMAH index that will determine the 7/2 phase shift when a ray passes through
a caustic. The wave field in the real space can be obtained by taking the Fourier

transform of equation (4.14), i.e.
s o]
u(xe) ~ / B(p. x.)e'*Pxe)etPXedp (4.13)
—00

For example, in a two dimensional numerical implementation, one can choose the

mixed coordinates (pz, z). such that at caustic z.

Pmazx )
U(l'c, Z) ~ / B(px, Z)ez‘b(Pz.:)ele.rcde’

Pmazx

where the amplitude B(p;, =) can be calculated using the corresponding Jacobian .J
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as in the case of real space,

Op:/08 Op:/9c
9z/d8 9z/do

J =

In general, the continuation of a field through a caustic region has the alternating

compact representation (Ziolkwski, 1983):

(1.16)

(x) = w(x) if x is away from any caustic
| {F'oFo}u(x)] if x is near a caustic.

The asvmptotic Fourier operator Fy (see Appendix C) effectively cancels the singu-
larities in the regular ray theory field Go(x). Clearly, if x is sufficiently far from a
caustic, the operator F~! can be replaced with F; ' and returns to regular ray theory

solution immediately.

4.1.3 Numerical implementation
In order to calculate the raypath and its perturbation, we implement paraxial ray
tracing. The position of a paraxial ray and the wave momentum can be written as:
x(0) = xo(o) + 0x(0). (4.17)
p(o) = polo) + dp(0), (4.18)
where 4 is used for paraxial perturbations with regarding to take-off angle. (Cerveny.
1984, Farra, 1989). The perturbation of ray position and the slowness vector deduced
from equation (4.9) are:
0x = V,.V,Héx+ V,V,Hép, (4.19)
op = -V.V.Héx -V, V. Hép, (4.20)
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or

éx\ ([ V.V,H V,V,H dx (4.21)
op ~V.V.H -V,V.H) \ép) -
where % and p represent dx/do and dp/do, respectively and V., V,, are the gradient

operators regarding to x and p respectively. We can solve the ray system and the

paraxial ray system simultaneously by using Runge-Kutta method, i.e..

() - (55)

5x\ [ VoV,H V,V,H )\ [éx
sp)  \-V,V.H -V,V.H) \ép)

with initial conditions:

X = X;.
p = (cos.sinf)/v,
éor = 0,

dp = (—sinb,cosf)/v.

With the raypath perturbation information, one is able to calculate the Jacobian. i.e..

I dz/00 0z/06
' 8z/8c 8z/dc )’
or, in phase space,

I Op; /00 9z/80
Op. /0o 8z/dc )

To check the computer program, we compare the theoretical ray spreading of a

homogeneous medium with that calculated using the raypath information resulting
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from raytracing. As indicated in Figure 4.5, the calculated value agrees with the
theoretic prediction. In Figure 4.6, we show that the phase and amplitude of the

wave are correctly simulated in a three layer model.

0.145 T ™ T T T
1/sqrt(r
0.141 an) b
——1/5Qrt(J)
0.135F
0.13r 1
$o0.125+ q
2
=3
£ o2t ]
0.115F 4
011 4
0.105F- 4
01 1 i L 4 4 )
0 20 40 60 80 100 120
Depth (m)

Figure 4.5: A comparison of the amplitudes simulated by 1/\/r and by 1/v/J in a homo-
geneous medium, where Jacobian .J is calculated using paraxial raypath information.
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Figure 4.6: Wavefield calculation using wave asymptotics over a layer model: the left panel is raypath image; the right

panel is a time section. Both phase and amplitude are correctly predicted.
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In the following examples, the velocity model is random characterized by an el-
lipsoidal autocorrelation function (see chapter 6). The correlation lengths are chosen
such as the model approach a 1-D model. The raypath of the source in a low veloc-

itv zone is displayed in figure 4.3. One caustic region is clearly identified. Figure

-
J

—

o
@
L

o
o
/

amplitude
o
H
L

depth (m) 100 o

offse (m)

Figure 4.7: Wave amplitude vs. wave front: the contour lines represent wave front and
the elevations represent amplitude.

1.7 shows the wave front and wave amplitude. The contour lines represent the wave
front and the elevation of the contour represents the amplitude. One can see that
the variation both of the wavefront and amplitude are continuous even at the caustic
region indicated in figure 4.3.

In figure 4.8, we show the wave amplitude of an array of sources and an array of
receivers, which is the data configuration used in the inverse problem discussed in the
following sections. Since the model is complicated, one can see that there are some
shadow zones where the raytracing can not go through. Therefore. the amplitude is
not calculated there.

[n summary, the Maslov technique provides a means of constructing a uniform
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Source position

20 40 60 80 100
Receiver position

Figure 4.8: The amplitude variation in the map of source and receiver arrays.

asvmptotic solution to the wave equation. To find an asymptotic solution that is valid
in the vicinity of a caustic, we express the wavefield as a summation of neighboring
rays. rather than just considering the contribution from a single ray. Apart from

caustics. Maslov svnthetics agree with those based on classical ray theory.

4.2 Asymptotic inversion of scalar waves

As in the forward modeling, we assume the background wave field propagates in a
smoothly inhomogeneous medium. The condition of smoothness requires that the
characteristic scale of the field variations is much smaller than the scale of medium
property variations. We use the results from previous sections to calculate wave
asymptotics of the variable background and use the distorted Born approximation to
estimate the scattered field. The inversion operator is constructed using the general-

ized Fourier transform.

.
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4.2.1 Inversion theory

The scattering integral for the scalar wave can be written as
Ur,s) = /m(x)A(x, r.s)e = s)dx, (4.22)

where U(r,s) is the scattered field at the receiver position r for a given source at
location s, m(x) = —k2(x)(1 —c3(x)/3(x)). A(x.r,s) = A(x, s)A(r. x) is the product
of the amplitude and #(x.r,s) = @(x,s) +d(x, r) is the total phase of the background
field propagating from source location to z, then from x to the receiver location. which
is calculated using the procedure described in the previous section.

According to the pseudodifferential operator theory (see Appendix D). it is pos-

sible to invert the integral (4.22) with asymptotic Fourier transform. i.e..

~1¢(z,r.s)
m(x) = /U(r,s)H(r,s,x)e———drds. (4.23)
A(x,r.s)

where H(r.s.x) is a weighting function to be determined. Substituting equation

(4.22) into (4.23), one obtains

m(x) =/m(x’)R(x,x’)dx’. (4.24)
where
A , ,
R(x,x') = T(()}E(’—:%H(r,s,x)e'[d’(x ws)—olxrs)grds. (4.25)

The Fourier integral R(x,x’) is a pseudodifferential operator (Treves. 1980) and its

principle symbol is

.4.()(’, r, S) H(rv S, X)
A(x,r,s) |J(k;r,s)|’

(4.26)

where J(k:r.s) is the coordinate transformation from k to (r.s). Note that the

pseudodifferential operator relates the object function and its estimate. Obviously. it
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can be understood as a model resolution operator.
If the operator R(x,x’) is a d-like function, then m(x) would be identical to m(x).
Applying Taylor expansion at the neighborhood of x to the amplitude and traveltime

and taking only leading term, one has

A, r,s) = A(x.r,s),

o(x'.s) — d(x.5) = 6,(x.s)(z, - z}),

b(x'.t) — d(x.r) = o,(x.r)(z; — I).

Letting spatial variant wave vectors /}] = d-)J(x.,s), ic] = (JSJ(x. r). and k,(x) = l:', + I;'].

j = 1.2,3. and change variable such that dk = |.J(k;r,s)|drds. one obtains

, H(r,s.x) k(2 —1,)
) = [ DS X k@) 127
R(x.x") /I.](k;r.s)le 1TH dk (4.27)
If we choose H(r,s.x) = |J(k;r.s)|, then R(x.x') — d(x,x’). Consequently. the

inversion equation (4.23) takes the form of

—~1¢(z,r,s)
m(x) = / U(r,s)|J(k;r. s)|i—(mdrds. (4.28)

By choosing weighting function H(r,s,x) = |.J(k;r,s)|, one can reconstruct the inho-
mogeneity function consist with the information containing in the wave asymptotics.

For example, in the two dimensional case, the local wavenumber can be expressed as

kr = ko(x)(cos8(x,s) + cosf(r, x))

k. = ko(x)(sin8(x, s) + sin §(r, x)),

and the Jacobian transformation J can be calculated as

00(x,s) d6(g, x)

J(k;r,s) = kj(x)sinb(g,s) s 39
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source array

8(s,r,x)

000000000

receiver array

Figure 4.9: At scattering point X, the coming and departure rays make a bisect angle.

where 8(r.s) = 8(r.x) — 6(x.s) is the bisect angle®, as indicated in Figure 4.9. As-
suming no temporal dispersion, letting ¢ = w7 and choosing an appropriate wavelet.

it is possible to transform (4.28) into time domain, e.g.,
. J(k;r.s)|,, )
m(x) = §R/ %TE)T'D(r,s,t)l,zf(x,,vs)drds, (4.30)

where R denotes the real part of the integral. ¢t = 7(x,r,s) is called the imaging
condition as in the case of migration (Claerbout, 1986).

