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Anisotropic traveltime tomography

Reinaldo J. Michelena
Stanford University, 1993

ABSTRACT

The estimation of velocity anisotropy in heterogeneous media can aid the solution
of imaging and interpretation problems. It can aid imaging because when anisotropy is
properly considered, events can be focused in the correct place with the correct velocity
without the well known distortions obtained when using isotropic velocities in anisotropic
environments. It can also help in interpretation because the anisotropy says something
about how a rock is put together, which can be used, for example, to identify rock types
or to characterize fracture orientation.

The effects of velocity anisotropy and heterogeneity are coupled in the data. In this
thesis I show that ray theoretic traveltime tomography can be used to separate these two
effects by creating a model that is both anisotropic and heterogeneous. Two different
models are used at the same time: one for the velocities and one for the heterogeneities.
Although there are many possible ways to describe each of these models, I show that the
ones that incorporate prior information about the medium are the ones that produce more
accurate results.

The model I use to describe the velocity is transversely isotropic. In accord with
the observation that around the axes of symmetry a TI medium looks like an elliptically
anisotropic medium, I use elliptically anisotropic models to fit the traveltimes that are
assumed to correspond to rays that travel near either axis of symmetry. Then I show
how the results obtained by fitting the data with ellipses can be transformed into the
elastic constants that describe a general TI medium, assuming that all wave types are
available. Heterogeneous media are described as a superposition of homogeneous regions,
each of them transversely isotropic. No assumptions are miade about the weakness of either
anisotropy or heterogeneity because the ray tracing is performed in anisotropic models.

The results of synthetic and field data examples can be summarized as follows:

iv
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1. The parameters (direct and normal moveout velocities) obtained by fitting com-
pressional and shear wave traveltimes around one axis of symmetry with elliptically
anisotropic models can be transformed into the elastic constants that describe a
general TI medium. The simpler the heterogeneities, the more accurate the trans-

formation.

2. When fitting the data with iterative techniques such as conjugate gradients, dif-
ferent components of the velocity converge at different speed, and, therefore, early
termination of the iterations may alter the anisotropy of the solution. This may also
happen when regularizing the problem by damping or truncating the singular value

decomposition.

3. When only one wave type is available, fitting the data with elliptically anisotropic
models still produces useful partial results.

4. No assumptions are made about the weakness of the anisotropy or heterogeneity.
The accuracy of the results depend on the amount of prior information that the
model of heterogeneities contains about the actual medium. For 1-D variations, the
solutions are stable and accurate in the presence of strong anisotropy and hetero-
geneity, whereas for arbitrary 2-D variations, the solutions may be unstable and less

accurate.
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Chapter 1

Introduction

The effect of velocity anisotropy on wave propagation in homogeneous and heterogeneous
media has been the subject of numerous publications. Careful forward modeling has
helped interpreters understand how velocity anisotropy manifests itself in field data. Fewer
attempts have been made, however, to solve the inverse problem, namely, the estimation
of the parameters that describe the complexity of velocity anisotropy. These parameters
are the elastic constants. The estimation of elastic constants is important because it can
aid lithologic discrimination and fracture orientation, reveal anisotropic properties of the
medium not obvious in the data, and provide further imaging or full waveform inversion
algorithms with background models that can be refined iteratively. This dissertation will
focus on omne solution to the inverse problem, namely, the estimation of elastic constants

from seismic measurements.

1.1 Anisotropy or heterogeneity?

Rocks can be anisotropic for a variety of reasons. Some rocks, minerals for example, can
be inherently anisotropic depending on how their molecules arrange themselves in an or-
derly way to form a crystalline structure. Other rocks can become anisotropic after a
sufficiently large stress has altered the crystalline structure of their constituents. Suffi-
ciently large stresses can also cause preferentially oriented cracks in isotropic rocks or in
rocks with otherwise randomly oriented cracks to make them look anisotropic at seismic
frequencies. Other types of rocks can be formed by arrangements of elongated grains or

fine isotropic layers that make the rocks look anisotropic at seismic frequencies. A more
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detailed explanation of possible causes of rock anisotropy can be found in Crampin et al.
(1984).

Backus (1962) showed that a region composed of thin isotropic layers is equivalent
in the long wavelength limit to a homogeneous transversely isotropic medium. More re-
cently, Schoenberg and Muir (1989) extended Backus’s conclusion to arbitrary, anisotropic,
thin layers. These results have two important implications. The first is that, for scales
much smaller than the seismic wavelength, there is no way to distinguish intrinsically
anisotropic materials from materials with preferentially oriented heterogeneities (e.g., fine
layering), which means that, from seismic measurements alone, it is not possible to iden-
tify the causes of anisotropy. The second implication is that, for scales smaller than a
fraction of the minimum wavelength in the data, there is no way to distinguish whether
the medium is heterogeneous or homogeneous anisotropic. This fundamental equivalence
between anisotropy and heterogeneity in the wave propagation problem has its counterpart
in the inverse problem.

Both heterogeneity and anisotropy affect wave propagation. The goal of the inverse
problem in heterogeneous anisotropic media is to transform this coupled effect in the data
into a model that is simultaneously heterogeneous and anisotropic. At first glance, this
problem may seem insoluble because of the fundamental equivalence between anisotropy
and heterogeneity that I mentioned before. We should remember, however, that the equiv-
alence in the forward problem occurs at scales that are small compared to the wavelength.
At larger scales, the effects of heterogeneity and anisotropy are distinguishable, and there-
fore, as long as the scale of interest in the inverse problem is not too small, it should be
possible to set up an inverse problem that separates such effects.

The problem of the equivalence between anisotropy and heterogeneity worsens when
only a fraction of the information contained in the wavefield (e.g., first arrival traveltimes)
is used for the inversion. In this case, anisotropy and heterogeneity may be equivalent
every time they are described with the same number of parameters, or, even worse, with
different combinations of parameters in anisotropy and heterogeneity that fit the data
equally well. Figure 1.1 (taken from Babuska and Cara, 1991) illustrates this difficulty.
In this example, two different models are used to fit the same pair of traveltimes: model
(a) is heterogeneous isotropic and model (b) is homogeneous elliptically anisotropic. Since
both sets of parameters can be used to explain the observations, there is a complete

equivalence between anisotropy and heterogeneity in this case. Increasing the number
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(finite) of measurements and the angles of observation is one way to resolve the ambiguity
by selecting the model that fits the particular data better. However, if the model is
subdivided into smaller cells, it is always possible to find a scale where the equivalence
occurs because only two rays cross the small-sice cells. If the ambiguity remains after

increasing the number of measurements, additional information is necessary to resolve it.

\\4 \'

ray path 1 ray path 1

ray path 2
ray path 2

Vi L1
Vx, Vz L

(a) ®)

Figure 1.1: Simple velocity models that show the heterogeneity/anisotropy equivalence
that needs to be considered when solving inverse problems in heterogeneous anisotropic
media (after Babuska and Cara, 1991). (a) Heterogeneous isotropic model. (b) Homoge-
neous anisotropic model. These two models fit the data equally well.

The additional information necessary to resolve the ambiguity comes from the prior
information about the medium, which tells us what model to use. That information can
be used in the example of Figure 1.1 to choose between models (a) or (b) and estimate
only the corresponding pair of parameters. However, if the prior information is not cor-
rect, anisotropy in the real medium is transformed into heterogeneities that do not exist,
or, conversely, heterogeneities in the real medium are explained by unreal anisotropic

solutions. Therefore, the selection of the proper model is crucial.
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1.2 Estimation of elastic constants in heterogeneous me-

dia: previous work

Elastic constants have been estimated primarily in the lab where the small rock samples
can be assumed to be homogeneous. When the assumption of homogeneity is not valid, the
problem of estimation is more difficult because the effects of anisotropy and heterogeneity
are coupled in the data. This coupling problem has been addressed by making prior
assumptions about both effects. For example, by assuming that the rock samples are
homogeneous, Arts et al. (1991) estimate, from lab measurements, the 21 elastic constants
that characterize a general triclinic system. By assuming isotropic velocities, McMechan
(1983) estimates tomographically arbitrary spatial variations using 2-D and 3-D models.
These two papers are examplies of different trade-offs between the complexity of the models
in regard to velocity and heterogeneity. On the one hand, the first paper uses the simplest
model for heterogeneities (homogeneous) without making any assumption about the type
of velocity anisotropy. On the other hand, McMechan’s paper uses the simplest model
for the velocity (isotropic) without making any assumption about the heterogeneity. It
is interesting to motice that even though the only model that does not assume anything
about the mediurm is 3-D triclinic, the models used in the previous papers are usually
presented as examples of models that make a0 assumptions about the medium.

Previous studies that have estimated variations of anisotropy with position have used
“intermediate” models that simplify anisotropy and heterogeneity. The selection of the
model is based on two factors: the prior information available about the medium and the
gecmetry used to record the data. When selecting the model for anisotropy, these two
factors make transverse isotropy (TI) a good candidate because, on the one hand, TI is
a common form of anisotropy in the subsurface, and, on the other hand, 3-D multicom-
ponent information that is necessary to study more complex symmetries is not usually
recorded. For analogous reasons, layered models (1-D) have routinely been used to de-
scribe the heterogeneities. Therefore, not surprisingly, several authors have chosen the
combination of 1-D and TI to describe their models. White et al. (1983) estimate the five
TTelastic constants of a homogeneous formation using a VSP geometry. Hake et al. (1984)
approximate the traveltimes curves of layered models with a three-term Taylor series ex-
pansion in which the coefficients are a function of the elastic constants. Winterstein and

Paulsson (1990) estimate the elastic constants from VSP and cross-well measurements in a
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medium with velocity increasing linearly with depth. Byun and Corrigan (1990) propose
an iterative, model-based, optimization scheme to invert traveltimes for the five elastic
constants of a layered TI medium. More recently, Sena (1991) has proposed a variant
of this method in which all the calculations are done analytically, without having to go
through the semblance analysis needed with Byun and Corrigan’s method.

When using ray theoretic tomographic methods, the 1-D assumption about the het-
erogeneity can easily be relaxed. Moreover, the formulation of the problem is almost
identical for any type of heterogeneity, regardless of its complexity. The simplicity of the
formulation of the problem for general heterogeneity may explain why most papers on
ray theoretic traveltime tomography describe the heterogeneities of the medium using the
most complex and general model: a fine 2-D grid (Dines and Lytle, 1979; McMechan,
1983; White, 1989). The basis function required to describe a 2-D grid is orthogonal.
Although other basis functions that don’t have the property of orthogonality have been
recently proposed (Van Trier, 1988; Harlan, 1989; Michelena and Harris, 1991), those that
have such a property are still the most widely used to represent the heterogeneities in
tomographic traveltime inversions. At the same time, however, the model assumed for
velocities has been, until recently, the most simple: isotropic.

Recent papers have addressed the problem of estimating velocity anisotropy from cross-
well measurements using ray theoretic traveltime tomography. These papers have focused
on the problem of eliminating the artifacts obtained when isotropic tomography is used
to invert data recorded in anisotropic environments (Carrion et al., 1992). McCann et
al. (1989) show how an isotropic inversion improved after assuming a fixed amount of
anisotropy. Stewart (1988) and Williamson et al. (1993) describe the heterogeneities with
nonoverlapping square cells and the velocity anisotropy using Thomsen’s (1986) expres-
sion for P-wave phase velocity in weakly anisotropic media. Saito (1991) and Lines (1992)
propose to separate the effects of anisotropy and heterogeneity by first “removing” the
anisotropy effects from the data so that conventional isotropic tomography in heteroge-
neous media can later be applied. The elimination of the anisotropy effect is partial and
depends on the model of heterogeneities that is assumed. Qin et al. (1992) describe
the model as a superposition of two parts, one isotropic and the other anisotropic. The
heterogeneities in the isotropic part are described by small, square cells and the hetero-
geneities in the anisotropic part are described by large cells. By using ray paths computed

in isotropic models for the anisotropic inversion, Qin et al. implicitly assume also that
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the medium is weakly anisotropic. Chapman and Pratt (1992) and Pratt and Chapman
(1992) also assume weak anisotropy but make no assumption about the type of anisotropy
or heterogeneity. Pratt and Chapman’s procedure is more complex for shear waves than
for compressional waves, and it requires, as do all the previous methods, wide-aperture
data.

The preceding papers (except Saito’s) assume weakly anisotropic media in order to jus-
tify ray tracing in isotropic models. The assumption of weak anisotropy also justifies the
use of Thomsen’s equation for P-wave phase velocity to approximate the corresponding
group velocity (in the papers by Stewart, Lines, and Williamson et al.). No assump-
tions are made about the heterogeneities (except in Saito’s paper) which, as I show in
appendix A, makes more difficult an accurate estimation of spatial variations in velocity
anisotropy. Although all these papers show how to alleviate artifacts in the tomograms
by estimating parameters that describe variations of velocity with direction, none of them
(except Chapman and Pratt’s) show how to transform those parameters into the five elas-
tic constants that describe a general TI medium. Chapman and Pratt, however, don’t

show examples that illustrate the use of their transformation.

1.3 The goal of this thesis

This thesis focuses on the estimation of the elastic constants that describe heterogeneous
TI media when the measurements, first arrival traveltimes, have narrow aperture around
one axis of symmetry. I start by solving the problem for homogeneous media. Then
I show that the generalization to heterogeneous media consists of fitting the data with
heterogeneous elliptically anisotropic models that can be transformed into models for
elastic constants. No assumptions are made about the weakness of the anisotropy or the
heterogeneity and rays are traced in heterogeneous anisotropic models. Synthetic and
field data examples show that the technique works well for simple structures, but, since
only limited-aperture data are used, the technique produces less accurate results when the

medium contains arbitrary 2-D structures. A detailed summary of each chapter follows.

1.3.1 Estimation of elastic constants in homogeneous TI media

In chapter 2, I explain how to estimate the elastic constants that describe a homogeneous

TI medium from measurements near one or both axes of symmetry. The procedure consists
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of fitting P- and SV-wave traveltimes with elliptical velocity functions. The result of this
fitting is four elliptical velocities (direct and normal moveout) that can be transformed
into four elastic constants by solving analytically a system of four equations and four
unknowns. No assumptions are made about the weakness of the anisotropy. When the
traveltimes correspond to SH-waves, the transformation between elliptical velocities and
elastic constants is immediate because SH-wave slowness surfaces are already elliptical.

The equations developed in this chapter are valid near the axes of symmetry, regardless
of their inclination. In particular, for vertical axis of symmetry, the procedure is more
accurate for cross-well than for VSP geometries.

The procedure proposed in this chapter for homogeneous media is generalized to het-
erogeneous media in the rest of the thesis. The generalization consists of describing the
heterogeneous medium as a superposition of homogeneous nonoverlapping regions. When
the model is described in this way, two new methods are needed in order to calculate
accurately the elliptical velocities at each region: ray tracing in anisotropic models and

anisotropic traveltime tomography. The next two chapters describe these new procedures.

1.3.2 Kinematic ray tracing in anisotropic layered media

In chapter 3, I describe the details of the implementation of a kinematic ray tracing
algorithm in transversely isotropic media with variable inclination of the axes of symmetry.
The heart of the algorithm is the numerical solution of Snell’s law at each interface.

Snell’s law tells us how a plane wave changes direction when it hits an interface between
two different media. When the media are isotropic, the wave (phase) velocity is the same
as the ray (group) velocity, and, therefore Snell’s law also tells us how to bend a ray at
a given interface. When the media are anisotropic, the procedure is more complicated
because rays and waves travel with different velocities in different directions, and it is
thus necessary to change from one to the other either to propagate a ray through a region
or to cross a boundary betweern two regions.

The traveltimes computed by this ray tracing agree, as expected, with the ones calcu-
lated by finite-difference elastic modeling in TI media.

The ray tracing algorithm developed in this chapter is used in chapter 4 to do aniso-
tropic traveltime tomography for elliptically anisotropic models.
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1.3.3 Tomographic estimation of elliptical velocities

Chapter 4 explains how to fit traveltimes with heterogeneous elliptically anisotropic mod-
els. The procedure is identical for any wave type, and it makes no assumptions about
the weakness of anisotropy or heterogeneity because the rays are traced in heterogeneous
anisotropic models.

To show the behavior of the algorithm when using limited view measurements, I present
two simple synthetic examples where both anisotropy and heterogeneities are weak. These
examples show that when we use iterative techniques such as conjugate gradients to solve
the linearized problem, different components of the velocity converge at different speeds
with different types of artifacts, which can alter the amount of anisotropy in the solution.

Different models for describing the heterogeneities are presented in this chapter. I
conclude that for cross-well geometries, the estimation of elliptical velocities in 1-D models
is accurate and stable, whereas in general 2-D models it is less accurate and unstable,
because of the small singular values introduced in the problem by high-frequency variations
in the vertical component of the slowness. As a result, the resolution of the different
components of the slowness is also different, and, therefore variations in velocity anisotropy
cannot be estimated at the same resolution as variations in the velocity. In appendix A,
I explain in more detail the issue of resolution of the different components of slowness by
examining the results of the singular value decomposition of the related matrices.

The P-wave field data examples presented in chapter 4 show that, even when only one
wave type is available, useful results can be obtained by fitting the data with elliptically
anisotropic models. If more wave types are available, all we need to do is apply the same
algorithm separately to each of them and, finally, transform the results at each region into
elastic constants, as described in chapter 2. The next chapter explains how to do that.

1.3.4 Estimation of elastic constants in heterogeneous TI media

In chapter 5, I use all the tools developed in the previous chapters in order to estimate spa-
tial variations in the elastic constants that describe a TI medium. The procedure consists
of two steps. First, compressional and shear-wave traveltimes are fitted using hetero-
geneous elliptically anisotropic models, as described in chapter 4. Second, the elliptical
parameters are transformed locally into elastic constants, as described in chapter 2. The

technique is illustrated with synthetic and field data examples for cross-well geometries.
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Chapter 2

Estimation of elastic constants in
homogeneous transversely

isotropic media

The elastic constants that control P- and SV-wave propagation in a transversely isotropic
medium can be estimated by using P- and SV-wave traveltimes from either cross-well
or VSP geometries. This chapter explains the procedure, which consists of two steps.
First, elliptical velocity models are used to fit the traveltimes near one axis. The result
is four elliptical parameters that represent direct and normal moveout velocities near the
chosen axis for P- and SV-waves. Second, the elliptical parameters are used to solve a
system of four equations and four unknown elastic constants. The system of equations is
solved analytically, yielding simple expressions for the elastic constants as a function of
direct and normal moveout velocities. For SH-waves, the estimation of the corresponding
elastic constants is easier because the phase velocity is already elliptical. The procedure
for homogeneous media introduced in this chapter is generalized to heterogeneous media
as explained in chapter 5, by using a tomographic technique described in chapters 3 and
4.

2.1 Introduction

The estimation of elastic constants in anisotropic media from lab measurements differs

from the estimation of elastic constants from field measurements in two basic ways. First,
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in the lab the medium can be assumed to be homogeneous and therefore the propagation
of the energy can be safely modeled using straight ray paths. In the field, this assumption
is often inadequate and ray bending needs to be properly considered. Second, in the lab
it is possible to measure the velocities along all axes of symmetry, which simplifies the
calculation of the corresponding elastic constants. In the field, however, the measurements
usually have limited aperture, and therefore velocities in one direction have to be estimated
by fitting a model to velocities measured in different directions. These two difficulties
explain why, when using field data, in situ estimation of elastic constants has been rare,
unless a simple model is assumed to describe the anisotropy.

Elliptical anisotropy is the simplest model of anisotropy, since it introduces only one
more degree of freedom, and wave and ray relationships are similar to the isotropic case.
Elliptical anisotropy is not only simple but also useful when the aperture of the experiment
is such that the slowness surface is not properly sampled and is difficult to estimate more
than two ray velocities, one based on the arrivals along a certain axis (direct velocities), and
the other based on the curvature around that axis (normal moveout velocities). However,
since most rocks do not exhibit elliptical anisotropy, the convenient properties of this type
of anisotropy haven’t found wide applicability, except in a few cases when the departures
from isotropy are small or when the measurements are taken around an axis of symmetry.

A model commonly used to describe velocity anisotropy in the earth is the transversely
isotropic (TI) model. Even though a TI model hardly ever reduces to an elliptically
anisotropic one (Thomsen, 1986), a TI model appears elliptically anisotropic near the
axes of symmetry. This property of transverse isotropy is used by Muir (1990a) and
Dellinger et al. (1993) to approximate P- and SV-wave slowness surfaces and impulse
responses of general TI media with ellipses fitted near both horizontal and vertical axes.
In a later paper, Muir (1990b) suggests the transformation of the elliptical parameters into
elastic constants by using well known expressions that relate them (Levin, 1979; Levin,
1980). However, Muir implicitly assumes in this paper that traveltimes near both axes
are available, which doesn’t often happen.

In this chapter I show how to obtain the elastic constants that control P- and SV-
wave propagation in TI media from limited aperture traveltimes, either from VSP or from
cross-well geometries. Istart by fitting the traveltimes for P- and SV-waves with elliptical
time-distance relations near a single axis (either vertical or horizontal). The result is four

velocities: two based on the time-of-arrival and distance along an axis of symmetry (the
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direct velocities) and two based on the differential traveltime and differential distance
as the direction is perturbed (the normal moveout velocities). I use these four elliptical
parameters to solve analytically a system of four equations and four unknown elastic
constants. Since the procedure is based on fitting the data with elliptical velocity models,
it is exact when estimating elastic constants from SH-wave traveltimes.

The data aperture is constrained in two different ways. First, it should be large enough
to ensure that there is sufficient curvature to estimate the normal moveout velocities.
Second, it should be narrow enough to ensure that the elliptical fit remains accurate for
the given wave type. I show in this chapter that there is an intermediate range of ray
angles that satisfy these two requirements in the estimation of elastic constants from either
VSP or cross-well geometries.

The calculations presented here are valid for homogeneous media. When the model
is heterogeneous, it can be described as a superposition of homogeneous regions, and the
elliptical parameters needed at each region can be estimated tomographically, as chapter
4 explains. Once the elliptical parameters at each cell are estimated, the procedure de-
veloped here for homogeneous media can be applied at each cell to obtain 2-D maps of
elastic constants. Chapter 5 presents examples of such a procedure.

The equations I use in this chapter to transform elastic constants into elliptical pa-
rameters (forward mapping) are not new. They are the same as the ones summarized by
Muir (1990b), which can also be found in Levin (1979) and Levin (1980). What is new is
the simultaneous solution of these equations near each axis to obtain elastic constants as
a function of elliptical parameters (inverse mapping).

I'start by rederiving the basic equations for forward mapping from the expression of
P- and SV-wave phase velocities in TI media. The calculations are done near both the
horizontal and the vertical axes. Then, using these expressions, I solve the inverse mapping
analytically. The final section illustrates the use of the technique when estimating the
elastic constants of a homogeneous medium from impulse responses sampled near either
the vertical axis or the horizontal axis, to simulate VSP and cross-well configurations,

respectively.
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2.2 Forward mapping

By doing forward modeling we create data from a given set of model parameters. When the
data form a different set of model parameters, I prefer to call the process forward mapping
to emphasize that the transformation is done between spaces that cannot be measured
directly. In this section I explain how to do the mapping from the elastic constants of a

TI medium to different sets of phase velocities.

2.2.1 From elastic constants to phase velocities

The phase velocity expression for P- and §V-waves in TI media is (Auld, 1990)

2Wpsv(6) = (Waz+ Wyy) cos® 8 + (W1 + W) sin? 6 (2.1a)

:k\/[(Wag, — Waa) cos? 6 — (Wyy — Way) sin 6]2 + 4(Wi3 + Was)? sin? 6 cos2 6,

where Wp sy (6) is the phase velocity squared, and 6 is the phase angle from the vertical.
W; is the (i) elastic modulus divided by density, with units of velocity squared; I refer
to the quantity W;; as an elastic constant in the remainder of this chapter. The plus
sign (+) in front of the square root ccrresponds to P-waves and the minus sign (~) to
SV-waves. For SH-waves, the expression for the phase velocity is (Auld, 1990)

Wsg(8) = Wygcos? 6 + Weg sin? 6. (2.1b)

Near the vertical and horizontal axes (f =~ 0 and § = 90) equation (2.1a) is elliptical.
The velocities that describe the corresponding ellipses are called elliptical velocities. In the
next two sections, I rederive equations contained in previous papers (Levin, 1979; Levin,
1980; Muir, 1990b) that are needed to calculate these elliptical velocities from the elastic
constants. The expressions that result are used later in the chapter to solve the inverse

mapping when the data have a narrow aperture.

2.2.2 From elastic constants to phase velocities near the vertical axis
Expanding equation (2.1a) around 6 == 0 and neglecting terms in sin? 8, results in
2Wpsv(0) = (Wss+ Wad)cos? 8 + (Wyy + Wyy)sin® 6 (2.2)

2
+ ((Wag — Wag) cos? 0 — (Wi — Wayg) sin® 6 + 2 Wiz + Wae)” sin? 0) .
W3z — Wy4
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Choosing the positive root yields the P-wave phase velocity near the vertical axis, as

follows:
Wp(6) = Wp. ¢+ Wpanmo 57, (2.3)
where ¢ = cosf, s = siné,
Wp,. = Was, (2.4)
and
Wpanmo = W44+(ﬂl—9ﬂvi)i (2.5)

Wiz — Wag
Wp,; is the vertical P-wave phase velocity squared and Wponmo is the horizontal normal

moveout (NMO) phase velocity squared.

Choosing the negative root in equation (2.3) yields SV-wave phase velocities near the

vertical axis, as follows:

Wsv(0) = Wsy,. & + Wsvanmo 2, (2.6)
where
Wsv,, = Wy, (2.7)
and W —
+
Wsvenmo = Wn—g-l—a———ﬁ)— (2.8)

Wiz — Wy
The previous expressions for the NMO velocities agree with the results of Thomsen
(1986) and Vernik and Nur (1992).

The expression for SH-wave phase velocities near the vertical axis is

Wsg(0) = Wsg,, ¢+ Wsganmo %, (2.9)
where
Wsg,: = Wy, (2.10)
and
Wsaanmo = Wspz = Wees. (2.11)
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2.2.3 From elastic constants to phase velocities near the horizontal axis

P- and SV-wave phase velocities near the horizontal axis can be obtained by interchanging
W11 and W33 and ¢? and s? wherever they occur in equations (2.3) through (2.8). Thus,

for P-waves the result is

Wp(6) = Wpe s*+ Wanmo ¢, (2.12)
where
Wp, = Wi, (2.13)
and - Waa)?
z + Wy
= W+ 2 2.14
Wp,:NMO 44 + Wir = Wt (2.14)
For SV-waves, the expression for the phase velocity near the horizontal axis is
Wsv(6) = Wsy,e s°+ Wsvnmo ¢, (2.15)
where
Wsve = Wa, (2.16)
and W Wee)?
+ Way
Wsv,: = Wiy — 2= 22 2.17
5V,2NMO 8 W W (217)
Near the horizontal axis the SH-wave phase velocities are
Wsg(8) = Wsgz s° + Wsganmo ¢, (2.18)
where
Wshz = Wes, (2.19)
and
Wsa,:nmo = Wsa,: = Waa (2.20)

In the rest of the chapter I refer to the elliptical parameters Wp,, Wp., Wponmo0,
Wp..NMm0, Wsvie, Wsv,z, Wsvenmo, Wsv,:nmo, Wsa ey Wsa,z, Wsa zNM0, and Weg .nMo
as W,, direct, or NMO phase velocity squared for P-, SV-, and SH-waves.
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2.3 Inverse mapping

The preceding equations that relate phase velocities and elastic constants suggest sev-
eral approaches to solve the inverse mapping that depend on the recording geometry, the
recording aperture, and the wave types available. From SH-wave phase velocities near
either axis, it is always possible to estimate Wy and Wgg because the NMO velocities are
equal to corresponding direct velocities. However, from P- and SV-wave phase velocities
near either axis, the estimation of the corresponding elastic constants is not straightfor-

ward. This section explains what to do in such a case.