The reason that the inverse scattering and migration merge to the same algorithm
1s that asymptotically. the Fourier space and real space are superimposed. Withe a
complete set of frequencies, the inverse scattering algorithm using wave asmptotics
and Kirchoff migration are essentially the same and this is illustrated in figure 1.10
and figure 4.11.

8Notice that

Jkir.s) = kg(x)(acOSZix, s) Bsingir, x) _ acos;(‘r,x) Osingix.s) .
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EI—— ]

M(x.z)

(a2

Figure 4.10: The algorithm of Kirchoff migration sums data within the diffraction shape,
then places the summed value on the migrated section.

Figure 4.11: The method of asymptotic inverse scattering constructively sums the plane
waves in wavenumber domain to produce the discontinuity of the medium.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3 Inversion of elastic waves 88

4.3 Inversion of elastic waves

In the case of elastic wave inversion, the object function of the scattering operator
has multiple terms (the perturbations of the density and the elastic constants) and
each term has a different polarization factor corresponding to monopole. dipole and
multipoles. We have to modify the procedure applied to the scalar wave. In order
to recover each term of the object function, the scattered fields are project into
different polarization directions, then apply asymptotic Fourier transform to these
projections. The resultant multiple “raw” images are then used to solve individual

elastic parameters.

4.3.1 Asymptotic Green’s function of elastic media

Supposing the density and elastic constant of the medium can be written as
0 0
Clmpq = Clmpq + C;rnpqv p = p + p,?

0 .0 ek U ; . . ;
where p° ¢} . are background density and elastic constant. and P Clinpq are their
perturbations. the integral solution of the scattered field can be obtained for u using

Betti’s Theorem. the vector equivalent of Green’s Theorem for scalars (see Chapter

2):
Ui(s.r,t) = - /[p'afuﬂ %, G + c;mpqujp_q %, C:z'k[.m]dx. (4.31)
In the frequency domain.
Uj(s.t,w) = — /[p’wQu],Gk, + c;mpqum,,GAu,m]dx. (1.32)

Assuming a smoothly varying background medium and applying the distorted Born

approximation, i.e., u; = Gy, then

Ujk(s,r,w) = — /[p'wzéﬂékl + c;mpqéjp,qéklvm]dx. (4.33)
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For an isotropic elastic medium, the asymptotic Green’s functions in (4.33) can be

decomposed as p and s components:

. A . Y A .
GJ'[ = G;Jl + G;l, G = le + Gk[, (4.34)
where
p . qP 0P S 15 10
i "11!6 ’ I Aje
p . qp 1P As 45 ,10°
G = Aue'?, G = Axe

The eikonal equations for the phase functions oP. . ° and o° are:

Z [@p Z [C’B{)k]2 =7

=123 k=123
Y= ) o=
J=1.23 k=1.2.3

where v, = w/v, and v, = w/ v, are the wavenumbers for the p-wave and the s-wave.
respectively. The corresponding transport equation for the amplitudes Ar 4P 4% and
A® are:

( -1”4”45")

P ]
/p P

(/ AL AL ) m =0,
p

(E 32 32 30 ) =0,

1 p%m
V3

p 1s {5
(;E‘-lkp‘-lkpd)fm)»m = 0,

with no summation over j and k (Burridge, 1976)7

"In the case of vector amplitude, assume an asymptotic expansion of the solution to the elastic
wave equation:

= A AT 200 <0
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Again, the problem of finding the asymptotic solution resulting from given sources
decomposes into two parts: ray tracing which defines the continuation of the phase
independent of the amplitude; and determination of the amplitude. which is carried

out by following intensity variations along the rays.

where 4" is the amplitude, f, = €'®(iw)~" and ¢ is the phase. Substituting the expansion into
elastic wave equation and equating the coefficient of f_» to zero, one has

(pOix — cijuk;ki)Af =0,

where k, = 0, and k; = ¢,. Let p€2(k) be an eigenvalue of the symmetric positive definite matrix
cyktky k. Obviously. £(k) = 1 and A is the corresponding eigenvector. The eikonal equation. for
A is parallel and perpendicular to k. respectively, can be written as

&) = [k /7;. (k) = kP*/~.
Equating the coefficient of f_, to zero, one has
(PO = coypek k) Ak + (cyrkrAR) ;) + cou ALk, = 0.
In order to obtain the transport equation, the above equation is contracted with A% ie.
A%(pu — copkjki) AL + AcimkiAR) ., + Aciyr AR K, = 0.

Notice that A9 is a null vector of matrix (pdix — cijrtk, ki), so the first term vanishes. The reset two
terms can be combined as the transport equation:

(Cz,kl-‘l?-'igkl).‘; =0.
By differential (p€2dix — ¢, ik, k) AS = 0, with respect to kp, one has
(p{"é,k . Cuklkjkl)(-‘lg)’ + (2p£flts,'k - C,-p“k‘[ — C,'Jkpk_,):lg. = 0.

Contracting with A9, the first term vanishes and one obtains p€€'A?A? = ciprr A? ARk Noticing
that £€' = k,/7*. ¥ = v or 7, one simplifies the transport equation as:

(cyrA2ARK) , = (§|Aolzkj)J =0.
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4.3.2 Inversion theory

We can rewrite (4.31) as (see Chapter 5):

Ul(r,s) =/ Z o1(x)wy(cos B(x. r,s)) A(x, T, s)e® = ) dx, (4.33)

=1,23

where U(r,s) represents one of the components of a specific elastic scattered wave
mode such as Uy, 0;(x) is the object function, and w;(cos 6) is denoted as the polar-

ization factor. As in the previous section, amplitude A(x.r.s) = A(x.s)A(x.r) and

traveltime B(x.r.s) = o(x.s) + &(x,r). In the case of p-p scattering,

’

N 0 21

myﬁ,m}, w(cos @) C {1.,cosb.cos” 8}.

or(x) C {
Utilizing the results of the scalar wave inversion, one obtains :

Z o1(x")gim(cos8) = F{U(r.s) }(x) (4.36)

1=123
where
gim(cos 8) = wy(cos @) wy,(cos ),

U(r,s)wp(cos8)|J| e 1o(x.rs

Vdsdr.
A(z,r,s) sat

Fr{U(r.s.w)}(x) = /

and |.J(k,|r.s)| is the Jacobian transformation as in the case of scalar wave. The wave

vectors are defined as the following:

k} = é._](xss)v k] = (Z;.j(xﬂ r)v kJ =R + l;:J’

Again the pseudodifferential operator F,, is the generalized Fourier transform. Notice
that the additional weighting function w,, is used to facilitate the recovering individ-

ual component o; of the object function. In the time domain, as in the case of scalar

.
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wave, one obtains:

Z O[(X)glm(COSH) = fm{U(l',S, t)}(x)tz‘r(r,x.s)- (43‘_)

=1,2,3

4.4 Inversion examples

This section demonstrates the algorithm with numerical experiments. The first ex-
ample is a model of five diffractors. The synthetic data is generated using the moment
method. Figure 4.12 shows the model and the reconstruction, which is comparable
to the model except the horizontal blurring due to the limited aperture of the source

arrav and receiver array.

20 40 60 80 20 40 60 80

Figure 4.12: Image constructed from diffractor model (slowness): (a) is the model and
(b) is the reconstructed slowness image.

The second experiment is based on a model with complicated structure units.
The svnthetic data is calculated by the distorted Born approximation. Notice that
the receiver array is located in the bottom surface instead of on the top, i.e. the
forward scattering wave field is generated. The original model is decomposed into
background and the perturbation to the background (see figure 4.13). Figure 1.14
shows the model and a common source gather. The inversion of the data using the
Born approximation is used to show that the algorithm is correct under the given
assumption and that the factors influence the inversion. Figure 4.15 shows the recon-

structions with different background velocity. Figure 4.15a is the reconstruction with

.
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Figure 4.13: A complicated velocity model: The top panel is a velocity model with
complicated structure units, where different shading indicates different velocity; the middle
and bottom panels are the decomposed background and perturbation to the background.
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source array

vvvyVvVVVVVVVVVVYV VVYV

{a) =

AA A A A A A A A

‘\\receiver

array

(b)

Time (ms)

100
20 40 60 80 100 120 140 160 180
Offset (m)

Figure 4.14: A source gather of the complicated synthetic model. The source and receiver
locations are displayed in (a) and the scattered field of a common source gather generated
using the Born approximation method is shown in (b).
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(a)

(b)

(c)

Figure 4.15: Asymptotic inversion: a) the reconstruction with a constant velocity back-
ground; b) the reconstruction with a background velocity of 20 percent higher than the
correct velocity; and (c) the reconstruction with correct background velocity. Notice that
the synthetic data is created with the distorted Born approximation.
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JTM-1080

JTM~1068
(injection well)

1852

2850 19%5C It
reservoir

Figure 4.16: McElroy site well location of co, injection experiment.

a constant background velocity and, obviously, the result is poor. Figure 4.15b is the
inversion with a background velocity 20 percent higher than the correct background
velocity (figure 4.13). The basic features of the model can be recognized except the
complicated detail. Figure 4.15¢ is the inversion with the correct velocity. which pro-
duces a result almost identical to that of the original model. This is not surprising.
since the data is calculated using the same approximation to the inversion theory.
The algorithm is also applied to field data from McElroy test site in west Texas.
These surveys have source and receiver apertures across the reservoir zone. as dis-
played in figure 4.16. Figure 4.17 shows the reconstructions of near offset data in
the time domain without any data processing and inversion regulation. Both p- and
s- slowness images indicate horizontal bedding between 2850 and 2950 ft. as well as
dip layers between 3000 and 3100f¢. Although the traveltime tomogram successfully
images the major layers, there is little evidence on the tomogram for the fine bedding
inside the reservoir. The poorer resolution in the p- wave image relative to s- wave
image is due to the directivity, i.e., the p- wave scattering is less efficient than that

of s- wave in the near offset survey.
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2700~ [N
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2900
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3000
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(a) (b) (c)

I

slowness (us/ft) slowness (us/ft) slowness (us/ft)

Figure 4.17: McElroy near offset wave asymptotic inversion: (a) traveltime tomogram,
(b) and (c) diffraction tomogram reconstructed using pp and ss waves respectively.

The resolution of the diffraction tomogram is higher than that of the traveltime
tomogram. but the useful details are buried in the noisy distortions due to the poor
quality of the data, especially that of the amplitude. This poses a great difficulty to
interpret these images. Therefore, some smoothing and enhancement of the field data
has to be done before applying the inversion procedure as discussed in the following
example of crosswell time-lapse monitoring survey at the McElroy test site.

In this example, we study the time-lapse slowness difference for the repeated
surveys before and after co, injection between wells JTM-1068 and JTM-1202, and
between JTM-1202 and JTM-1080. One study (Lumley, 1996) shows that the pore
pressure changes, among other factors, lead to the change of seismic parameters.

such as amplitudes and velocities of the elastic waves that can propagate and scatter
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through the reservoir. As expected, the pore pressure increases near the injection
well when co, liquid is forced into the reservoir. The increase of the pore pressure
leads to the effective pressure® drops, and consequently, the wave propagating velocity
decreases. Figure 4.18 shows the the first arrival time and their changes observed in

the McElroy long offset survey. The average difference of traveltime is about 10 to

receiver receiver

50 50

source
—t
o
o
source
—h
o
(=]

150} 9

50 100 150 50 100 150

Figure 4.18: McElroy far offset first arrival picks: the left panel represents first arrival
picks of the survey before co, injection; the right panel represents first arrival picks of the
survey after coy injection.

15 percent as indicated in figure 4.19. Notice that the changes in figure 4.19 reflect
only the first arrival time. The change of other characteristics of the wavefield are also
evident in the following wave field gathers of the two surveys, as well as the spectra
of the scattered field to be discussed next. Considering the practical problems of real
data, such as limited aperture, measurement instrumentation, noise and etc.. some
data processing and regulations to inversion has to be applied.

Assume that the spectral of the total field U‘(w) can be written as

Ut(w) = UN(w)U* (w) = A(w)e™"

8 Laboratory experiments show that both compressional and shear wave velocities in rocks strongly
depend on effective pressure that is difference between confining pressure (overburden) and pore

pressure: Pefective = Peonfining = Ppore-
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Traveitime changes (percantage)

20 40 60 80 100 120 140 160 180
receiver

Figure 4.19: McElroy far offset first arrival picks changes due to co; flood: the biggest
change occurred in injection zone at depth of the reservoir.

where A is the amplitude and 7 is traveltime, U® is the scattered field. and {° =
Ao(w)e*™ is the background field while A and 7 is its amplitude and traveltime
(notice that the definition of the scattered field and background field is different here).
The above expression states that the total field is the background field modified by
the scattered field U®. Obviously. the scattered field can be derived as

Us = ‘4(“"}) eiw(‘r—‘ro)‘

Ao(w)
The 7 can be found by taking derivative of the total field with respect to w. i.e..

= U‘(———‘j((u“j)) + i),

U (w)
Ow

where 4'(w) = 04(w)/0w, and therefore,

r=(2 9y,

where the symbol 3{-} represent the imaginary part of a complex quantity. Notice

also that in this formulation, if the traveltime 7y is taken as the first arrival time.
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Figure 4.20: McElroy far offset data sets: (a) a common source gather of prior co,
injection survey, and (b) a common source gather of posterior coy injection survey.
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then the prior knowledge can be incorporated into the picking process. Since different
downhole sources are used during the two surveys, the amplitudes are less useful in
terms of time lapsed monitory.

Figure 4.21a and b shows the real part spectra of the scattered field from the
two near offset surveys before and after the injection, according to the formulation
described above. Unfortunately, the receiver aperture of the second survey is not
complete, making the time-lapse comparison difficult. Figure 4.22a and b shows
the real part spectra of the scattered field from two surveys before and after the
injection, according to the formulation described above. Notice that the amplitude

of the wavefield is discarded.

source
line

receiver receiver

receiver \
line \

\ L

\

source

(c)

Figure 4.21: The spectra of the scattered waves from McElroy near offset survey (real
part): (a) is from the survey prior to co, injection; and (b) is from the survey following
the co, injection. Notice that both the source and receiver aperture of the second survey
are not as deep as that of the first survey.

From figures 4.21 and 4.22, one can see the patterns corresponding to layering
of the medium, even through the amplitude information is discarded. Applying the
inversion method described by equation 4.28 and smooth filter to the data shown in
figure 4.22, we obtained the results consistent with prior known geological informa-

tion. The figure 4.23 displays the diffraction tomogram of the slowness reconstructed
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Figure 4.22: The spectra of the scattered waves from McElroy far offset survey (real part):
(a) is from the survey prior to co, injection; and (b) is from the survey following the co-
injection.

using McElroy near offset data. The figure 4.24 displayed the slowness images from
the far offset data set before and after the injection. The visible fault system in the
prior injection image, which is the up panel in figure 4.24, is consistent with prior
geological information. However, after approximately one year of co, flood, the aver-
age slowness increased up to ten to fifteen percent. The fault system seems to be less
obvious in the post injection image.

Figure 4.25 is the difference between the two tomographic results. Some of the
anomaly in figure 4.25 may be due to the data quality of the different surveys. but
the large slowness increase in the injection zone at the depth of the reservoir is clearly
the consequence of the co, injection. The anomaly slowness increases at the reservoir
zone. The visible slowness increases inside the reservoir is less ambiguous and possibly

due to the transient co, pressure.
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Figure 4.23: McElroy near offset wave asymptotic inversion: the left and right panels are
the slowness images from the near offset dataset prior to and following the co, injection,
respectively. The noise in the low-right corner of the post injection image is due to
incomplete aperture.
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Figure 4.24: McElroy far offset wave asymptotic inversion: the up and low panels are
the slowness images from the far offset dataset prior to and following the co, injection,

respectively.
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4.5 Conclusions

Using the the wave asymptotics, a general Fourier transform is derived that has
an approximate inverse, in the sense that the inverse operator recovers the most
singular part of the discontinuities of the medium. The resultant algorithm is similar
to the Kirchoff migration and simple to implement. The numerical experiment and
field data inversion demonstrate that the algorithm is flexible and can be used to
image complicated subsurface media. One should emphasize that asymptotic wave
theory is subject to fundamental restrictions which put limitations on its applications.
These restriction involve the physical parameters: frequency of the wave. scale and
gradient of the medium. If any of these restrictions is violated, asymptotic wave

theorv becomes progressively invalid.
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Chapter 5

Random Medium Inversion Using

Diffraction Tomography

Complex systems. such as the earth’s medium with fine or multicomponent structures.
cannot always be described in a deterministic fashion because of either inherent irreg-
ularity or lack of knowledge of the phenomena observed. We may treat these types of
media with complicated distribution of small scale inhomogeneities as random. The
random medium may be viewed as a particular realization of random processes. The
wave propagation description of the earth’s medium is complicated by such hetero-
geneities and discontinuities in which the wave energy is scattered randomly. This
chapter studies the inverse scattering problem of random media and determines the
statistical properties by extending the diffraction tomography procedure discussed in
previous chapters. The resolved statistical quantities are appropriate to be used in
identification of fracture scales and orientations. In addition to being used to identify
the scales and orientations of the inhomogeneities, the estimated statistical quantities

can also be directly integrated into geostatistical simulations.