2.3.1 Using P- and SV-wave full aperture phase velocities

To estimate W11, W33, W4, and W3 directly from equation (2.1a), we need at least four
phase velocities at four different angles between 0 and 90 degrees. W;; is the solution
of a system of nonlinear equations where the independent term is formed by these phase
velocities. Along the axes, the system of equations is almost diagonal, and the estimation

of three elastic constants (W33, W11, and Wyy) is straightforward:

Wiz = Wp,, (2.21a)
Wi = Wp,, (2.21b)
Wy = Wsy, = Wey,. (2-21c)

The elastic constants are estimated directly from phase velocities along the axes. Wis
can be estimated from the previous elastic constants and one phase velocity at an oblique
angle, typically 45 degrees.

This approach, though simple in theory, is not applicable in many practical situations
because wide aperture data are required (i.e., the angles of the observations must include 0,
90 degrees, and one intermediate measurement) to simplify the system of equations. This
is not the case for most single-geometry data sets (either surface, or cross-well or VSP)
where no rays travel along at least one axis and therefore phase velocities along both
axes cannot be estimated without having to assume a velocity symmetry (e.g., isotropic,
elliptical, or TI).
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2.3.2 Using P- and SV-wave narrow aperture phase velocities

Elastic constants from phase velocities near the vertical

When the phase angles are close to zero, it is possible to estimate elastic constants from the
corresponding phase velocities by using equations (2.4), (2.5), (2.7), and (2.8), a system
of four equations and four unknowns. The independent term (that I will explain how
to obtain in section 2.4, “Obtaining the phase velocities”) is formed by W, We-nmo,
Wsv,:, and Wsynmo. The solution of this system of equations is

Wiz = Wp,, (2.22a)
Wi = Wsy,, (2.22b)
Wis = /(Wpaxmo — Wsv,.) (W, — Wsv,z) = Wsvs, (2.22¢)
Wi = Wsvenmo + Wrenmo — Wiy, (2.22d)

In (2.22d), W11 is a linear combination of elliptical parameters independent of the hor-
izontal P-wave phase velocity, unlike the Wj; estimated from equation (2.21c). Equa-
tion (2.22d) says, roughly, that summing P- and SV-wave NMO velocities (squared) is the
same as summing the elastic constants that control the horizontal wave propagation. The
examples in the final section of the chapter show the range of angles near the vertical for
which these equations are valid.

Since this approximation simultaneously uses the elliptical parameters of two ellipses
fitted near the vertical, I call it vertical, double elliptic approximation, analogous to Muir’s
double elliptic approximation that uses horizontal =nd vertical ellipses to approximate the
slowness surface and impulse response for all angles (Muir, 1990a; Dellinger et al., 1993).
It is important to recognize the differences between these two approximations. On the one
hand, the vertical, double elliptic approximation is used to estimate elastic constants from
phase velocities near the vertical axis. Slowness surfaces and impulse responses can be
calculated from these elastic constants using (2.1a) and the exact relationships between
phase and group velocities. On the other hand, Muir’s double elliptic approximation is
used to estimate directly slowness surfaces and impulse responses from data near both
axes without having to know the elastic constants.

Fitting P- and SV-wave phase velocities with ellipses near the vertical is not the same

as using the vertical, double elliptic approximation. However, the fitting is a necessary
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intermediate step in the estimation of elastic constants using equations (2.22). When the
elliptical fitting is done near the horizontal axis, the result is the horizontal, double elliptic

approximation, as follows.

Elastic constants from phase velocities near the horizontal

When the phase angle is close to 90 degrees, the expressions for the elastic constants
as a function of P- and SV-wave phase velocities are obtained by solving the system of
equations (2.13), (2.14), (2.16), and (2.17), with the following result:

Wi = Wpg, (2.23a)
Wa = Wsve, (2.23b)
Wig = \/ (Wenmo — Wsve)(Wpe — Wsve) — Wy, (2.23¢)
W3z = Wsv.nmo + Wpnmo — Wsve. (2.23d)

This set of equations forms the horizontal, double elliptic approximation. It uses elliptical
P- and SV-wave phase velocities near the horizontal to approximate the elastic constants.
Notice that the estimation of W33 is independent of the P-wave phase velocity along the
vertical axis. Equations (2.23) can be obtained from (2.22) by interchanging Wj; and
Wass, and z and z.

The estimation of W33 from near-horizontal phase velocities [equation (2.23d)] and Wy;
from near-vertical phase velocities [equation (2.22d)] is in both cases the sum of NMO ve-
locities minus Wy4. Ishow in appendix A that when estimating velocities tomographically,
NMO velocities correspond to the smallest singular values of the problem. The largest
singular values correspond to velocities estimated from rays that travel along the axes.
Therefore, as expected, estimating W33 from cross-well traveltimes alone is a harder prob-
lem than estimating W1; from the same data. The opposite is true when estimating W33

and Wi; from VSP measurements.

2.3.3 Using only P-wave phase velocities near the axes

When the medium is TI and no information is available about $§V-wave phase velocities,
it is still possible to obtain four elastic constants from only P-wave phase velocities near
both axes. This is done by solving the system of equations (2.4), (2.5), (2.13), and (2.14),
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which yields
Wi = Wpe, (2.24a)
Ws3 = Wp,, (2.24b)
WpanMoWp,: — Wp.NxmoWp,z
w, — b L ) 2 N 2.24c
4 WpenMo + We: — Wponmo — Wpe ( )
Wiz = \/ (Wp,:nMo — Wag)(Wpe — Wasg) — Wag. (2.244d)

This set of equations forms the P-wave, double elliptic approximation of the elastic con-
stants in a TT medium.

In this approximation, as well as in the previous omes, the assumption of transverse
isotropy is crucial. When the medium is isotropic (Wp, = Wp, = Wpanmo = Wp,NMO)
there is no way to calculate W4 (the shear modulus) from P-wave phase velocities alone
because equation (2.24c) is indeterminate. When the medium is weakly anisotropic the
estimation of W4 using this approximation may still be unreliable because both the nu-
merator and the denominator in (2.24c) are close to zero. We will see from the examples
later in the chapter that even when the medium is moderately anisotropic this approxima-
tion breaks down quickly for phase angles not close to the axes, unlike the previous vertical
and horizontal double elliptic approximations [equations (2.22) and (2.23), respectively]
that have a wider range of validity.

If only SV-wave phase velocities near the axes are available, it is not possible to obtain
the corresponding elastic constants, because the system of equations (2.7), (2.8), (2.16),

and (2.17) is underdetermined.

2.4 Obtaining the phase velocities

Equations (2.3) , (2.6), (2.12), and (2.15) show that the phase velocities of P- and SV-
waves are elliptical near the axes of symmetry. Those of SH-waves are also elliptical [as
equation (2.1b) shows]. When the phase velocity has an elliptical shape, the corresponding
impulse response is also elliptical (Levin, 1978; Byun, 1982). Therefore, the group slowness
expression that corresponds to these equations has the general form

S%(¢) = S2cos? ¢ + S2sin? ¢, (2.25)
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where ¢ is the ray angle measured from the vertical, and S, (the ray slowness) is

1
2 - 1
8= 5o (2.26)

To estimate S, I use the expression for the traveltime of a ray that travels a distance

Il = v/Az? + Az2 between two points:
2 = A2?S? 4+ A2%82. (2.27)

This equation, which has the same form as the isotropic moveout equation, is obtained
after multiplying equation (2.25) by I2. Velocities estimated from the curvature around one
axis of symmetry using this traveltime equation are called NMO velocities, and velocities
estimated from arrival times along the same axis are called direct velocities. Hence the

different names chosen for the phase velocities W,.

2.5 Using traveltimes to estimate elastic constants

The procedure for estimating the elastic constants of a homogeneous TI medium from

traveltime measurements near one axis of symmetry is the following:

1. Fit the traveltimes with elliptically anisotropic models, one model for each wave

type. This gives direct and NMO group slownesses.

2. From the direct and NMO group slownesses, find the corresponding direct and NMO

phase velocities, using equation (2.26).

3. From the estimated phase velocities, find the elastic constants, using the equations
that correspond to the given recording geometry [either (2.22) or (2.23)]. For SH-
waves, the estimated phase velocities squared are the same as the corresponding

elastic constants.

This procedure can be generalized to heterogeneous media by describing the model as
a superposition of homogeneous blocks. Chapters 3 and 4 explain the basic ingredients of
this approach which are anisotropic ray tracing and tomographic estimation of elliptical

velocities.
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2.6 Examples

This section contains examples that illustrate how four elastic constants of a homogeneous
TI medium can be estimated when the data are (a) P- and SV-wave traveltimes from
VSP geometries with different apertures, (b) P- and §V-wave traveltimes from cross-well
geometries with different apertures, and (c) P-wave traveltimes from cross-well and VSP
geometries with different apertures.

The impulse response is given, and it is the same for all examples. The elastic constants
that describe the medium are: /W;; = 7400, Wa3 = 6295, /W13 = 5575, and /Waq =
2160, all with units of (ft/s) (Byun and Corrigan, 1990). I calculate the ellipse that fits
the impulse response near the chosen axis by using a ray along the axis and a ray close to
the axis. Once I have found the four needed elliptical parameters I use equation (2.22),

(2.23), or (2.24) to convert those elliptical parameters into elastic constants.

2.6.1 Estimating W;; from VSP P- and SV-wave traveltimes

Figure 2.1 shows how the vertical double elliptic approximation works for different an-
gles around the vertical. The parameters of the ellipses that approximate the impulse
response have been calculated at the angles shown by the straight lines. The left column
compares the given impulse responses for P- and SV-waves (continuous lines) with the
elliptical approximations around the vertical (dashed lines). With the four elliptical pa-
rameters obtained for each aperture, I calculate the elastic constants of the medium by
using equation (2.22). From the estimated elastic constants, I then calculate the corre-
sponding impulse responses for both P- and SV-waves. The result is shown in the central
column (dashed lines) together with the given impulse responses. In most cases (except
with the 40-degree aperture) the agreement is excellent. With the 40-degree aperture the
horizontal P-wave group velocity has been overestimated and the shear wave triplication
is larger than expected. The right column shows the absolute value of the percentage error
made in the estimation of the elastic constants. For small angles (< 10 degrees), the error
is negligible. For angles between 10 and 30 degrees, the error is smaller in W1; (A) than
in W3 (F). For large angles, the error in Wy; (A) is the largest, almost 30 percent. Notice
that up to 30 degrees, even though the error in the estimation of the elastic constants is
not zero but a few percent, the differences between given and estimated impulse responses

are hard to see.
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Figure 2.1: Left: impulse response for P- and SV-waves (continuous lines) compared
with their elliptical approximations around the vertical (dashed lines). Center: given
impulse responses (continuous) compared with the ones calculated from the estimated
elastic constants (dashed). Right: absolute value of the error made in the estimation of
the elastic constants when using the vertical, double elliptic approximation. The elastic
constants are A = Wy, F = Wi3, C = W33, and L = Wy4. The density is assumed to be
unity.
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In Figure 2.1, the elliptical approximations to the impulse responses are calculated
using two ray angles at a time, one zero and one nonzero. Figure 2.2 shows what happens
when all these angles (or different VSP offsets) are used simultaneously to calculate the
elliptical approximations and the elastic constants. The horizontal P-wave group velocity
is now slightly overestimated, and the shear velocities are retrieved well. The errors in
the estimated elastic constants are six percent in Wiy (A) and four percent in Wi3 (F).
The errors made when using only large angles have been compensated by also using small

angles.

30

i

Figure 2.2: Left: impulse response for P- and SV-waves (continuous lines) compared
with their elliptical approximations around the vertical (dashed lines). All ray angles
shown are used simultaneously to calculate the elliptical approximations. Center: given
impulse responses (continuous) compared with the ones calculated from the estimated
elastic constants (dashed). Right: absolute value of the error made in the estimation of
the elastic constants when using the vertical, double elliptic approximation. The elastic
constants are A = Wy1, F = Wi3, C = W33, and L = Wyq.
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2.6.2 Estimating W;; from cross-well P- and SV-wave traveltimes

Figure 2.3 shows how the horizontal, double elliptic approximation works for different ray
angles measured from the horizontal. When comparing this case with the VSP case (Fig-
ure 2.1), we see that the approximation works better for ray angles around the horizontal
than around the vertical, even when the angles are large. The estimated impulse responses
agree well with the given ones, and the errors in the elastic constants are negligible for
angles less than 30 degrees.

The reason the horizontal, double elliptic approximation works better than the verti-
cal, double elliptic approximation is that the elliptical approximation for P-wave impulse
response is more adequate at larger angles around the horizontal than around the vertical,
where the group velocity is lower. For P-waves, the elliptic approximations around the
vertical are almost circular, which explains why in practice the NMO velocity is a good

estimate for the actual vertical velocity of the medium.
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Figure 2.3: Left: impulse response for P- and SV-waves (continuous lines) compared
with their elliptical approximations around the vertical (dashed lines). Center: given
impulse responses (continuous) compared with the ones calculated from the estimated
elastic constants (dashed). Right: absolute value of the error made in the estimation of
the elastic constants when using the horizontal, double elliptic approximation. The elastic
constants are A = Wh, F = W3, C = Ws3, and L = Wyy.
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Figure 2.4 shows that when small and large ray angles are used simultaneously to
calculate the elliptical approximations around the horizontal, the result is roughly an
average of the results shown in Figure 2.3. The agreement between given and estimated
impulse responses is excellent and the error in the estimation of the elastic constants is &

two percent for W13 (F) and ~ one percent for W33 (C).