5.1 Diffraction vs. diffusion in random media

Waves propagating in the random media are often treated by using the diffusion

equation to calculate the effective transport properties of random media. Laboratory

107
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measurement and modeling results (Mukerji, 1995) show that in the effective medium
or long wavelength limit, the heterogeneous medium can be modeled as a homoge-
neous (possibly anisotropic) medium with an effective elastic modulus and seismic
velocity.! It is based on the principle that the wave energy density should be uniform
when averaged over length scales larger than the size of the inhomogeneity. Figure

5.1 shows some examples of random medium. They have different densities of the

Figure 5.1: The medium with different concentrations of the random distributed scatterers
is approximated as an effective medium. The wave scattering can be treated as a diffusion
problem. The top and bottom panels are for low and high concentration of scatters

respectively.

uniformly random distribution and can be approximated as effective media. How-

ever, it is not enough to obtain average transport properties of the media. In many

L The simplest approximation to a random medium is the effective medium theory according to
which waves propagate as if they were in a homogeneous medium whose properties and effective
parameters are constant. This approximation is valid in general but is restricted to propagation
over distances of the order of, or not much larger than, a wavelength. It is useful in the analysis of
waves in confined regions but cannot account for the localized phenomena.
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geophysical situations, random distributions may be locally clustered (figure 5.2 and
the clustered inhomogeneities will scatter wave fields collectively. The information
beyond average properties are contained in the second moment of the wave field. The
second order statistics of the random media are more appropriate in geophysical and

geostatistical applications.

AT
Pt X133

Figure 5.2: An locally clustered medium: the left panel displays a statistically homoge-
neous medium, while the right panel shows a locally clustered random medium.

To obtain these statistical properties, we examine the wavefield correlations using
full wave representations, either scalar or vectorial. The spatial power spectra of the
scattered fields are utilized to characterize patterns of inhomogeneities. Notice that
the detailed spatial and temporal variations of the wave field, therefore the medium
in which waves propagate, can never be retrieved from the moments of wave field. To
obtained such information, there is no substitute for an exact solution to the problem.

We assume the large scale component of the elastic parameters is known and the
perturbations are random functions of spatial variables with zero mean. When the
large scale component of the elastic parameters is inhomogeneous, the asymptotic
inversion is used, as discussed in Chapter 5. By probing the medium with multiple
sources and receivers, such as in cross well or 3D seismic survey, the second order
statistics of the medium are inferred from the second moment of the scattered field by
extending diffraction tomographic inversions. The inverted correlations are significant
in the following ways: (1) they are consistent with the wave propagation theory and

have definite physical meaning; (2) they can be multi-dimensional i.e.. the obtained
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correlations are in both horizontal and vertical directions.

5.2 Random media and wavefield characterization

5.2.1 Random media simulation

The scattering properties of the medium depend not only on the mean but also on
the correlation of the randomly varying part of the material property. Let m,(x).: =
1.2.3 be a random isotropic elastic medium, where x = (z.z), which may consist
of p-wave velocity. v,/vs ratio and density. The function m;(x) can be decomposed
into m(x) = m® + m’(x), where m° represent the large scale inhomogeneities while
m’'(x) represents small scale inhomogeneities. The correlation of the fluctuation is a
measure of the size and shape of a typical irregularity in the medium. The correlation
function is well understood if m(x) is a random function of time. such as the density
of the atmosphere when temperature fluctuates. In that case, the assembly average”
may be taken. There is a general way of characterizing a random variable by means
of averaging over time or space, which in principle must be performed by repeating
the experiment many times on different samples. This tacit consideration is called
the ergodic assumption, as depicted in figure 5.3.

Notice that these averages may or may not have a direct connection with particular
quantities that are found in a particular sample. In practice, we replace the ensemble
average by the temporal average so long as the process is statistically stationary
and the total amount of time is large enough to encounter sufficient members of the
ensemble.

In a solid medium, however, the fluctuation of the property m’(x) is not a func-
tion of the time at least for the durations of seismic experiments. By analogy to

the ergodic assumption for temporal stochastic process, the ensemble average of the

2If m(x) is a random function of the coordinates x, there exist an infinitely large number of
random functions m which differ from each other but are described by the same probability density.
This infinitely large family of possible function m(x) is called an assembly. The assembly average of
m at the point x is obtained by taking the average of m(x) over all members of the assembly. This
operation is denoted as by < m(x) >.
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Ensemble

Random processes
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Pealizat:ons

Ensemble average =
Time (Spatial) average

Figure 5.3: To obtain complete statistics of a process, an ensemble of realizations is
needed. In ergodic processes, the complete statistics can be determined from any one
realization, i.e., every realization carries an identical statistical information.

spatial random functions is approximated as the average over the volume. assuming
that the fluctuation m’(x) has spatially invariant statistical properties within the vol-
ume considered. [t can be shown that the ensemble average of the power spectrum is
the average correlation function over the considered volume (Papoulis. 1965). Under
these assumptions, correlation is spatially invariant.

The correlation function can have various functional forms depending on the na-
ture of the irregular medium such as the Gaussian form, the exponential form, fractal
form and etc. The form of the probability distributions governing m,(x) and the form
of the correlation function are quite independent of each other. A function m,(x)
obeyving Gaussian statics may or may not have a Gaussian correlation function. and
vice versa. Assuming the random function m;(x) has an exponential autocorrelation
function (Ikelle, 1993), for example,

2 2
¢i(€.n) = exp(— %Jrg;)’ (5.1)

where a and b are the autocorrelation length scales, the spectrum of the media in the
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Fourier transform domain is constructed as

"\/[i(kzv k:) = ICi(kz:s kz)lexp(iﬂ(kr, k:))v ( .

Ut
o
~

where C;(k;, k-) is the Fourier transform of the correlation function ¢; and the uniform
distribution 8 C [0,2n] is defined as the phase of the spectrum M. The random

function m; is then generated via inverse Fourier transform, i.e.
mi(z. z) = FTaa{ Mi(kz, k2 )w(kz k) } (5.3)

which has the desired autocorrelation function. Notice that the filter w(k,. k.) is
designed to remove the D.C. component. Notice that only phase is randomized.

therefore, the resultant model may not be truly random.

Figure 5.4: The correlation function and realizations: the right panel is the correlation
functions with different vertical and horizontal correlation length a's and b's. The left
panel is the realizations generated with the correlation functions.

In synthetic simulation, the random distribution is characterized by given au-
tocorrelation functions. With figure 5.4, we show the exponential autocorrelation
functions of various correlation length. The realizations are intended to describe the

inhomogeneities of the medium as isotropic or elongated in a specified direction. The
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correlation between the perturbations of the elastic parameters is still an open ques-
tion which and beyond the scope of this paper. We assume the cross-correlations

between the three elastic parameters are independent.

5.2.2 Weak and strong fluctuations

In order to describe the statistical average of scattered field energy < UU* >. weak
and strong fluctuations of the wavefield are considered separately. As a measure of
wavefield fluctuations. a parameter e is defined as the amplitude ratio of the incoherent
scattered field to coherent incident field (Shapiro, 1993), i.e.,

€ =~ 2alL, (5.4)

where « is the scattering coefficient of the mean field and L is a travel distance.
If the correlation distance ry of the inhomogeneities is of the same order or larger
than the wavelength )\ then the coefficient « can be roughly estimated as o?k*rj .
where k£ = 27/) and ¢? is the variance of the fluctuations. In figure 5.5 we depicted

2Q

v N

Figure 5.5: The scattering vs. the scale of inhomogeneity: the random spatial distribution
function m;(x). The weak scattering can be interpreted as A >> ro, where ry is the
correlation length and ) is the average wavelength of the incident wave in the medium .
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5.2 Random media and wavefield characterization 114

the average wavelength \ and the correlation length ro of the fluctuations of elastic
parameters. The weak scattering can be interpreted as A >> ry. which is used to
gauge the wave field modeling. In a random medium without energy dissipation. the
coherent field and its intensity attenuate due to the energy transfer from Uy to U. The
region of weak wavefield fluctuations is limited to small propagation distances where
e << 1. For large L or large a, ¢ >> 1 strong wavefield fluctuations are expected.
In random media, the wavefield behaves differently in regions of weak and strong
wavefield fluctuations: we solve the problem of small wavefield fluctuations using the
first Born approximation, while for the case of strong fluctuation. the asymptotic

method discussed in Chapter 3 is used.

5.2.3 Wave field simulation

In the following, wave propagation is simulated using finite difference method. The
observation system consists of one shot and multiple receivers in a transmission geom-
etry. The random models are (1) the realization simulated using exponential correla-
tion function and (2) the realization simulated using Gaussian correlation function.
The possible errors include those that result from finite grid size and finite simulation
dimensions. In the implementation, we make sure that the first two statistical mo-
ments are correct. To satisfy the condition of stability and dispersion required in the
finite difference solver, the limits to p-wave velocity and s-wave velocity variations are
imposed. These limits are large enough so that statistical parameters do not change.

In Figure 5.6, we show the geometry of the calculation. The receivers are placed
at positions having equal distance to the source location. The source is polarized
in x direction. This geometry is easier to observe the first arrival and the effects of
the radiation pattern. The simulation results are shown in Figure 5.7 and 5.8. We
can see that although the first arrivals are not sensitive to the inhomogeneities, the
scattering is energetic and rich. In this chapter, the data for the synthetic examples
are not simulated using the finite difference method, which requires extensive com-
puter power. The Born approximation is used instead since the conditions of the

approximation is satisfied by choosing appropriate background medium.
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Figure 5.6: The geometry for calculating wave field with finite difference.