30

rror

s:oAFCL

Figure 2.4: Left: impulse response for P- and SV-waves (continuous lines) compared
with their elliptical approximations around the vertical (dashed lines). All ray angles
shown are used simultaneously to calculate the elliptical approximations. Center: given
impulse responses (continuous) compared with the ones calculated from the estimated
elastic constants (dashed). Right: absolute value of the error made in the estimation of
the elastic constants when using the horizontal, double elliptic approximation. The elastic
constants are A = Wy;, F = Wi3, C = W33, and L = Wy,

2.6.3 Estimating W;; from cross-well and VSP P-wave traveltimes

For TI media, the elastic constants that control the P- and SV-wave propagation can be
estimated from P-wave measurements near the axes, as equation (2.24) shows. Figure 2.5
is an example. The left column shows the given P-wave impulse response (continuous line)
and the approximating ellipses (dashed lines) around the horizontal and around the vertical
for two different apertures. The central column shows the given and approximate impulse
responses for P- and SV-waves, the approximate impulse responses calculated from the
estimated elastic constants. The right column shows the absolute value of the error made
in the estimation of the elastic constants. Unlike the previous approximations, the P-
wave, double elliptic approximation is valid only at very small angles (~ two degrees).
At greater angles it yields highly inaccurate results, particularly in the estimation of Wyy
(L), which controls the shear wave propagation along the axes. Note that for an aperture
of 10 degrees, the shear wave impulse response has been considerably underestimated.
This approximation may be hard to use in practical situations because it works only

for very small angles near the axes.
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Figure 2.5: P-wave impulse response used to estimate the elastic constants from mea-
surements around the axes. Left: given P-wave impulse response (continuous lines) and
elliptical approximations around the axes (dashed lines). Center: given impulse response
(continuous) and estimated ones (dashed) for P- and SV-waves. Right: absolute value of
the error made in the estimation of the elastic constants when using the P-wave double
elliptic approximation.

2.7 Constraints on elliptical velocities in layered media

I have shown that traveltimes from both compressional and shear waves are necessary
for an accurate estimation of the elastic constants from measurements near the axes of
symmetry. However, in cases when only one set of traveltimes is available, we may still
obtain useful information about the medium from the elliptical velocities that best fit the
given traveltimes, if we know in advance possible causes of the anisotropy of the medium.

In particular, when the anisotropy is caused by fine layering of isotropic materials, as
Backus (1962) shows, Weg > Wiy4, which, combined with the energy constraints on W;;,

leads to
Wi > Waa. (2.28)

For this type of anisotropy, an additional inequality is provided by Berryman (1979) and
Helbig (1979):
Wis < Wasg, (2.29)
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where

Wise = /(W1 — Wag)(Was ~ W) — Wa (2.30)

is a particular value of W33 that makes expression (2.1a) elliptical for P-waves and circular

for SV-waves. By combining equation (2.28) and equation (2.30), results
Wss > Waa. (2.31)
Then, by using equations (2.28), (2.29), and (2.31), and fact that in general
Wi > Waa, (2.32)

it is possible to obtain bounds for the normal moveout velocities derived in previous
sections. The procedure is simple. One bound is obtained from the equation of the
corresponding normal moveout velocity as a function of the elastic constants. The other

bound is obtained by using equation (2.29). The results can be summarized as follows:

Wsve < Wpanmo, Wsvenmo < Weg, (2.33)

Wsv,: < Wp.nmo,Wsv.nmo < Wp,,. (2.34)

These inequalities are valid when the axis of symmetry is either vertical or horizontal.

If the anisotropy is ~aused by fine layering of isotropic materials then the relative sizes
of the direct and NMO velocities are given by inequalities (2.33) and (2.34). In other
words, fine layering = (2.33) or (2.34). However, the reverse [i.e., (2.33) or (2.34) =
fine layering] is not necessarily true but it can aid the interpretation when the causes of
anisotropy are suspected or when a complete inversion of all the elastic constants is not
possible. For example, from cross-well measurements the estimated Wp.NMmo is smaller
than Wp, when the axis of symmetry is vertical (i.e., Wp,. < Wpz) but this is not
necessarily the case when the axis of symmetry is horizontal (i.e., Wp, > Wp_). Notice
that inequalities (2.33) and (2.34) are strict. When direct and normal moveout velocities
are found to be equal, the anisotropy of the medium cannot be caused by fine layering.

When the conditions Wy znmo0 = Wsy,, and Wsv.:NMo = Wgy . are substituted into
equations (2.8) and (2.17) respectively, we obtain Wi3 = Wisg, and therefore P-wave
velocities are elliptical and SV-wave velocities are circular. This means that, for shear

waves, isotropy around one axis indicates that the velocities are isotropic for all angles.!

Here isotropy means that the phase velocity is circular. This use of the term does not take into account
the nature of the particle motion, which may not correspond to a pure §V-mode (Dellinger, 1991).
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For compressional waves, isotropy around one axis does not always mean isotropy for
all angles. When the condition Wp.nmo = Wp,; is substituted into equation (2.14), we
get Wiz = Wiy — 2Wyy, and when Wpenmo = Wp,; in equation (2.5), it follows that
Wi3 = Wiz — 2Wy4. None of these values of Wi3 transform (2.1a) into a circle, unless
Wi = Was.

2.8 Conclusions

T have shown how to estimate the elastic constants of homogeneous TI media from P-, SV-,
and SH-wave traveltimes near a single axis of symmetry (either from VSP or cross-well
geometries). The technique uses the parameters obtained by fitting traveltimes near one
axis with elliptical models. For SH-wave traveltimes, the estimation of the corresponding
TI elastic constants is simple because SH-wave phase velocities are also elliptical in TI
media. For P- and SV-wave traveltimes, four parameters are needed to estimate the phase
velocities at all angles from measurements near one axis. These parameters are the direct
and NMO phase velocities for P- and SV-waves.

The transformation from elliptical parameters to elastic constants is simple for both
VSP and cross-well geometries.

The accuracy in the estimation of the elastic constants from the elliptical parameters
depends on the accuracy in the estimation of the NMO velocities. For small ray angles
the approximation is excellent when using either VSP or cross-well geometries because
the elliptical approximations are adequate in both cases. In practice, however, using only
small ray angles may hinder an accurate estimation of NMO velocities. For intermediate
ray angles, the estimation of vertical P-wave velocities from cross-well gevinetries is more
accurate than the estimation of horizontal P-wave velocities from VSP. This is because
the elliptical approximation for the P-wave impulse response fits wider angles around the
horizontal than around the vertical where the group velocity is smaller. For large ray
angles the approximation doesn’t work because elliptical fits are not as accurate.

When compressional and shear velocity logs are also available, they can be used either
to add redundancy in the estimation of W13 and Wy or to check whether the assumption
of transverse isotropy is valid, in particular when using cross-well measurements where
vertical velocities are not well sampled.

In chapter 5, I show how we can combine this technique and anisotropic traveltime
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tomography to estimate spatial variations of elastic constants. But to do anisotropic
traveltime tomography, we should first be able to trace rays in anisotropic models. The

next chapter explains how.
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Chapter 3

Kinematic ray tracing in

anisotropic layered media

The first step toward estimating tomographically elliptical velocities in heterogeneous
anisotropic media is to be able to do ray tracing. In this chapter, I review a procedure to
trace rays in layered transversely isotropic models with dipping interfaces. Group velocities
are used to propagate the ray across each homogeneous layer, and phase velocities are used
to find out how a given ray changes its direction when impinging on an interface. The
equation that relates the ray parameter of the incident ray with the angle of the emergent
phase at each interface is studied in detail. Finally, examples of ray tracing in simple

anisotropic models are shown.

3.1 Introduction

Estimating velocity anisotropy tomographically from cross-well traveltime data is a process
that often has two kinds of nonlinearity: the anisotropy itself and the ray bending from one
iteration to the next. Under certain conditions one of these nonlinearities can be neglected
while the computations related to other one are simplified. For example, assuming weak
anisotropy, Pratt and Chapman (1992), and Chapman and Pratt (1992) proposed to do
the ray tracing in isotropic media and to use those rays to back project in the anisotropic
model. As I show in chapter 4, the problem can be simplified even more if the velocity
contrasts are small enough that the rays traced on the anisotropic model are straight and

the only nonlinearity that remains is in the estimation of the anisotropy. Unfortunately,

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-30-

these simplifications are not generally valid and therefore the problem needs to be solved
by tracing rays appropriately in inhomogeneous anisotropic media.

Methods for dynamic ray tracing in inhomogeneous anisotropic media have been pro-
posed by Cerveny (1972), Hanyga (1982), Jech and Psencik (1989), and Gajewski and
Psencik (1990), among others. These methods are based on the solution of the dynamic ray
tracing equations. To solve only the kinematic problem (what is needed to do traveltime
tomography), Byun (1982, 1984) proposed a different technique based on the application
of Snell’s law at each interface.

In this chapter, I review and implement Byun’s procedure for kinematic, anisotropic
ray tracing. From the boundary conditions at each interface, I derive the equation that
relates the ray parameter p of the incident phase to the angle of the transmitted phase.
Using this equation and the equations that relate phase and group velocities, I describe
a procedure that alternatively uses each type of velocity to propagate a ray across a
layer and to figure out how it changes direction when impinging on an interface. The
last section gives examples of P-wave ray tracing for a cross-well geometry in different
layered transversely isotropic models. In chapter 4, I use this ray tracing procedure to do

traveltime tomography in elliptically azimuthally anisotropic media.

3.2 Boundary conditions

A wave impinging on a plane interface between two media must satisfy the kinematic
boundary condition
vy = Vi, (31)

which states that the particle velocity must be continuous at all points on the boundary
between medium 1 and medium 2 (Auld, 1990).

If the wave field is described as a superposition of functions of the form exp(ikr), the
condition (3.1) implies that for both incident and scattered waves the component of k
tangential to the boundary (k;) must be the same. If we divide k by the frequency w of
the incident wave and define a vector k of magnitude 1/v (where v is the phase velocity)

as follows:

k1

k=== _——=
Ikl v’

Ex

(3.2)
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the continuity of k; implies the continuity of l‘q,, usually called ray parameter p for which
P1 = p2. (3.3)

Since we know that p is parallel to the interface, the ray parameter is usually considered
as a scalar p with 2 positive or negative sign in front to indicate the sign of the angle of
the incident phase with respect to the normal.

Auld (1990) examines condition (3.3) by looking at the corresponding slowness surfaces
(a plot of ||k]| as a function of its direction), as Figure 3.1 shows. In this figure the slowness
surfaces for both P- and S-waves are represented for each isotropic medium. The vector
CA = AB = p is the projection on the interface of the point on the slowness surface
that corresponds to the incident P-wave phase. From the construction of Figure 3.1 it is
possible to derive easily Snell’s law that gives the angles of the scattered phases for both

P- and S-waves:

1 1 1
= —sin(fp.) = —sin(f = —sin(f
p = osinlbe) = -sinlbr) = -sin(fs)
1 1 .
= —sin(fs,) = —sin(fp,). (3.4)
Vis Uip

Snell’s law tells us how a given phase changes its direction when it crosses the interface
between two media. It also tells us how rays change direction when crossing an interface,
but the medium must be isotropic for this to be true, as in Figure 3.1. In isotropic
media, since rays and waves travel in the same direction with the same velocity, boundary
conditions valid for waves are also used to predict the behavior of rays. In anisotropic
media, however, this simplification is no longer valid because, in general, rays and waves

travel with different velocities in different directions as shown in Figure 3.2.

3.3 Inmitial value ray tracing

When the medium is horizontally layered and isotropic, tracing a ray across the different
interfaces is easy. From the medium’s velocities and the direction of the ray at the source
(p), successive applications of (3.4) tell us how a ray changes its direction as it travels.
The only angles that matter are those of the incident and refracted rays. If the layers dip
the problem is slightly more complicated because p has to be calculated every time the
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Figure 3.1: Plane-wave scattering
at a plane boundary between two
isotropic media. From this construc-
tion Snell’s law can be easily derived.
Ray and phase directions are equal.

Figure 3.2: Plane-wave scattering
at a plane boundary between two
anisotropic media. The slowness sur-
faces are separated and nonspheri-
cal. Ray directions (dashed arrows
at the slowness surfaces) and phase
directions (continuous arrows) are no
longer the same.(Modified from Aki
and Richards, 1980.)

+Nvy
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ray reaches a new interface and we have to consider with three instead of two angles at
each boundary.

When the medium is anisotropic, we have to consider with seven angles at each in-
terface to figure out how a ray changes its direction. All these angles (positive counter-
clockwise) are shown in Figure 3.3. The continuity of the slowness across the interface

[equation (3.3)] is expressed as follows:

p = sin(6; + 1) _ sm(0t+72), (3.5)

v1(6;) v2(6;)

where v1(6;) and v;(6;) are the phase velocities in the corresponding media evaluated at

the incident and transmitted phase angles, respectively. The sums (6; + v1) and (8; + 72)
have to be calculated considering the proper signs of the angles. From equation (3.5) we
can see that when p = 0 (normal incidence) the angle of the transmitted phase does not
depend on the phase velocity and is §; = —y;. Any other relation derived from (3.5) must
reproduce this simple result.

Given the function v(f) for each medium, equation (3.5) describes how the incident
phase k changes its direction when crossing the interface between two media. How-
ever, (3.5) does not show what happens to the direction and velocity of the associated
ray. These two quantities can be calculated from the equations that relate phase and ray
velocities (Byun, 1984):

v(f) = V(g)cos(¢-9), (3.6a)
1 dv(9)
tan(¢ — 6) ;’(—@-7’ (3.6b)
v 2
Vig) = '02(0)+(d d(:)) , (3.6¢c)

where V(@) is the ray velocity along the ray angle ¢.

Equations (3.5) and (3.6) are the basic relations for tracing a ray in a medium where
v(6) and v are given for each layer. Byun (1984) proposes the following procedure to do
so: (1) Assign a value to 6 = 6; at the source position. (2) Repeat the next steps for
each layer: (a) Evaluate v(6) and %gﬁ at the corresponding 6. (b) Find ¢; and V(¢)
from equation (3.6). (c) Trace a ray along the angle ¢, until it reaches the next interface.
(d) Find p of the incident wave using equation (3.5). (e) Solve equation (3.5) for 4,. 3)
Return to step 2a.
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Figure 3.3: Incident (i) and trans-
mitted (t) group and phase angles of
a ray impinging on a plane interface
between two transversely isotropic
media.

A T +N

b
= o2

The previous ray tracing procedure is valid for any phase velocity function v(8). What
changes from one choice of the velocity function to another is how to solve step 2e [to find
6: as a function of p using equation (3.5)]. The next section focuses on how to accomplish

this step when the medium is transversely isotropic.

3.4 Solving for the phase angle

3.4.1 P- and SV-waves

In a transversely isotropic medium, the phase velocity v(f) for P- and SV-waves is ex-
pressed as follows (Auld, 1990):

20v%(0) = cj18in%(0) + c33cos®(6) + cay (3.7)

% \/ [(c11 = caa) 5in®(8) + (cag — c33) cos2(8)]2 + (c13 + cas)2sin?(26),

where c;; are four of the five elastic constants that describe a homogeneous transversely
isotropic medium. The plus sign (+) in front of the square root corresponds to P-waves

and the minus sign (—) to SV-waves. p is the density.
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An equation for the transmitted phase angle 6; as a function of the incident p can be
obtained by substituting equation (3.7) into equation (3.5) which results in the following
fourth-order polynomial in tan(6;):

ag + a3 tan(6;) + ag tan®(6;) + aztan®(8;) + agtan(8)) = 0, (3.8)

where the coefficients a; are given in appendix B. A similar expression obtained by Byun
(1984) is not correct because 6; = —<2 is not a root of the polynomial when p = 0, as
equation (3.5) predicts.

As shown in appendix B, the coefficients a; are the same for both P- and SV-waves
[the % in front of the square root in equation (3.7) is lost in the derivation of (3.8)],
and they are independent of the sign of p. In principle, by solving this equation at each
interface, it should be possible to find the angle of the transmitted phase by computing the
arctangent of one of its roots. However, the procedure is not straightforward. On the one
hand, we have to identify the solutions that correspond to p or —p and P- or §V-waves.
On the other hand, finding an angle from its tangent is not a one-to-one transformation
because tan(f) = tan(f + nm) and therefore infinite angles satisfy equation (3.8). Aside
from these problems, we usually have to deal with the difficulties of solving equation (3.8)
numerically.

Let’s first examine the numerical problems. It is well known that most algorithms
used to find roots of polynomials fail in the presence of multiple (or close to multiple)
roots. This is the case with equation (3.8) when p = 0. From equation (3.5), we find
that in this case the transmitted phase angle is ; = —v2 and therefore it is not necessary
to solve equation (3.8) when p = 0. Problems may also arise when p = 0 because the
roots are close to being multiple. The way I found around this problem is based on the
assumption that the slowness surface is a smooth function of § and that therefore when
p =0, vo(6;) = vo(—v). If this is true, 6, = —v2 can be used as starting point to find 6,

by successive applications of equation (3.5) as follows:
Oryy = sin™!(pr2(6r)) — 72- (3.9)

Typically, only one iteration is required.
Figure 3.4 shows how to solve equation (3.8) graphically. From the construction with
the slowness surfaces, we can see that the infinite roots of equation (3.8) mentioned earlier

in this section correspond to only eight different points in the slowness surfaces for both
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P- and SV-waves. In this figure I also assume that the incident phase (not shown) is
crossing the interface from medium 1 to medium 2. For simplicity, I assume that both
media are isotropic. The slowness surfaces in medium 2 are represented half by continuous
circles and half by dotted circles. The slowness surfaces in medium 1 are not shown. For
a given *p value at the interface, this figure shows the position of all the possible points
in the P and SV slowness surfaces whose angle measured from the symmetry axis satisfies
equation (3.8). These points are obtained by simple application of the kinematic boundary
condition (3.3). The points 4, B, C, and D are the solutions for negative p and the points
H, G, F, and E, obtained by adding =+ to the previous solutions are the solutions for
positive p. If |p| > -51;, two of the roots of (3.8) are complex and there are no transmitted
P-waves. If |p| > %, the four roots are complex and there are no transmitted $V-waves
either. I assume that when the transmitted ray travels parallel to the interface, it doesn’t
go back to the previous medium, which is a simplification of the actual behavior of head
waves.

If we take “1” as the axis of symmetry in Figure 3.4, we see that when the axis
of symmetry and the normal to the interface are parallel, the arctangent of the roots of
equation (3.8) give the angles of the points 4, B, F, and F. This is because the FORTRAN
function ATAN gives its results in the interval (—7/2,+7/2), which is exactly the domain
of the phase angle measured from the axis of symmetry. “2” is also an axis of symmetry
in this example because the medium is isotropic. If we take “2” as the axis of symmetry,
the roots of equation (3.8) give the points E, F, G, and H. None of these points is the
correct one when, for example, a P-wave impinges on the interface with negative p. In
this case, the point B is the solution.

The preceding example tells us that when the axis of symmetry and the normal to the
interface are not parallel, the roots of equation (3.8) may not give the expected direction
for the refracted phase. For this reason, it is necessary to examine all eight angles and
pick the one that verifies equation (3.5) for the desired wave type (with this, the number
of possible angles is reduced from eight to two) and produces a ray pointing toward the
expected direction (which further reduces the number of angles from two to one). This

procedure will be explained in more detail in the next section, which concerns SH-waves.
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Figure 3.4: Graphical solution for the angle of the transmitted phase as a function of the
incident p. The tangent of the angles at A, B, C, D, E, F, G, and H are roots of equation
(3.8). Among these eight angles, only one reproduces the incident p for the corresponding
wave type in the expected direction. When solving equation (3.8) numerically, only those
angles at +90 degrees from the axis of symmetry are obtained. The axes of symmetry
1 and 2 are two of the possible axes of symmetry of the isotropic medium in which the
transmitted phase travels.
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3.4.2 SH-waves

SH-waves in a transversely isotropic medium have elliptical slowness and wave surfaces. An
elliptical slowness surface may not be a good global (i.e., for all angles) approximation for
a P or SV slowness surface in a transversely isotropic medium, but it is a good parazial
approximation. Hence the importance of elliptical anisotropy in data fitting, specially
when the measurements have limited aperture, as I explain in chapter 2.

The procedure explained in the preceding section for P- and SV-waves can be also
used to trace rays when the medium is elliptically anisotropic. To see how this can be

done, let’s first rewrite the expression for the phase velocities (3.7):

2pv%(6) (c11 — caq) sin®(6) + (c33 — caa) cos?(6) + 2cas

£ ([(ca1 = caq) sin®(8) + (cas — caq) cos’(6))?
+ [(c13 + caa)? = (c11 = caa)(c33 — cas)] Sin2(29))1/2-

To convert this equation into that of an ellipse (or a circle), we need to zero the coefficient

of sin?(26) inside the square root. This is done by choosing

c1s = 1/(c11 — cas)(ess — cas) — cas.

This substitution, however, doesn’t simplify the numerical computations.

Byun (1982) shows an alternative way to do the ray tracing that is computationally
simpler than using the procedure for P- and §V-waves. He shows that when the slowness
surfaces are elliptical the calculation at each interface of the refracted ray angle ¢, is
simpler, because the phase angle 6; does not need to be explicitly computed. Byun’s

expression for the ray parameter as a function of the ray’s angle at each interface is

v ?sin(v2) + v ? cos(72) tan(gy)
p= y—— , (3.10)
v “+v]“tan (72)

where v and v, are the SH-wave velocities in the directions parallel and perpendicular
to the axis of symmetry. After doing some algebra it is possible to solve for the ray angle
&1, which yields

(3.11)

) sin(12) cos(2) /o cos2(ra) + ¥2 sin?(12) — (pvyu.)?

P27 = oo ()

tan(¢;) = (v—l

U
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Since equation (3.11) is independent of the sign of p, it gives the solutions of (3.10) for
both positive and negative p. The correct ¢; is the one that gives the expected sign of p
and corresponds to a ray in the desired direction.

If we take the extra step of solving explicitly for the phase angle at each interface, we
have to choose among the four different points in the slowness surface whose angles satisfy
equation (3.5), the one that produces a ray pointing in the desired direction. The “desired
direction” depends on the type of problem for which the ray tracer is used. Figure 3.5
shows how to pick the roots that correspond to transmitted rays, the ones needed in
transmission traveltime tomography.  In this figure, the horizontal distance from the
center of the each ellipse to the vertical line is equal to the incident p. As we see, to
obtain transmitted rays (dashed arrows with a black head), it is enough to pick the root
that produces a ray pointing toward medium 2. In some cases the transmitted ray can
travel parallel to the interface with the phase direction (continuous arrows) parallel to it
or not (Figures 3.5f and 3.5e, respectively). The emergent phase angle may be greater
than 90 degrees for the transmitted ray, as shown in Figure 3.5g. The ray pointing toward
medium 2 may also go backwards, as Figure 3.5h shows. When the vertical line doesn’t
intersect the ellipse, there are no transmitted but only reflected rays (in which the angle
of incidence is greater than the critical angle). However, to keep track more easily of the
rays that hit the interface at post-critical angles, I assume that they continue traveling

along the interface. The inversion procedure described in chapter 4 doesn’t use these rays.

3.5 Model of heterogeneities

In this chapter, the rays are traced in heterogeneous models that are superposition of
homogeneous transversely isotropic layers with dipping interfaces. The interfaces are not
allowed to cross within the area of interest. Each layer is defined by the intersects and dips
of the boundaries, the five elastic constants that define a transversely isotropic medium and
the orientation of the axis of symmetry with respect to the vertical. When the anisotropy
is elliptical, the five elastic constants are substituted by the velocities in the direction
parallel and perpendicular to the axis of symmetry. This type of model simplifies the

two-point ray tracing procedure described in the next section.
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Figure 3.5: Roots of equation (3.5) (scattered phase angles) for negative p when the
slowness surface is elliptical. Only the slowness surface in medium 2 is shown. In each case,
the incident p is measured from the center of the ellipse to the vertical line. Continuous
arrows show the scattered phase directions that correspond to transmitted rays (dashed
arrows with a black head). Dashed arrows with a white head show ray directions with the
same p but pointing towards medium 1. (a) Most common case. (b) Normal incidence
(p = 0). (c) Phase direction parallel to the interface, ray not. (d) Two phase directions
less than 90 degrees. (e) Ray direction parallel to the interface, phase not. (f). Both ray
and phase directions parallel to the interface. (g) Two phase directions greater than 90

degrees. (h) One ray going backwards.
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3.6 Two-point ray tracing

In transmission traveltime tomography, we usually need to link every source with the
corresponding receiver positions. I do this, with the initial value ray tracing described in

sections 3.3 and 3.4, as follows:

1. A sparse fan of rays is traced from the given source position. The aperture of this
fan is greater than the aperture of the receiver positions. The end points of these

rays (Z.nq) and the shooting angles (@;,it) are saved.

2. The angle a;ni; that corresponds to a given receiver location is obtained (by using
splines interpolation) from the relation a;si; as a function of z.,4. This relation is a
function almost everywhere. In some places it can be multivalued because the same
receiver location can correspond to different shooting angles (all of them greater than
the critical angle). The points at which the function is multivalued must be removed
before the interpolation. Because of the way the heterogeneities are described, a;n;;
as a function of 2.,4 always increases or always decreases (except where multivalued

at post-critical angles or at triplications).

3. A ray is traced along the newly found ani:, and the z.,4 that results is compared
to the expected receiver position. If the difference is greater than a predetermined
value, I update the table ¢;ni; as a function of z.,q is updated with the latest
values of nis and 2eng, and return to step (2). If the difference is smaller than a

predetermined value, the ray has been captured.

3.7 Examples

The following examples, show fans of P-wave ray paths in different models for a cross-
well configuration. The fans are traced at constant intervals in the phase angle that only
correspond to constant intervals in the ray angle when the medium is isotropic. This is
shown in Figure 3.6a, where rays have been traced in the simplest model: homogeneous
isotropic. When the model is transversely isotropic with vertical axis of symmetry, the
density of rays changes with the angle, as Figure 3.6b shows. Figure 3.6c shows the ray
paths in a homogeneous transversely isotropic model in which the axis of symmetry is

tilted with respect to the vertical (v = 30). When two-point ray tracing for the same
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receiver positions is performed in the corresponding homogeneous models, we don’t see
any difference among the three ray path diagrams because the ray angles depend only on
the relative positions of source and receivers. The three cases differ only in the traveltimes.

Models like the ones shown in Figure 3.7 may arise from different combinations of
deposition, erosion, and rotation of the layers involved. The finely layered areas can be
modeled as homogeneous anisotropic layers with axis of symmetry perpendicular to the
layering. The only difference between the two models in Figure 3.7 is in the axis of
symmetry of the third layer. Figure 3.8 show the rays traced through these models for a
source at 3500 feet. The elastic constants for each layer are listed in Table 3.1.

distance (ft)
550

—+ O

(W) yrdasp
00€¢
00ge

009¢
009¢

006¢
006¢

" (b)

Figure 3.6: P-wave ray paths in different homogeneous models for a source located at
3350 feet. (a) Isotropic. (b) Transversely isotropic with vertical axis of symmetry. (c)
Transversely isotropic with v = —30. Note how the density of rays with angle changes in

the anisotropic models. The elastic constants used in (b) and (c) are (c11/p)!/? = 9894,

(c3s/p) /% = 9005, (caa/p)'/? = 4949, and (c13/p)? = 5655, all in (ft/s). The density p
is assumed to be unity.

To check the accuracy of calculated P- and SV-wave traveltimes, I ran a finite-difference
anisotropic elastic modeling algorithm (Karrenbach, 1992) vsing the layered model shown
in Figure 3.9, assuming a VSP geometry with the source at the surface separated 390 feet

from the receiver well. The ray tracing was performed on the same model. Figure 3.10
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f
&

Figure 3.7: Heterogeneous anisotropic models. Two of the four homogeneous blocks are
anisotropic with the orientation of the axes of symmetry indicated by the arrows. The
axis of symmetry is perpendicular to direction of fine layering. In both models, layers 1
and 4 (from top to bottom) are isotropic. The third block of thin layers in the model at
the left (v = 0) can be the result of deposition in an eroded boundary whereas the same
block in the model at the right (y = 30) can be the result of tilting after deposition over
a plane boundary. The position of the source is shown by an asterisk (x).