5.3 Inversion of correlation functions

Waves scattered by random media are very noisy because of the multiple scattering. If
large scale variation of medium properties can be distinguished from their small scale
fluctuations due to random inhomogeneity, then it is possible to invert the statistical
properties of random media. Instead of multiple independent realizations, the wave
field observed along the source and receiver aperture is used to compensate for the
randomness. We assume the large scale component of the elastic parameters is known
and the perturbations are random functions of spatial variables with zero mean. We
consider the inverse problems of determining the spatial correlation function of the
perturbation functions with the measured fluctuations of the scattered fields and their
spatial correlations 3. Under the hypothesis of stationarity, the autocorrelation func-
tion depends only on the correlation length. In this section we derive the procedures
to recover the correlation function of the inhomogeneity function for various practical
situations and illustrate the derived methods with numerical examples. For synthetic
example, we use the Born approximation to simulate wave propagation in the random

media of various correlation functions.

3For the assumed statistical homogeneous medium, the correlation function depends only on
the coordinate differences r = ro — r;. For r = 0, the correlation function achieves its maximum
and equal to the mean square fluctuations. The first moment of wave field gives the way that the
incident wave is attenuated on passing though the medium. The second moment < UU* > is the
autocorrelation function of the wave field which determines the power or ‘visibility’ in terms of
optics.
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ifference simulation of the wave propagation in a random medium

with an exponential correlation. The left panel is the horizontal component and the right

panel is the vertical component.

Figure 5.7: The finite d
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5.3

in a random medium
with Gaussian correlation. The left panel is the horizontal component and the right panel

Figure 5.8: The finite difference simulation of the wave propagation
is the vertical component.
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5.3.1 Case of the statistically homogeneous media

We first consider a simple case of scale wave in a statistically homogeneous medium.
The scattered field U(s,r) under the Born approximation can be written as (see
Chapter 2):

(W)}
Ut

U(s,r) ~ - /v m(x)G(x, s)G(r, x)dx, (:

where m(x) = w?(1/c3(x) — 1/*(x)) and G is the Green’s function. Taking the
Fourier transform of along source and receiver array, e.g., with respect to source and
receiver well lines respectively in the case of crosswell survey (see Appendix A). one

obtains
UK, k) ~f(k',k)/ m(x)e & ~kxgx (5.6)
y

where k' and k is incident and scattering wave vector, respectively: and f(k'. k) is a
function resulted from plane wave decomposition that depends on the dimension of the
problem (see Appendix A). Without confusion, we use the symbol U for both of the
scattered wavefield in the spatial domain and Fourier domain. They are distinguished
by the function argument of x or k.

The second moment of the scattered field < U(s,r)U*(s,r) > in the spatial
domain can be evaluated through its spatial Fourier domain representation. i.c..
< Uls,t)U(s,r) >= FFT~Y{|U(K',k)|?}. while the power spectrum |U(k’.k)|* is
directly related to the correlation of the inhomogeneity according to diffraction to-

mography theory, i.e.,

—_
(@]
=1

~

UK k)2 ~ / R(€)e™ " ~K¢ge,
:

where R(€) =< m(€ + x)m(x) > is the correlation of the object function m 1. Ob-

viously, we can invert the correlation function R(x) from equation (5.7) by using

1Using relative coordinates £ = x~y, [ [ m(x)m(y)e=**¥dxdy = [ R(£)e~ . ¢d¢E, where the
correlation function R(€) = [ m(y)m(y + £)dy.
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diffraction tomographic procedure (described in Appendix A). The inversion proce-
dure is demonstrated with a synthetic example shown in figure 5.9. The left panel in
figure 5.9 shows an exponential correlation. The correlation length. a = b = 0.5. is
described in section 2 of this chapter. The right panel is the random velocity pertur-
bations generated with an exponential correlation function. The maximum amplitude
of the random velocity perturbation is ten percent of background velocity. The global

average of the perturbation is less than 0.01 percent. Figure 5.10 shows the scattered

Figure 5.9: A random medium with an exponential correlation with the correlation length
of one meter: the left and right panels are the correlation function and the random medium
generated, respectively.

field amplitude simulated and recovered correlation of the inhomogeneity. The field
is calculated using the Born approximation. As expected, the in-line scattering is
stronger than that of off-line. This is indicated as stronger amplitude along the diag-
onal in the left panel. The inverted correlation function is shown in the right panel
of figure 5.10, which is almost as the same as that of the model. This is due to the
fact that the wave field calculation and inversion are carried out with a fully circular
aperture.

For the limited aperture, the quality of the reconstruction will be degraded. as
demonstrated in figure 5.11. The left and right panels are the wavefield amplitude
and correlation function reconstructions with a semi circular aperture. One can see

that the recovered correlation function is smeared in the horizontal direction. One
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Figure 5.10: The inversion of medium correlation using Born approximation: the left panel
is the wave field amplitude generated using the circular aperture; and the right panel the
inverted correlation of the medium.

incident angle

50 100 150
scattering angle

Figure 5.11: The inversion of medium correlation using Born approximation: the left panel
is the wave field amplitude generated using the semi circular aperture; and the right panel
the inverted correlation of the medium.
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should pay particular attention to this distortion when interpreting the results with

real data.

5.3.2 Case of the stacked data

For the surface seismic survey, especially 3D seismic survey in which large amount of
data is involved, it is an advantage to work with stacked data, since the amount of
data is reduced, as well as higher signal-to-noise ratio. This section shows how the
stacking process is related to plane wave decomposition and the stacked wave field
can be inverted using the diffraction tomographic technique.

Using the concept of exploding sources (Claerbout, 1995), a common midpoint
(CMP) gather may be treated as an exploding source gather as shown in the top

panel in figure 5.12. The stacking over a CMP gather can be written as

Uemp(S. t) = //u(s.r,t—r(r))dr,

where uqpn, is the stacked wavefield; r are the coordinates of the receiver on the
surface: s is the coordinates of the middle point or exploding source; and 7(r) is the
move out correction. Taking the temporal Fourier transform of the stacked wavefield

Uemp, ONE obtains
Uemp(s. w) = /U(s.r,u)e‘“”(")dr.

where U is the Fourier transform of u. Notice that if wr(r) is designated as k. (r) - r.
the the stacked wavefield in frequency domain is equivalent to the plane waves with

the wavenumber k.(r).
Uernp(s,w) = U(s, k.) = /U(s. row)e® Tdr.

Similar to the crosswell diffraction tomographic technique, the Fourier transform is
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stacking along receivers

CMP gather - ‘\ exploding source

Kr

% P I % plane waves
Transform along sources
- e s

Kr
& [ % plane waves

Ks
% ' % plane waves

Figure 5.12: The middle point (CMP) stacking geometry and exploding source gather:
the top panel displays the middle point gathers and the stacking is equivalent to the plane
wave decomposition; the middle panel shows that the exploding sources are synthesized
as plane waves; and the bottom panel depicts the plane waves at receiver location and
exploding source location in the fashion of the crosswell diffraction tomography.
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taken along the exploding source to synthesize the plane waves.? i.e..
Uk, k) = /U(s,r,w)e'(k"”’é's)drds.

The operation is shown in the middle panel of the figure 5.12. As in the case of
crosswell diffraction tomographic inversion, the correlation function is obtained by
inverting the spatial power spectrum of the wavefield.

The variation of k, is provided using either the variation of the stacking velocity
or the variation of the temporal frequency, or the combination of two. The spatial
wavenumber coverage is shown in figure 5.13 Using the model of the exploding source.
the crosswell diffraction tomography is used to invert the stacked data. The procedure
is outline in figure 5.14

In the following example, a stacked profile of 3-D surface seismic surveys from west
Texas is inverted. Figure 5.15 is the stacked profile and figure 5.16 is the inverted

velocity profile.