Layer 1 Layer 2 Layer 3 Layer 4
Vi1 = 9005 | Vi3 = 9894 | V43 = 12545 | V31 = 9005
Va3 = 9005 | V33 = 9005 | V33 = 10845 | V33 = 9005
Vag = 4949 | Vg = 4949 | Vyy = 5968 | Vg = 4949
Vi3 = 5655 | Vi3 = 5655 | Vi3 =6805 | Vi3 = 5655

Table 3.1: Elastic constants V;; = {/c;;/p [in (ft/s)] of the models shown in Figure 3.7. In
all cases, the elastic constants are referred to the axis of symmetry of the corresponding
layer. Layers are counted from top to bottom. The density p is assumed to be unity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-44-

distance (ft) distance (ft)
N0 550 v 0 550
2 ~2
o o
o S
w w
) o
by S
o S
a a
D o D W
£y £
53 | =3
= N
Zw Zw
o o
Q | Qi
S S
w 0w
© ©
o S
o o

Figure 3.8: P-wave ray paths in the models of Figure 3.7 for a source located at 3500 feet.
(a) Vertical axis of symmetry. (b) Tilted axis of symmetry.

shows the results of both the finite-difference elastic modeling and the anisotropic ray
tracing. The first arrivals for P- and SV-waves predicted by the finite-difference modeling
agree with the traveltimes computed by ray tracing. By picking the appropriate root
in equation (3.8), reflections or conversions at the interfaces can also be modeled with
ray tracing. Figure 3.10 also shows the traveltimes of reflected arrivals from a selected

interface.

3.8 Conclusions

This chapter has reviewed the basic steps for tracing rays in layered transversely isotropic
models, emphasising the calculation of the angle of the transmitted phase as a function
of the ray parameter of the incident phase. When the angle of incidence is small, I use a
different procedure for estimating the angle of the transmitted phase than when the angle
of incidence is large. In the latter case, the transmitted phase angles are calculated from
the roots of a four-order polynomial in the tangent of the angle for P- and SV-waves and

analytically for SH-waves. The appropriate root must reproduce the p of the incident
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phase for the given wave type, producing a ray in the desired direction.

The algorithm is tested by comparing the traveltimes calculated in a heterogeneous
transversely isotropic model with those computed by finite-difference elastic modeling.
Both sets of traveltimes are in perfect agreement.

In the next chapter, I use this method of anisotropic ray tracing as a part of a more

general algorithm to do anisotropic traveltime tomography.
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Figure 3.10: Result of the finite-difference elastic modeling through the model shown in
Figure 3.2. The dashed lines are created by ray tracing. Traveltimes of P-wave reflected
arrivals from one interface have been also calculated by ray tracing.
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Chapter 4

Tomographic estimation of

elliptical velocities

To estimate elastic constants from traveltime measurements it is first necessary to fit the
traveltimes with elliptical velocity functions. As described in chapter 2, when the model is
homogeneous and the axis of symmetry is vertical, only two parameters for each wave type
are needed to describe the elliptical velocity functions. When the model is heterogeneous,
however, the elliptical velocity functions need to be estimated at each point in space.
Thus the problem of estimating them, which in homogeneous media is highly overdeter-
mined, becomes in heterogeneous media a highly underdetermined problem. This chapter
describes a tomographic approach for solving it. The underdeterminedness is resolved by
using models for the heterogeneities that contain information about the expected variations
in the medium. I show synthetic and field data examples that illustrate the application of
the technique, which uses the anisotropic ray tracing algorithm developed in chapter 3.

4.1 Introduction

Depending on the degree of anisotropy and fine layering of the medium, tomograms ob-
tained from cross-well traveltime data under an isotropic assumption may be significantly
in error. These errors are analogous to the mispositions obtained with surface seismic
methods when, in an anisotropic environment, stacking velocities are used to convert
times into depths. The need to eliminate these errors provides one reason for using an

anisotropic model in tomographic traveltime inversion. Another reason is that we are

47
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solving more than an imaging problem, since it is well known that anisotropy is a useful
tool for studying lithology and the degree of stratification in sedimentary rocks. Taking
velocity anisotropy into account in tomographic traveltime inversion helps us to gain useful
information about reservoir and nonreservoir rocks.

Additional subsurface information (e.g., layer depths or vertical slownesses) is required
for estimating anisotropy from surface seismic measurements (Levin, 1978). For this
reason, in recent studies where anisotropy has been quantified, either a different geometry
like VSP has been used (Byun and Corrigan, 1990; White et al., 1983) or the surface
seismic information has been combined with well-logs (Banik, 1984). Observing that
velocity anisotropy does not affect P-wave horizontal moveout considerably, Winterstein
(1986) estimated the required layer thicknesses using velocities obtained form P-wave
velocity analysis. Then, from SH-wave velocity analysis, he was able to estimate velocity
anisotropy.

The main difference between tomographic velocity estimation from surface measure-
ments and cross-well or VSP traveltimes is that the former requires a priori knowledge
of reflector positions whereas the other methods do not. The only positions needed to
estimate velocities from direct path, cross-well traveltimes are the source and receiver lo-
cations. Eliminating reflector mapping from the problem may make the estimation of other
effects such as velocity anisotropy simpler in the cross-well environment. However, fewer
attempts have been made to estimate velocity anisotropy from cross-well measurements.
Stewart (1988) and Williamson et al. (1993) has proposed a modification to methods
based on algebraic reconstruction techniques to include the effect of anisotropy. By using
the weak anisotropy expression for the phase velocities given by Thomsen (1986) to fit
the traveltimes, Stewart and Williamson et al. appear to assume the equality of group
and phase velocities, which is, in general, not true. McCann et al. (1989) show how an
isotropic inversion improved after assuming a fixed amount of anisotropy. Winterstein
and Paulsson (1990) have estimated a vertical velocity gradient from VSP and cross-well
data assuming a transversely isotropic model. Chapman and Pratt (1992) and Pratt and
Chapman (1992) estimated velocity anisotropy in a general 2-D medium assuming weak
anisotropy in order to justify isotropic ray tracing. Saito (1991) and Lines (1992) proposed
to separate the effects of anisotropy and heterogeneity by first “removing” the anisotropy
effects from the data so that conventional isotropic tomography in heterogeneous media

can later be applied.
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As I show in chapter 2, a general TI medium can be approximated by fitting P-
and S-wave traveltimes with ellipses either around the horizontal or around the vertical
(assuming a vertical axis of symmetry). Muir (1990), and Dellinger et al. (1993) show that
when P- and S-wave traveltimes around both the horizontal and the vertical are available,
a general TI medium can also be approximated by fitting the data with ellipses. What is
needed to use these two different approximations in heterogeneous media is a procedure to
find the parameters that describe the ellipses as a function of the position. This chapter
focuses on such a procedure.

I show in this chapter how to fit tomographically transmitted traveltimes with het-
erogeneous elliptically anisotropic models. When P- and S-wave traveltimes are available,
the images obtained can be transformed into elastic constants of a TI media as explained
in chapter 2. I also show that if only one wave type is available, the images obtained
can still provide useful information about the medium. The model of heterogeneities is
required to be piecewise continuous and the formulation is identical for any wave type.
No assumptions are made about the weakness of either anisotropy or heteroneneities.

Certain types of azimuthally anisotropic media can approximated with the model of
velocity and heterogeneity used in this chapter, in particular those formed by dipping
transversely isotropic layers. This is done by also considering as a variable the inclination
of the axis of symmetry. The estimation of this variable may help the interpreter to char-
acterize the amount of structural deformation that has undergone the different formations
in the reservoir and may also help in the identification of structural unconformities.

I have studied the effects of the limited view of the measurements (from cross-well
geometries) in the estimation of both slowness components for different models of het-
erogeneity, concluding that the technique is stable and accurate when used to invert 1-D
(layered) models if the range of ray angles is “wide enough.” In 2-D models, the estimation
of lateral variations in the vertical component of the slowness is particularly difficult from
cross-well geometries alone. Consequently, 2-D spatial variations in velocity anisotropy
cannot be estimated at the same resolution as that of variations in velocity. I also show
that when iterative techniques such as conjugate gradients are used to estimate the aniso-
tropic parameters, early termination of the iterations (a way to damp the solution) may
produce artificial anisotropy. This problem worsens in two dimensions.

A theoretical discussion of the technique is followed by examples with cross-well syn-

thetic data and field data from an Amoco Gulf Coast site and the British Petroleum (BP)
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Devine test site.

4.2 Forward modeling

The traveltime for a ray that travels a distance d in a homogeneous medium with elliptical
anisotropy and the axis of symmetry forming an angle v with respect to the vertical
(Figure 4.1) is

3 2 —_ s 2
¢ = (Azcosy + Azsinw) +( Azcosy + Az siny) , (4.1)
vi i

where VAzZ + Az2 = d, and V|| and V, are the velocities in the directions parallel and
perpendicular, respectively, to the axis of symmetry. Appendix C explains how to derive

this expression.

Figure 4.1: Ray traveling a distance
d in a medium with a tilted axis d

of symmetry. a and < are the an- Az
gles (positive counterclockwise) of
the ray and the axis of symmetry,
respectively, in relation to the ver-
tical.

If the model is described as a superposition of N homogeneous orthogonal regions, the

traveltime for the i** ray traveling across the j** region is

(Az;jcosy; + Az jsiny;)2 | (—Azijcosy; + Az jsiny;)?
i = V2 + V“2 . (4.2)
Lj i

Note that each homogeneous region is characterized by three parameters: two velocities

and the angle of the axis of symmetry with respect to the vertical. From here on I refer to
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these parameters as interval parameters. In the preceding equation, ,/A:c? Tha Az,?d is the
distance traveled by the i** ray in the j** cell. The sum of expressions like equation (4.2)
can be used to compute the traveltime from source to receiver for a ray that travels in a
heterogeneous medium, assuming that the ray path is known. In chapter 3, I explain how
to do the anisotropic ray tracing.

Figure 4.2 shows an example of the type of model I consider in this chapter. It consists
of homogeneous elliptically anisotropic blocks separated by straight interfaces with variable
dip (a;) and intercept (b;). I assume that all axes of symmetry of the different layers lie
in the plane of the survey. If Az;; and Az;; are defined as

Azi; = Tij4y1 - zij, (4.32)

Azij = Zziji1 - zij, (4.3b)

the expression (4.2) for the traveltime ¢; ; of the ith ray in the j®* cell becomes

ti; = \/AXg,jzsij + AZ,',J'ZS”J., (44)

where S ;, S));» AXi;j, and AZ;; are equal to

1

S.L' = ’
J V.Lj
1

S, = o
It

A.X,',j = Aa:;,j cosvy; + (aj+1m,~,j+1 + bj+1 - a;Ti; — bj) sin'yj,
AZ;; = —(aj+1a:ij+1 +bjp1 - a;Tij — b_-,') cosvy; + Az jsiny;.
The point (z;j, zi;) is the intersection between the i** ray and the j** interface. If the
axis of symmetry is vertical (v; = 0), it follows that AX;; = Az;; and AZ;; = Az; ;.
Besides the interval parameters previously introduced, I have added two more param-
eters to describe how the boundaries that separate different intervals may change their
positions. I call them boundary parameters. Figure 4.2 shows how to count both intervals

and boundaries.

The total traveltime for a ray that travels from source to receiver is

N
t,‘(m) = Zt,-‘j(m) i=1,...M, (4.5)
j=1
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B
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. . — z=ax+ b ——
Figure 4.2: Model of velocities and
heterogeneities. The top and bot- Vs Vi
tom interfaces are horizontal (a; = 2 Vi
ay+1 = 0) and located at kmown
depths. This model is neither 1-D
nor fully 2-D, but something in be-
tween. Therefore, I call it 1.5-D.
z=anx+ by
—_—
Vix. Vis, yn
7 =bwna
where m is the vector of model parameters of 5N elements:
m = (mla oy TNy MIN 41y 000y TI2N s M2N 41y 000y TNy N3N 419 0y ANy MAN £15 o1y m5N)
= (S.L:l yeeey SJ.N’ S”; yoeey S||N) Y1y ey YN 0150 BN, @14 ey CLN), (46)

and M is the total number of traveltimes. The dimension of m can be reduced if some of
the parameters remain fixed during the inversion. For example, if the axes of symmetry
are known to be vertical, the components v1,...,75 are not used or if the position of
the cells is fixed (e.g., when discretizing the model using square pixels), the parameters
b1,...,bN,@1,...,an are not used either.

Equation (4.5) is the system of nonlinear equations that relates the model parameters
to the measured traveltimes. A linearized version of these equations is used in the next
section to solve the inverse modeling problem. When the medium is isotropic (i.e., S ;=
Sy, = S;), equation (4.5) reduces to the familiar expression that approximates traveltimes
computed in an isotropic model (McMechan, 1983):

N
i = E Sj\/ A:c,'jz + Az,'j2

i=1

N
= ) Sidyj,
i=1
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where d;; is the length of the i** ray in the j** cell.

4.3 Inverse modeling

In order to understand how to do the decoupling of anisotropy and heterogeneity (when
both effects can be separated), let us consider first the case of homogeneous elliptically
anisotropic media with a vertical axis of symmetry (S, = S, and §) = S;). From studying
this case, it is possible to draw some general conclusions about the estimation of velocities

that vary with both direction and position.

4.3.1 Homogeneous media

When the model is homogeneous and isotropic, we usually estimate the slowness S of
the homogeneous medium that “best” fits the traveltimes by simply averaging all the

slownesses S; obtained from the individual rays as follows:

s=Llyg - ls (@.7)
S = — i = =) -, .
M3 M=

where [; is the source-receiver distance and M the total number of traveltimes.