5For an incoming plane wave, the outgoing spherical wave, under the far field approximation. the
total field ¢(x,k) can be expressed as

_ ekl
(b(x, k) = EIp(lk . X) - -LT—l)(IT(kIV k)
where k and k' = |k|x/|z| are the incident and scattering wave vector respectively; and
T(k' k) = / m(x")e™ ™ ¥ o(x' k)dx'.
Applying the Born approximation, ¢(x’, k) = exp(ik - x'),

T(k' k) = /m(x')e“"-"’>*'dx' = M(k - k')

where M is the Fourier transform of m.
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Kr variation

!

temporal frequency variation

stacking velocity variation

Figure 5.13: The spatial wavenumber coverage of the middle point gathers: the variation
of the wavenumber k, is provided using the variation of the variation of the temporal
frequency. The coverage is in the fashion of the crosswell diffraction tomography.
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Figure 5.14: The flow chart of stacked data inversion.
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5.3 Inversion of correlation functions 127

The correlation of the inverted velocity inhomogeneity is shown in figure 5.17.
One can see that the degree of the horizontal correlation is much higher than that
of vertical and the orientation of the correlation is slightly tilted. These reflect the
nature of weak horizontal variation and modestly dip in the zero offset time section
and inversion. Notice the multiple scales of the inhomogeneity are also reflected in

the vertical variation of the correlation.

z_log

-40 -30 -20 -10 0 10 20 30
xlog

Figure 5.17: The inverted correlation function of surface seismic data: the vertical varia-
tions reflect the multi-scales of the inhomogeneity in vertical direction.
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5.3.3 Case of the inhomogeneous background

If there is a trend or large scale variations in the medium, then the mean or back-
ground is no longer constant. As a result, the strength and scale of the inhomogeneity
can be strong and large. The Born approximation is broken down and and the covari-
ance is no longer the appropriate to model the spatial correlation structure anyway.
Unfortunately, this happens very often in practice. To overcome the difficulties due to
strong scattering, we apply the asymptotic technique as discussed in Chapter 5. and
decompose the variation of the inhomogeneity into large scale and small scale com-

ponents. as figure 5.18 indicates. Assuming that the large scale variation is known.

mo

Figure 5.18: lllustration of the decomposed slowness profile with the prior knowledge 7o
and additional variations m’. mg may or may not be a homogeneous reference background.

we treat the smaller scale inhomogeneity as random perturbations to the variable
background. In this section, we consider the influence of variable background upon

the second moment of the wave field, and the asymptotic inversion of the correlation

function.
The scattered field U, see the Chapter 2, can be written as

U(s.r) ~ —/ m(x)A(x, s, r)e?s"dx, (5.8)
g

where A(x,s,r) and &(x,s,r) are the amplitude and phase of the background field.

Taking the Fourier transform along the source and receiver arrays and utilizing the
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asymptotic Fourier transform outlined in Appendix C. one obtains
Uks kr) ~ [ m(x)A(x, ks, k,)e ke dx,
L’

The second moment of U(k;,, k,) can be written as:

U (ks. k)2 ~ / / m(x)m(y) A(x, ks, k) A(y, Ky, k, ) 00k ke) oty kekrldydy.
vy

Expand the phase function o(x, ks, k) in the vicinity of y. i.e..

d(x. ks, k) — o(y. ks, k) = 0,(y. ks, ke ) (z; — y;5)-

Letting £, = x,—y, be relative coordinates, expanding the amplitude and wavenumber

o, at £, and considering only the leading term. i.e.
A(x) ~ A&, Aly) ~ A(§), o,(y ke kr) ~ ®,(& ks, k).

one obtains an expression of the power spectrum of the wavefield,

Uil ~ [ ROIA ke e 59

where R(€) = [ m(y + &)m(y)dy is the correlation function and depends only on the
relative coordinates, and k; = ¢ (£, ks, k,). The approximation is justified because a
smooth variable background is assumed.
Utilizing the results of Chapter 5, we can invert the correlation function R(§). i.e..
etk

R(E) ~ ‘U(ksvkr)l2

o ml'](k; k,, k. )|dk,dk,, (5.10)

where  is the support of kg, and k.
We demonstrated the technique discussed above with the field data from the
McElroy far offset data set in figure 5.19 which shows the reconstruction of the per-

turbation function m(x) using the asymptotic inversion without any data processing.
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Even though some desired features seems to be clear in the tomogram. the distortion
and noise are significant, because of data quality, many types of conversions. limited
aperture, and etc. It is difficult to interpret the tomogram with this distortion and
noise. The correlation of the perturbation function, on the other hand, may be useful
in certain circumstance, since the incoherent noise and signals play less role when we
perform inversion using the power spectrum instead of wave field itself. The right
panel in figure 5.19 shows the inverted correlation function of the perturbation func-
tion. One can see that the orientation tilted slightly orientation towards to north-east
which is consistent with the results from other techniques such as reflection mapping

(TomSeis internal report, 1996).

depth

offset

Figure 5.19: McElroy Far offset inversion: the left panel is the diffraction tomogram of
velocity inhomogeneity recovered from the data set without any processing; the right panel
is the inverted correlation function. the correlation length unit is 5 ft.
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5.3.4 Case of the random elastic media

In this section we consider elastic random media. The elastic scattered field U;, under
the Born approximation can be written as the summation of the scattered fields from

p-p, p-s. s-p, and s-s scattering (Beylkin and Burridge, 1987), i.e

UszUf:+U] +U ]k’
where
A\ p/ 2#1 . . op
U ~ / 200 { ———— + costP + ————cos* PP} AP Afe' dx.
¢ wp {\0 T30 + ~C0S 30 +‘2;L°COS } AP Afe
Uk ~ /.u p { cosﬁps ot }-1”-1 ps —™ dx,
v cpt®
U ~ / w2p { 60393” la stﬁsp}-lp ds” APer®” dx.
v coht®
! o' 33
Uss ssH / { cosH“ Zocos:Zf)“}.-ljp, 4 L0e T dx,
and

’
Uss\ /wlp(){;pa # 605‘0',3}4.”,./;5. ilﬂ/[s -1 dX
v

given that the ¢ is the total phase from source to image point to receive, e.g., and o =
B(x.8)P? + @(r,x)PP; p’, X' and p' are the density and elastic constants perturbations
against the background p° A° and p® respectively. Notice 877, §P%, 6°P. and §°* are

polarization angles. for example,
cosfPP = dr;’a?, cosfP® = &?dj cosB? = a*&F, cosh®® = a

where
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~P5 is in the direction of &” x &°, and §P° is orthogonal to both &* and vP*. We can

denote any of the above scattered fields in a general form (see Chapter 5):

Ujk(r, s) "‘/ Z my(x)wi(cos B(x, r,s)) Aje(x, T, 5)e?™"dx. (5.11)

=123

In the case of the p-p scattering, Uji(r,s) = UlL(r,s), 4, = .-i?.—i’,;, and T(x.r.s) =

7PP(x.r,s), and the perturbation function and polarization factor are:

/\l pl 2/1'1
N+ 207 507 A0 4 240

my(x) C { }. wi(cosB) C {1,cosf.cos’f}.

As in the case of scalar waves, we take the Fourier transform of Uj; along the

source and receiver, i.e.,

Uik, kr) ~ / Z mu(x)wi(cos 8(x, ky. kr)) Ak (x. ko ke K dax . (5.12)

=123

The power spectrum of the scattered field becomes

Usellec k)~ [ 37 Ra(3)Wo(cos ) Aje(6. K e 5 e
v n

where the correlation function R, and polarization factor 1V}, are defined as
R.(€) C {m11, naa, n3z. ny2, n13, Ng3 }

and

Wa(€) C {wi1, was, was, Wiz, w13, Wz}
with
ny =< m(y +&)mi(y) >, nae =< ma(y + §)ma(y) >.

ngs =< ma(y + E)ma(y) >, niz =2 < m(y +§)ma(y) >.

nz =2 <m(y +&)ma(y) > nx=2<my(y +§)ma(y) > .
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Notice that n;;(€) is the correlation of the elastic parameters which depends only
on the relative coordinates £. Utilizing the results of Chapter 3. one can invert the

correlation function of the elastic parameters as:

1?41 WV ~ I’Vm|U|2 —tk, €, J(k- k. k |dk dk (- 13
(f) n m a |4 k(€ k k )|2e I' ( v eSS r) s - 2 )
n <] 1 Se§y T

The individual correlation function can be solved from this system. The statistical
properties of the medium are characterized by means of correlation function, of the
elastic parameter R,. In this study, we do not explore the physical meaning of the
cross correlations between different elastic parameters. In the fracture characteriza-
tion applications, we can assume that o' = 0 then Y Rn(£)W, has only one term for
s-s scattering, just like the case of the scalar wave.

Figure 5.20 shows the spatial distribution function. shared by x'. and A% The

Figure 5.20: The correlation functions of the model. (a), (b). (c) and (d) corresponding
to fractures are oriented in 0, 45, 90 and 135 degrees respectively.

SIf the deviation of p’, X', and y' from their average values is not small, the scattered field will
be small only if the region in which these deviations occur is small. This is the situation of a thin
layer scatterer which is considered as the elements of fractures.
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horizontal and vertical autocorrelation lengths are 12.5 and 1.25m respectively. This
model may corresponded to oriented fractured rock. The corresponding p-wave ve-
locity is 3500m/s. the s-wave velocity is 2121m/s and the density is 2.6g/cm®. The
wave length for the p-wave is 10m and the crosswell near offset is 20 A.

Figure 5.21 shows the spectrum of the field calculated according to the Born
approximation described above and one can see that the backscattered energy is

stronger as the dip of the orientation increases.

nle
[o¥ R

Figure 5.21: The spectra calculated using the Born approximation. The axis of each
panel is source vs. receiver. As indicated, the stronger amplitude along the diagonal
corresponding to in line scattering.

In Figure 5.22, we show the inverted correlation function of the medium. We can
see that the retrieved correlation functions match the model well for 0°, 45°, and 135°
orientations. At 90°, the retrieved correlation function is severe distorted compared to
the original model. The reasons are that crosswell geometry has the poorer resolution
in the horizontal direction due to a limited aperture is used for both generating data

and inversion.
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aIb
cld

Figure 5.22: Inverted correlation functions from synthetic simulations: (a), (b), (c) and
(d) corresponding to fractures are oriented in 0, 45, 90 and 135 degree respectively.