When the model is homogeneous and elliptically anisotropic, the two slowness com-
ponents S; and S; that best fit the traveltimes can be obtained by generalizing the av-
erage (4.7). This generalization is, as expected, in a least-squares sense. From expres-
sion (4.1) we can see that the relation between t2 and S2? and S? is linear. Therefore, for a
given set of traveltimes and source-receiver locations, it is possible to set up a least-squares
problem to find the vector m = (S;, S;) of the homogeneous medium. Defining M, = §?

and M, = S2, the least-squares problem is

M.
M( )= , (43)
~ Mz
where
Az?  Az?
Aza?  Azy?
M = fz fz ,

Azp® Azy?
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Equation (4.8) can be solved in different ways. The most common approach is to use
the normal equations, which results in

(Z’) = M"M)M7d. (4.9)

However, the normal equations may have undesirable features with respect to numerical
stability, because the condition number of MTM is the square of the condition number
of M If l\’g is only moderately ill-conditioned, MTI}VI is severely ill-conditioned. For this
reason, methods that do not amplify the condition number of M should be used to solve
systems like (4.8) (e.g., QR factorization).

For estimating M, and M, simultaneously and accurately, M has to be well con-
ditioned. This is not the case when most of the elements of the matrix satisfy either
Az2 > Az or Az? > Az;?. These two inequalities describe cases in which most rays
are traveling close to the horizontal or the vertical. In such cases, it is difficult to estimate
simultaneously both components of the vector S because the limited view of the measure-
ments results in severe ill-conditioning. This can be understood by trying to estimate M,

and M, using the simple cross-well experiment shown in Figure 4.3, where Az? > Az
In this case
Az? Az?
M= 9 5 |-
~ Az* Az

The eigenvalues of this matrix are

Az? + Azy? = 1/(A2? — A22)? + 40z Az
+ = .
2

Since Az? > Az?, the eigenvalues to the first order are
Ay & Az? 4 Az?,
Ao & Az?—Az2

The largest eigenvalue of M is related to the horizontal component of the slowness, and the

smallest one is related to the vertical component. In contrast, for a VSP-like geometry, the
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Figure 4.3: Cross-well experiment
with two rays.

largest eigenvalue is related to S, and the smallest one to S, (Dellinger, 1989). Increasing
the number of rays M without increasing the aperture does not solve the problem. In such
a case, the largest eigenvalue of the matrix (I'\V/IT M) tends to Y M, Az;# and the smallest
one tends to zero again.

Having seen the difficulties of trying to estimate variations of velocity with direction
in homogeneous media, let’s look at what happens when we try to do the same in hetero-

geneous media.

4.3.2 Heterogeneous media

When estimating velocities tomographically in heterogeneous media, the goal is to estimate
two different sets of coupled unknowns: the model parameters and the ray paths. The
usual way to decouple them is by invoking Fermat’s principle, which “justifies” the trick
of assuming one to estimate the other in an iterative fashion, as long as the magnitude of
the changes from one step to the next are kept small.

Once we have estimated the ray paths, we need to solve the system of nonlinear

equations (4.5) in order to find a new model in which rays are again traced. One way
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to solve (4.5) is as a sequence of linearized steps starting from a given initial model m,.
The first step is to approximate such an equation by its first-order Taylor series expansion

centered about a given model m,:

ti(m) = ti(m,)+ Vti(m,) - (m —m,)

5N
= ti(mo)+ ). 3. (mn —moa), (4.10)

n=1

where the elements of the Jacobian J are
~in

at;
~in - amn

m=m,
The explicit forms of these derivatives are given in appendix D. In contrast with the
Jacobian for the isotropic case, the matrix J when the medium is anisotropic depends
ezplicitly on the interval parameters of the reference model m,. In the isotropic case,
the Jacobian depends only on the lengths of the rays at each pixel, and, therefore, when
the rays are straight the estimation of slowness becomes a linear problem because the
Jacobian is constant. In the anisotropic case, however, the problem is still nonlinear even
if the rays are straight. Ray bending introduces an additional type of nonlinearity into
the problem.

If we assume that ¢;(m) represents one component of the vector ¢ of measured trav-
eltimes, we can compute the perturbations Am, = (m, — mg,) once the traveltimes in
the reference model m, have been calculated. The perturbation Am = (m — m,) is the

solution of the following system of equations:
JAm = At, (4.11)

where At; = t;(m) — ti(m,). In practice, only a fraction 7 of the correction Am is added
to the given model:
m, = (my + rAm),

where r (the step length) is usually kept small to avoid large changes in the ray paths
from one iteration to the next.

In appendix A, I compute the singular value decomposition (SVD) of the matrix J for
the following models with fixed interfaces: 1-D isotropic, 1-D anisotropic, 2-D isotropic

and 2-D anisotropic. The results are roughly a combination of the results I derived in
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the section “Homogeneous media” and the results previously published for isotropic het-
erogeneous media (Bregman et al., 1989; Pratt and Chapman, 1992); that is, the more
sensitive part of the model related to the largest singular values of the Jacobian, corre-
sponds roughly to vertical variations in the horizontal component of the slowness, whereas
the less sensitive part of the model corresponds to horizontal and high-frequency variations
in the vertical component of the slowness. As a consequence, in two dimensions, S, and
S; cannot be estimated with the same resolution because a large part of the variations in
S; are in the null space of the problem. In one dimension, S; and S; can be estimated
with the same resolution only when the smallest singular values of the problem can be
also retrieved. The last section of this chapter shows examples that illustrate this issue.

Based on the observations derived from the SVD that estimating anisotropy and het-
erogeneities in 1-D models is by far an easier problem than in 2-D models, I consider
intermediate models like the one shown in Figure 4.2 where the only type of lateral vari-
ations allowed in the model are as straight interfaces with variable dip and intercept.

In the examples shown later, the system of linear equations (4.11) is solved using the
LSQR variant of the conjugate gradients algorithm (Nolet, 1987), which has been proved
to be faster than SIRT methods (Nolet, 1985; Van der Sluis and Van der Vorst, 1987).

4.3.3 Constraints

Prior information about the real medium can be introduced in the inversion in two ways:
with the starting model and with bounds on the variations of the parameters being esti-
mated. In this particular algorithm, both these forms of prior information are essential
for a reliable estimation of the vector m.

If the starting model is “far” from the “true” answer the algorithm may not converge
at all, or, if it does, it may produce a wrong answer. Although this problem may happen
with any nonlinear inversion, it can be shown that if the starting model is “close” to the
true answer, a linearized solution of the nonlinear system of equations (4.5) converges
quadratically (Gill et al.,, 1981). Therefore, any information introduced in the initial
model (especially about dips) helps the algorithm converge to a more reliable estimate of
the actual medium.

When the interfaces are allowed to change position from one iteration to the next,
the algorithm has to ensure that each new model does not contain crossing interfaces in

the area of interest. If two interfaces cross after adding rAm to the given model, the
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step length r is reduced until those interfaces do not cross after the correction. Once the
model is updated and no crossing interfaces are found, the algorithm checks whether thin
layers have been created or not, and, if so, those layers are eliminated from the inversion,
reducing by a multiple of five the number of model parameters (five parameters for each
layer eliminated). The layers are eliminated by comparing their thicknesses with a prede-
termined minimum layer thickness, as long as the corresponding boundaries are parallel
(also within a predetermined range of angles). If the predetermined minimum thickness
is too small, the solution may contain layers with artificially high (or low) velocities, and
if the minimum is too big, spatial resolution in the model may be lost.

Whenever information is available about the position and dip of certain layers of the
medium (from well logs, for example) it should also be used to constrain the corresponding
interfaces in the model.

When appropriate, especially in 2-D models, the solution should also be required to

be smooth.

4.3.4 Which is the axis of symmetry?

Every ellipse has two axes of symmetry. The inversion algorithm proposed in this chapter
can estimate the inclination with respect to the vertical of either one, depending on which
axis is closer to the vertical in the initial model. In either case, the estimated parameters
describe the same elliptical velocity function.

Another way to understand why the inversion can estimate “the inclination of either
axis of symmetry is to examine the traveltime equation (4.1). We can obtain an identical
equation if in (4.1) we switch V}] and V), changing at the same time v by v % 7/2.
This means that the traveltimes are affected only by the elliptical function of velocities,
regardless of how such a function is described. Figure 4.4 shows how a given ellipse can
be described with two different sets of parameters.

If the inversion procedure is constrained to estimate the same axis of the ellipse (either
the major or the minor) for every layer, it can be more difficult (or impossible) to get a
reliable estimate of the real elliptical velocity function of the medium, especially in cases
when the axis of symmetry in the initial model is far from the actual axis of symmetry.

Because of this property of ellipses, it is easier for the algorithm to estimate inclinations
of axes of symmetry close to the vertical or close to the horizontal than intermediate

inclinations that are not close to either axis.
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4.4 Synthetic examples

In this section, I show the application of the inversion algorithm just described in different
situations that demonstrate its advantages and weaknesses when used to invert cross-well
traveltimes. First, I consider the case of traveltimes generated in a 1-D isotropic model
that are inverted using a 1-D anisotropic model with fixed boundaries and vertical axes
of symmetry. This first example, which can be considered a linear inversion because
the velocity variations are nearly one percent, illustrates several issues related to the
convergency of the algorithm. Second, I show what happens when the assumption of
layering is relaxed and a full 2-D anisotropic inversion is performed with data generated
in a weakly varying 2-D isotropic model. Finally, I show an example of the inversion that
uses the intermediate 1.5-D model shown in Figure 4.2. Unlike the first two examples,
the final example doesn’t assume either weak heterogeneity or weak anisotropy, and the
orientation of the axis of symmetry varies through the model. All the models are assumed
to be elliptically anisotropic. Chapter 5 addresses the more general case of transversely

isotropic models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-60-

4.4.1 1-D inversion

Synthetic data were generated through the 1-D isotropic model shown in Figure 4.5, using
a geometry of 17 sources and 17 receivers equally spaced at the source and receiver well,

respectively.

Sx =Sz

2 '7% 2.02

400

2.02

200

— [0 ———>

Figure 4.5: 1-D isotropic model used to test the algorithm. At the right, the two com-
ponents of the slowness are plotted one after the other. They represent the slowness
vector that describes this model. The first half of the vector corresponds to the horizontal
component and the second half to the vertical.

The inversion is constrained by allowing only vertical variations in the model. This
constraint eliminates instabilities and nonuniqueness in the inversion associated with lat-
eral variations, retaining only those variations associated with the vertical component of
the slowness, which is not sampled sufficiently by the cross-well recording geometry. The
constraint also reduces the dimension of m to 2N instead of 5N. I call the reduced vector
S, instead of m, to suggest that it only contains information about the slownesses at
each layer, and not about the positions of the boundaries and orientations of the axes of

symmetry.
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If we plot components of the slowness vector S [equation (4.6)] for this model, we
obtain the profile shown at the right side of Figure 4.5. Both slowness components are
identical because the model is isotropic. In this example, the slowness contrast between the
background and the anomalous layer is small (one percent), and therefore the propagation
of the energy can be safely modeled by straight ray paths.

The image area was divided into 100 layers of equal thickness (8 feet). The inversion
process has to estimate 200 parameters from 289 traveltimes. Figure 4.6 shows the slow-
ness vector obtained after 60 conjugate gradients (CG) iterations. There is no difference
between the given S (Figure 4.5) and the estimated one (Figure 4.6). Note that the re-
sults can be represented either as a function of depth or as a function of the index of the

slowness vector. In the two next results the depth axis is omitted.
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Figure 4.6: Result of the inversion o |

0

of the synthetic data generated with
the model shown in Figure 4.5. The
first half of the curve corresponds
to the horizontal component of slow-
ness and the second half to the ver-
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Figure 4.7 shows how the algorithm converges toward the answer as a function of
the CG-iterations. The result shown in Figure 4.6 corresponds in Figure 4.7 to 60 CG-
iterations along the axis cg iterations. The two “hills” represent the slowness at the

anomalous layer. Convergence is achieved when the top and the bottom of the hills are
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Figure 4.7: Variations of the slowness vector as a function of the number of conjugate gra-
dient iterations. The original model is shown at the top. The axes “i” and “cg iterations”
have been interchanged from the top to the bottom plot.
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flat for an increasing number of CG-iterations. The horizontal component of the slowness
converges faster than the vertical component. This is because in the given model the
horizontal component of the slowness in the anomalous layer is better sampled than the
vertical component: the range of ray angles (absolute values) is from 0 to 53 degrees
[63 =~ a.rcta.n(%%)], which is a typical range for cross-well experiments. Because of this bias
of cross-well geometries toward the horizontal, the largest singular values of the problem
(1-D anisotropic) are related to the horizontal component of the slowness, as appendix A
shows.

When synthetic data is generated through the model shown at the top of Figure 4.8
(where the well-to-well separation is shorter), both components converge at the same rate.
This is because the vertical component of the slowness is better sampled in this example
because the range of ray angles is wider. The angles vary between 0 and 76 degrees
[76 ~ arctan(530)).

The preceding results tell us that if it is not possible to do “enough” CG-iterations in
order to reach the flat top of both hills (Figures 4.7 and 4.8), we may wrongly conclude
that the medium is anisotropic because components of the slowness in different directions
may converge with different speeds. Severely limited view problems as well as low signal-
to-noise ratios are some of the factors that may limit the amount of CG-iterations that
can be performed before the smallest singular values of the problem start affecting the

solution.