For the McElroy near offset data, the first S-arrival and earlier arrivals are elimi-
nated and the amplitude is normalized to the zero offset. (Harris and Wang, 1996).
From a receiver gather of the McElroy near offset data set which is shown in figure
5.23. one can see that there are many chaotic ss reflection/scattering features in the
seismogram.

Figure 5.24 shows the temporal power spectra of the processed data set at two
distinct frequencies. We average the above two power spectra and invert the correla-
tion function using the technique discussed above. In figure 5.25 and figure 5.26. the
inverted correlation and variogram are showed.

One can see that the correlation obtained is strongly “anisotropic”. i.e., the hori-
zontal and vertical correlation lengths are quite different. This is expected since the
other studies suggest the geology structure at the McElroy set is basically one dimen-
sional. Note that the correlation function recovered here is the ‘raw’ image, not of a
particular elastic parameter but of the combination of the elastic parameters. Since

we assume g’ = 0, the correlation function is about the perturbation of the elastic
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Figure 5.23: The wave field from McElroy near-offset data set. The first S-arrival and
earlier arrival have been eliminated.

receiver receiver

source

Figure 5.24: The power spectra of the wave field at two distinct frequencies: (a) and (b)
are the spectrum at 1100 Hz and 1200 Hz, respectively.
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Figure 5.25: Inverted correlation functions from the McElroy near-offset McElroy near-
offset data set: the image represents the inverted autocorrelation function of the shear
modulus variation, assuming the density variation can be neglected.
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Figure 5.26: The variogram converted from the correlation of the well-log and from the
inverted correlation functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Application to reservoir simulation 138

constant p'. In the figure 5.26, the correlation from the well-log and the inverted
correlation function are converted into variograms. One can see that the multiple

scale or “periodicity” of the inhomogeneity in the vertical direction.

5.4 Application to reservoir simulation

Deterministic interpolation techniques do not take into account a model of the spatial
process. Advanced geostatistical techniques such as kriging and simulations allow
vou to quantify soft or qualitative information and to make predictions at unsampled
locations. The variogram’ (or its equivalent. the covariance) function is an essential
tool for any geostatistical analysis. It is either assumed known or considered available
through a sufficiently reliable estimate. The random medium inversion discussed
above provides spatial correlation structures. One one applications to the inverted
correlation structure is to construct the variogram or correlogram for geostatistical
simulations.

There are a variety of advanced simulation techniques, in the following we show
some realizations by using the sequential Gaussian simulation technique discussed
in Deutsch and Journel (1992). The variogram parameters is derived from figure
5.26. The simulation is conditioned by well logs to reduce the probability range of
the velocity distribution. Figure 5.27 shows six realizations. Figure 5.28 shows the
averages of 10 realizations.

The potential of Diffraction tomography is not only for imaging inhomogeneity
of a wavelength scale but also for estimating the statistical properties. The average
of the velocity realizations in figure 5.28 shows higher resolution and the scale of the
inhomogeneity is up to well-log scale. Notice that the simulations in figure 5.27 and

figure 5.28 is used to illustrate the concept and the results here may not be optimal.

"The variogram is related to the covariance in the following manner:
v(h) = covariance(0) — covariance(h)

where h is called the lag distance. Variogram can be can be derived from covariance and vice versa.
provided that the covariance exist.
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Figure 5.27: Realization of sequential Gaussian simulation: the variogram parameters is
derived from inverted correlation function from McElroy near offset data. The simulation
is conditioned by well logs.
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Figure 5.28: Average of 10 velocity realizations using the sequential Gaussian simulation
in which the information about inhomogeneity is up to well-log scale. (a)-(f) are different

realizations.
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In practice, simulations are conditioned by more than one kind of information to

narrow the probability distribution and this is beyond the scope of this thesis.

5.5 Conclusions

The methods of the random medium inversion discussed in this chapter complement
the tomographic inversions discussed in previous chapters, when media and wavefield
are highly irregular. The resolved statistical quantities, such as the auto-correlation
and cross-correlation of the random medium, can be used directly to characterize the
fracture scales as well as orientation, and reservoir simulations.

The random medium inversion is limited to the linear case. i.e.. the Born approx-
imation is used and only second-order statistics involved. It is possible to calculate
higher-order statistics. especially when nonlinear terms of scattered fields have to be
taken into consideration. A usefulness of the high order statistics is that the phase
relations between frequency components are preserved which provide critical infor-

mation for imaging.
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Appendix A

Diffraction tomography

A.1 Born approximation

The reduced scalar wave equation is:
(V? + k*n’(r))w(r) = 0, (A1)

where n(r) is the index of refraction, and w(r) is the scalar wave field. Let € be a
small number and n?(r) = n2(r) + €o(r), where no(r) is the background refraction
index, and o(r) is a small perturbation to the background, then the equation (A.1)

can be rearranged as
(V% + k2 nd)u(r) = —ek®o(r)y(r). (A.2)
The solution to equation (A.2) can be expressed as an integral equation:
¥(r) = Yo(r) — elcz/dr'G(r,r')o(r')w(r'). (A.3)
where vy is the incident fields, and G(r,r') is the Green’s function which satisfies

(V2 + k*nd)G(r.x') = -6(r — 1'). (A1)
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Let T (k) be the linear operator:
(TH() = [ dr'Glr =)o) F(E). (A3)
The integral equation (A.3) can be rewritten as
(T — €T (k))w(r) = vo(r). (A.6)
whose solution is given formally by
w(r) = (I — €T (k) 'wo(r). (A7)

If we define the normal €||T(k)|| = sup; W < 1, then (Z — €T(k))™! can be

expanded to

(T-Tk) " =T+ T (k). (A.8)
n=1
and therefore.
w(r) = Zf"wn(r), (A.9)
n=0

where ¥, (r) = Tn(k)wo(r) are waves scattered n times. The expansion (A.9) can be

truncated to get approximations to wave field ¢:

N

UR(r) = €"un(r). (A.10)

n=0
The first Born approximation is for N = 1 and the corresponding error is given by

EN(r) =) e"un(r) = VTV (k)u(r).

N+1
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or relatively

1ES (o)l

< N+1 Tk N-H. All

For example, assuming a homogeneous background, no(r) = 1. € = 1. and |o(r)| < M/
for all r. then

1 212 2y D2

| T (k)| = 5.Mk D* =27 M(X)-’ (A.12)

where D is the diameter of the scattering volume (Kelley, 1958). Thus. the Born series

converges if 272M(D/A)? < 1. The relative error of the first Born approximation can

be characterized by M?(D/))*.

A.2 Rytov approximation

Born approximation creates a linear relation between the perturbation function and
complex amplitude. The phase and amplitude is not separated. Rytov approximation
creates a linear relation between the perturbation function and complex phase. in
which the phase and amplitude is separated. This natural separation arrives from its
relation to forward scattered energy: traveltime delays accumulate through a velocity

perturbation. Let the total field be an exponential form, lLe..
w(r) = 5, (A.13)

where S(r) is complex phase function. Let § = S* + 5°¢. where 5' and 5°¢ are
complex phases associated with the incident field and scattered field, respectively.

Substituting (A.13) into (A.2) one obtains

T2(10p5°%¢) + k2(1465%) = —to(ken(r) + [VS*[?). (A.14)
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The solution to (A.14) can be written as
wo(r)S™(r) = - / wo(r') (kgn(r') + |VS*(r)[*)G (r, r')dr’. (A.15)
The Rytov approximation says that

wo(r)S*(r) = —k? /n(r')wo(r’)G(r.r')dr', (A.16)

A.3 Diffraction tomography of scalar waves

Using the first Born approximation ¥ = ¥y = G. equation (A.3) can be approximated

as
Ulrs.ry) = —kg/o(r')G(r'.rg)G(rg.r')dr'. (A.17)

where U = v — wp, and r; and r, are the distances from the origin to the considered
source and receiver respectively. The relation (A.17) is linear and can be reformulated
as the Fourier transform. The object function o(r’) can be reconstructed via the

inverse Fourier transform.

A.3.1 Two-dimensional reconstruction

For two dimensional problems, the Green’s function is the zero order Hankel function

of the first kind, i.e.

G(r.r') = —iHél)(lco\/h 1)), (A.18)

where |r — /| = \/(z — 2')2 + (z — z')?. Figure A.l shows the observation system of
the crosswell survey. Taking Fourier transform of (A.17) along the source array and

receiver array with respect to z, and z, respectively of expression (A.17). as indicated
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-

7

target

source array
receiver array

Figure A.1: 2-dimensional geometry of source and receiver arrays

in Figure A.1, one obtains (Harris, 1987, Wu. 1987):

kg

U’(I&k:ssrg’k:g) = '-1"/ >
sig

e”’r’""’g"g/o(r.z)e"(”'""-’)I“(k“*kw):drd:. (A.19)

where k.. k., are the wave numbers along source array and receiver array: vy, =

VK2 = k2, and v, = | /k§ — k2,. If we let
kr =% = Vg1 k= = ks + kg, (A.20)
the object function o(z, z) can be reconstructed, i.e.,

o(zr,z) = / U ks, /cg)f%e-*m+Wse-'<kﬂ+’°=z’.J(kI, kolks, kg)dk.sdk.g.  (A.21)
where J(kg, k. ks, k,) is the Jacobian transformation form k., k. to ks, kq which de-
pends on a specific geometry of source/receiver array.

In Figure A.2 - A.4 (Harris, 1993), we shown the wavenumber coverage of the
crosswell, surface seismic and vertical seismic observation geometry, respectively.
Figure A.5 shows an image of point targets at four locations, for a crosswell experiment
with 128 source and receivers. The pixel spacing in the image is A\/4. The point target

scattered data were generated by the method of moment. As expected. the resolution
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(a) {b)

Figure A.2: Fourier coverage for surface seismic profiling: (a) is multi-view at a single
frequency and (b) is multi-view and multi-frequency.

ta) (b)

Figure A.3: Fourier coverage for vertical seismic profiling: (a) is multi-view at a single
frequency and (b) is multi-view and multi-frequency.
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(a)

Figure A.4: Fourier coverage for crosswell seismic profiling: (a) is multi-view at a single
frequency and (b) is multi-view and multi-frequency.

is significantly poorer in the horizontal direction because of poor coverage in i;. In
general. the resolution is approximately 1A in x and 0.5) in z, independent of target

location.

(a) (b)
Figure A.5: Reconstruction using the Born approximation where the background velocity

is 3500 m/s, velocity of diffractor is 5000 m/s, and temporal frequency is 500 Hz. (a)
and (b) are the model and reconstruction from crosswell synthetic data, respectively.
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A.3.2 Three-dimensional reconstruction

For three dimensional problems, the Green's function can be written as

1l e-—zko[r—r’l

T ir v —r/| ’

G(r,¢') = (A.22)

where |r — ¢'| = \/(z — /)2 + (y — y')? + (= — #')%. Taking Fourier transform along

the source array and receiver array of expression (A.17), with respect to z, an z,.

respectively, one has

_-h

167
! 1

H (4RO HSY (74 Ry ) dzdydsz.

U(Zs, Ys: ksy Zg: Ygr Kg) o(z.y, z)e Kot (A.23)

where R, = \/(z — 1,)2 + (y — ys)? and R, = V(zg — )2 + (y, — y)2. By taking the
Fourier transform of (A.24) along the source array and receiver array with respect to

ys and y, one obtains (see figure A.6).

k2 (ke ke — Kook
Lr(l‘s-. kySa k:.n Zg, kyg, kzg) = 0( 1y67l’y.1: % g) e—lkzg.rg+zk,,.r, (—\24)
zsfzrg

/O(I. Y, Z)e‘_l(k”+k"9):_l(k”"+k”)y_t(k‘"—k‘g)IdId’qd:.

where k., = /72 - k;’s and k;y = ,/7;’ - kgg. The objection function can be recon-

structed via the inverse Fourier transform, as discussed in the two dimensional case

described above.
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target

source array
receiver array

Figure A.6: 3-dimensional geometry of source and receiver arrays
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Two dimensional tensor Green’s function and its spectrum

To apply diffraction tomography with the Born approximation to elastic waves. one
has to consider the tensor Green’s function and its spectrum. Tensor Green’s functions

satisfy:
w?pGij — (A + p)Grjki — BGijpe = 0i;0(r — ). (A.23)

For SH wave fields. similar to the scalar wave. the solution to equation A.25 is the

zero order Hankel function and it spectrum is

P s
Gyl bs) = et ko),
S

For P-SV waves, the solution to equation A.25 is

i 8% 0.0, . &  -0.0. (1
G(r.r'y= —[| * TVH (kolr = 7)) + : N H (kylr = ).
~ ) 2pw~[ axaz 03 ‘ 0 | |) _ara: aﬁ 0 i| ]
and its spectrum maybe written as

. ke\2  kelk. (koL —kar'-r) k2 —kok. (k3 ~kyr'or)
Glrk) = gl W) BRI R T ),
~ 2002 kok, k2 ke —kSk. (k2)? kz
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Appendix B

Pseudo-differential operators

Let R™ be the usual Euclidean space. On R", the simplest differential operators are
9, or D; = —id,. The most general linear partial differential operator of order m on

R"™ may be written as

> Qo con....cn (T) DEY D2 D™ (B.1)

ay+as+...+ap,<m

where ay. as. ..., @, are nonnegative integers and @4, as. .a.(Z) is an infinitely differ-

entiable complex-valued function on R™. To simplify the expression (B.1). we let

a = (a,az..,0n)
n

la| = Zar
J=1

D* = DT'D3*..D;,
and the differential operator (B.1) can be rewritten as

Y aalz)D". (B.2)

laj<m

For each fixed x in R". the operator (B.2) is a polynomial in Dy, Ds. ..., D,,. Therefore

it is natural to denote the operator (B.2) by P(z. D). If D in (B.2) is replaced by a

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



153

point & = (&, &y, ....&,) in R™, then a polynomial

Z aa(z)&®

lal<m

is obtained, where £* = £'£52...£2". This polynomial is denoted by P(r.&) which is
called the symbol of the operator P(z, D). The partial differential operator P(r. D)
can be represented in terms of its symbol by means of the Fourier transform. Defining
the Fourier transform operation as “A” and the inverse Fourier transform opecration

as “V’. one has

(P(x.D)s)(x) > aa(z)(D%6)(z)

laj<m

= Y a@)(D9) ()

la|<m

= ) aa(z)(£%0)"(z)

la|l<m

= Y aale)in) ™ [ eol)e e

laj<m

= (27)7"/? / P(r.£)o(€)e4dE.

This representation suggests that one can get operators more general than partial
differential operators if the symbol P(z. £) is replaced by more general symbols o(r.§)
which are no longer polynomials in £. The operators so obtained are called pseudo-

differential operators (Treves, 1980). Given such symbols, the oscillatory integral

P(z. D)é(z) =: / dep(z. £)eEH(€) (B.3)

1
(2m)"
defines a map from smooth function of bounded support to smooth functions. i.e..
smooth operators yield small results when applied to oscillatory functions. Therefore
the importance of pseudodifferential operators for the theory of wave imaging lies in

their ability to describe the behavior of high frequency approximation.
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Asymptotic Fourier transform

The Fourier transform takes the function f(x) = A(x)ezp(i®(x)). defined over x. to

the function f(k) . defined over the dual space k. i.e..

flk) = F[f(x)] = c/ A(x) e ®o)—kexd gy (C.1)
-0

where ¢ = (1/27)™? and m is the dimension. Assume that the phase. for a given

k. [®(x) — k - x] has an isolated non-degenerate stationary point x*. A point X’ is a

stationary point of the function ®(x) — k - x with respect to x if ¢ ,(x*) = &, for a

given k. Expanding the phase about the point z°,
1 .
b(x) - k-x=0(x°) —k-x" + 5<I>‘i](xs)(r, ~r)(z; — ). (C.2)

Obviously only two terms have been retained. Performing a rotation and scale of the

variable z, to the variable y; in the vicinity of x°, i.e., @ ;;(x*)(z, — ;) (z, — 13}) = "yl

where v; = £1, one has

d(x) -k -x = Pd(x) —k-xs+é%y;‘). (C.3)

154
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Consequently. the Fourier transform integral (C.1) may be approximated by

fll) = A(x)ett 0 / " eI y)ldy. (C.4)
-0
where .J is the Jacobian transformation between coordinates x and y in the vicinity
of x°. Note that (C.4) represents a zero-order approximation of Parseval’s theorem.
When there are no stationary points within the support of A, (C.4) is asymptotically
null. When there are several roots, each one contributes to an asymptotic expansion
through the same process as when there is only one stationary point. This assumes
the critical points are isolated. If any of the stationary points were "near’ to one
another, the above process would be inadequate and a uniform expansion would be
necessary. After the remaining integral in (C.4) is evaluated. the asymptotic Fourier

transform of f(x) is obtained:
FK) = cA(x,)| (x5, k) |ellPx) -kl gmeind(v)m/2. (C.5)

where the index Ind(v,) is the number of negative v,, which describes whether the
function W(k) has a local minimum or maximum (Ziolkowski, 1984). Physically. the
ray may have touched a different number of caustics in the x and k domains and
this information is contained in the index Ind(y). As the operator being applied
to a function of the form f(x) = A(x)exp(i®(x)) over x to the function f(k) =
B(k)exp(:¥(k)) over k, its phase ¥(k) is defined by

U(k) = &(x*) — k- x°, (C.6)

which is the Legendre transformation (Maslov.1988), and the amplitude B(k) is de-
fined by

B(k) = A(x®)|J(x* k)|e~tmdm/2, (C.7)

In general, a wave and its Fourier transform are very different and there is no

way to define wave as a function of both k and x. But asymptotically. real space and
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Fourier space can be superimposed. An eikonal wave has a local Fourier transform
that is supported on the Lagrangian submanifold. The Fourier transform of an eikonal

wave is another eikonal wave whose phase function is the Legendre transform of the

original phase function.
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