4.4.2 2.D inversion

To test the performance of the algorithm in inverting data generated in a 2-D model, I
computed synthetic traveltimes through the isotropic model shown in Figure 4.9. The
separation between contiguous sources and receivers is 10 feet. Each receiver gather only
uses sources located at +50 degrees from the horizontal. With a geometry like this, I
simulate the geometry of a field data examples to be analyzed later. As in the previous
example in 1-D, the slowness contrast between the anomaly and the background is small
(five percent), and therefore straight rays can be used again.}

The unknown model was discretized in 241 x 46 pixels (5 x 5 ft2 each), and therefore

!My implementation of the anisotropic ray tracing algorithm described in chapter 3 is not valid for 2-D
anisotropic models described as a superposition of square pixels. However, if the rays are assumed to be
straight because of small velocity contrasts, tracing rays in elliptically anisotropic models is reduced to
computing the corresponding traveltimes by using equation 4.5.
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Figure 4.8: Variations of the slowness vector as a function of the number of conjugate
gradient iterations. The only difference between the model shown at the top and the
model of Figure 4.7 is in the horizontal dimension. The axes “i” and “cg iterations” have
been interchanged from one plot to the other.
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Figure 4.9: 2-D isotropic slowness model. The radius of the circular anomaly is » = 50
and is centered at (100, 700). The background slowness is 1.0, and the slowness of the disc
is 1.05.

the inversion has to estimate 241 X 46 x 2 parameters from 2200 synthetic traveltimes.
Figure 4.10 shows the results of the inversion. The slowness of the isotropic circular
anomaly is better estimated by the horizontal than by the vertical component of the
slowness in the anisotropic model This is not the case in the 1-D inversion, where both
slowness components can be perfectly recovered even though the vertical component of
the slowness is not properly sampled. The extra information introduced in that problem
by assuming that the model is layered compensates for the limitations produced by the
limited view of the measurements. In the 2-D inversion, where the unknowns are less
constrained, the better sampling of the horizontal component results in its better recovery
when compared with the vertical component and, as a consequence, artificial anisotropy is
introduced by the reconstruction. In this noise-free example such anisotropy is not greater
than three percent, as the ratio ‘—gf in Figure 4.10 shows. Doing more CG-iterations does

not help to reduce this artificial anisotropy to zero, as in the 1-D inversion (Figures 4.7
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and 4.8). This is because S, contains more information than S; in the null space, as I show

in appendix A. In the present case the images did not change after 120 CG iterations.
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Figure 4.10: Reconstructed horizontal and vertical component of the slowness. The ratio
of the two components at the right shows the artificial anisotropy introduced by the
reconstruction. Ideally, in this isotropic model, the ratio of slownesses should be unity
everywhere.

This example shows that when the velocity contrasts are small, the anisotropy intro-
duced by the inversion can be of the same order as the expected heterogeneities. The
artifacts in both slowness components are similar to the well-known truncation artifacts
in isotropic inversion, although they are different from one component to the other. Rays
that travel horizontally do not influence significantly the estimation of S, as they do the
estimation of S;. Therefore, the estimated S, is smeared along the horizontal direction
whereas S, is not. When data from only one geometry are used, the different character of
the artifacts for each slowness component can limit our ability to recover variations in ac-
tual anisotropy at the same resolution of variations in velocity. This difficulty is apparent

in the application to field data later in this chapter.
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Since the inversion algorithm introduces anisotropy in the results when the model is
fully 2-D, it may be difficult to separate small variations in anisotropy from reconstruc-
tion artifacts. If the anisotropy is too weak, it may fall below the level of noise of the
reconstruction artifacts and be unable to be reliably estimated. Therefore, when the het-
erogeneities are described as a superposition of orthogonal square pixels, algorithms based
on the weak anisotropy assumption (Stewart, 1988; Chapman and Pratt, 1992; Lines,
1992; Williamson et al., 1993) will produce reliable estimates of anisotropy only if the

actual anisotropy is not too weak.

4.4.3 1.5-D inversion

In this example, 4992 traveltimes were generated through the model shown in Figure 4.11
for a geometry where sources were located within +45 degrees with respect to the hori-
zontal at each receiver position. I used the anisotropic ray tracing algorithm described in
chapter 3 to compute the synthetic traveltimes and to trace the rays needed in the non-
linear inversion.  The starting model used for the inversion was homogeneous isotropic
described by 17 horizontal layers of equal thickness. The inclination used for the axis of
symmetry was v = 0 in all layers. Figure 4.12 shows the initial positions of the boundaries
in the starting model. By starting the iterations with this model, I wanted to test how the
interfaces arranged themselves to create a dipping layer not present in the initial model.

The inversion was constrained by not allowing parallel layers (within +5 degrees) to
be thinner than 15 feet. No smoothing was applied to the model after each iteration.

Figure 4.13 shows the result of the inversion after tracing rays 35 times, with few
conjugate gradient iterations between each ray tracing. The boundaries have moved with
respect to their initial positions, and the initial 17 layers have been reduced to 10 to
allow the positioning of the dipping layers at the correct depths with the correct dips.
The inclinations of the axes of symmetry estimated by the algorithm are also correct.
Figure 4.14 compares profiles at = 0 of the real model (Figure 4.11) and the estimated
one (Figure 4.13). The agreement is almost perfect.

In this example it was possible to estimate correctly both small and moderate dips
(between 0 and 30 degrees), but the answer to the question about the maximum and
minimum dips that can be retrieved from the data depends in general on the aperture of
the recording geometry, the interval between sources and receivers, and the frequency of

the data.
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Figure 4.11: 1.5-D model used to test the inversion. The third interface dips 15 degrees
and the fourth one —30. The inclination of the axis of symmetry in the second layer is —15

degrees and 40 degrees in the fourth layer. The ratio ‘{,—lll- at the fourth layer is 1.26. The
gray scale shows variations in velocity. “V+” stands for V,, “V||” for V| and “gamma”
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Figure 4.13: 1.5-D anisotropic inversion. Notice how the interfaces have changed their
initial positions. The position of each arrow’s head shows the interval that corresponds to
each 7. The gray scale shows variations in velocity.

4.5 Field data examples

Anisotropic traveltime tomography was also performed with cross-well P-wave traveltimes
recorded at an Amoco Gulf Coast site and BP’s Devine test site.

At these two sites, the wells are not confined to a single plane. Instead, they deviate
gradually from the vertical plane that contains them at the near surface. I have taken this

effect into account by following this two-step procedure:
1. Find the true 3-D distances between sources and receivers.

2. Assume that one well is vertical (for example, the source well) and locate the receivers
at the corresponding true relative distances and true depths in the other well, which
is equivalent to locating the origin of the coordinates to measure the distances at

the source well.

When correcting for the well deviation in this way, actual source-receiver separations are

used in the inversion.

To measure the closeness between measured and calculated traveltimes, I use the mean
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Figure 4.14: Profile at z = 0 of the real model and the estimated one (Figures 4.11 and
4.13, respectively). The continuous line represents the real model; the dashed one repre-
sents the result of the inversion. The agreement between real and estimated parameters
is almost perfect.

absolute value of the residuals
1 M
error = - ; [te; — trcl, (4.12)

where t,; and ¢, are the measured and calculated traveltimes, respectively, and M is the
total number of traveltimes.

When the real velocities are elliptical, the direct velocity along one axis and the normal
moveout (NMO) velocity around the perpendicular axis are equal. For this reason, no
distinction was made between direct and NMO velocities in the synthetic examples of
the previous section. In field data applications, however, such a distinction needs to be
made because in general the rocks are not elliptically anisotropic. Therefore, after doing
anisotropic traveltime tomography with a given data set, we must label the velocities
appropriately (either direct or NMO) before procceding to estimate the elastic constants of
the medium as explained in chapter 2. Moreover, even if the mapping to elastic constants
is not possible because the data set is incomplete, we should still label the velocities

correctly before interpreting the results.
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4.5.1 Gulf Coast site

Cross-well data were acquired jointly by Amoco Production Company and Stanford Uni-
versity at an on-shore Gulf Coast site in Southeast Texas. The overall survey geometry
is illustrated in Figure 4.15. This geometry is similar to the one used in the synthetic
example of 2-D inversion. The source, a piezoelectric bender bar, produced a sweep signal
with frequencies between 400 Hz and 1600 Hz. The data were recorded with a sample
interval of 0.1 msec. More details about the site and geometry are found in Harris et al.
(1990).

Nearly 5000 P-wave first arrival times were picked from the correlated data. In general,
I found that the traveltimes corresponding to the near horizontal rays (or near vertical
offsets) were more difficult to pick than those at far offsets.

Because the shots are within +50 degrees with respect to the horizontal at each receiver
location, we can expect most of the data to be modeled appropriately using elliptical
anisotropy, as I show in chapter 2 by fitting a P-wave impulse response with ellipses
estimated from data at different apertures, up to 40 degrees.

The relative position of the two wells, taking into account the deviation, is shown in
Figure 4.16. To use the true relative distances, it is necessary to move the receiver positions
horizontally in the deviated well. For this reason, the receiver positions in Figure 4.16
look slightly smeared in the horizontal direction. The selection of the vertical well used as
a reference to measure the relative deviations is irrelevant if we assume that the model is
1-D. In two dimensions different distorsions may occur depending on which well is chosen

as a reference and how strong the actual 2-D variations are.

1-D inversion

The simplest inversion that we can possibly do assumes a homogeneous isotropic model.
The result is the mean velocity [equation (4.7)], Vi,o = 8452 ft/sec. The next step is
to assume that the model is still homogeneous but elliptically anisotropic. Using equa-
tion (4.8) I found that V; = 8586 ft/sec and V,nmo = 8079 ft/sec.? For this particular
recording geometry (Figure 4.15), V;,, is closer to V, than to V,ym0, which means that the
“averaging” of the horizontal and vertical directions that the isotropic inversion implicitly

%Since only P-waves are used in the field data examples of this chapter, I have omitted the “P” when
talking about Vp -, and Vp .nmo.
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Figure 4.15: Overall survey geometry illustrating the shooting pattern. Receivers are
spaced at dr = 10 feet between 2688 and 3996 feet. Sources are spaced at ds = 10 feet
intervals in the primary target zone, and ds = 20 feet above and below the target zone.
The average separation between wells is 225 feet.
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does is not a simple arithmetic average. As I show later, the same conclusion can be drawn
when the model is heterogeneous.

The mean absolute value of the residual [equation (4.12)] for the homogeneous isotropic
model is 1.04 ms. When the model is homogeneous anisotropic, error = 0.94 ms.

Figure 4.17 shows the result of the isotropic inversion when the model is one dimen-
sional. The traveltimes used correspond to rays below 2705 feet and above 4000 feet.
This depth interval was discretized in 60 horizontal layers of equal thickness (21.583 feet).
Straight rays were used to compute synthetic traveltimes since, according to Harris et al.
(1990), small velocity variations are expected in this site. The 2-D isotropic, straight-ray
tomogram shown in a later subsection is similar to the 2-D isotropic, curved-ray tomogram
obtained by Harris et al. (1990). I did conjugate gradient iterations (40) until no appre-
ciable changes were seen either in the model or in the error (4.12), which is equivalent to
reaching the flat part of the hills in Figure 4.7. For the model shown in Figure 4.17, error
= 0.67 ms.

Then, I allowed the 1-D model to be anisotropic. Figure 4.18 shows the result of the
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inversion. For traveltimes computed through this model, error = 0.59 ms. The thick
curve represents the horizontal velocity, and the thin one represents the vertical NMO
velocity. The first thing one notice is that V, is generally larger than V,xumo. Figure 4.19
compares V; and V;nmo Wwith Vis,. In general, V4, is closer to V, than it is to Vinmo,
which is consistent with the previous results of the inversion assuming a homogeneous
medium. This means that for the type of recording geometry used (ray angles between 0
and +50 degrees) the isotropic inversion is affected primarily by the horizontal component
of the velocity. Since there are fewer rays at large angles, the isotropic inversion is less
constrained by them.

At this site, sonic logs were available at both wells (Figure 4.20). Sonic logs sample the
vertical component of velocity a few inches away from the well, at frequencies (~ 10 kHz)
much larger than the typical frequency of the cross-well data (~ 1 kHz). To compare the
information obtained from these two types of measurements (1-D tomogram and velocity
logs), I did some averaging to the logs. First, I averaged each slowness log in blocks of

thickness equal to the layer thickness in the 1-D tomographic inversion. I then averaged
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the two averaged slowness logs into a single one. Tke purpose of the last averaging was to
produce a single curve to compare with the V;nmo estimated by the inversion algorithm.
Figure 4.21 compares the average velocity log with V;,,, V;, and V;xmo. When compared
with Vi5, and Vi, V.nMo is not only much closer to the average sonic velocity but also
better correlated with it. Figure 4.21 shows that assuming an elliptical model for the
velocities is an improvement over assuming a circular, that is, isotropic one.

The comparison between the average sonic velocity and V,ymo has to be interpreted
carefully, because each curve averages the medium velocities in a different way where the
medium changes laterally. On the one hand, the average log assumes that at each depth
the medium has only two velocities that contribute with equal weight to the estimate
(mean). On the other hand, the way the inversion averages the lateral changes in the
medium properties when computing V;xmo is not clear at this point. It is also not clear
at this point how the potential errors of inverting for 1-D variations in a 2-D medium
propagate into the solution. Some parts of the real medium show lateral variations, which

becomes evident when performing the 2-D inversion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-76-

velocity (ft/sec) velocity (ft/sec)
7000 8000 9000 10000 7000 8000 8000 10000
N N BRI
@ | @
) S
o o
g S
oS o N
g8 RS
= =
~ w VCO
(238 o
S S
(@ (@]
o ~
o o
S S
(@] o

Figure 4.19: Comparison between isotropic and anisotropic layered inversion. Left: Vi,
(thin line) and and V (thick line). Right: Vj,, (thick line) and V,ymo (thin line). The
differences between the isotropic and anisotropic inversion are represented by two colors:
light gray when Vi, > V; or V,nmo0, and dark gray when V;,, < V, or V.NMO-
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Figure 4.20: Sonic logs at the source well (left) and receiver well (right). The thin line
represents the original log. The thick line represents the corresponding log averaged in 60
layers of equal thickness (21.583 feet).
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Figure 4.21: Average velocity log (V;) compared with V;,, (left), V; (center), and V,nmo
(right). Vonmo is closer and better correlated with the velocity log.

Figure 4.21 also shows that V,nmo is systematically larger than the log velocity V;,
which is just the opposite of what I expected from (2.34), if the anisotropy is assumed to
be caused by fine layering. In a later section, I explain different sources of biases in the
inversion that may explain this result.

The ratio Vz/V;nmo is roughly correlated with the lithology, as shown in Figure 4.22.
In this figure, the thick line corresponds to the ratio V,/V,nm0, and the thin one corre-
sponds to the average spontaneous potential (SP) log. The average SP log was obtained
by blocking each log separately, taking the average of the results, and removing a linear
trend with depth in the final average. There is a good correlation between large SP values
(that indicate the presence of shales) and large anisotropy ratio. The same happens for
low SP values (sands) and isotropic layers. When interpreting these results, however, we
must keep in mind that each curve represent a different type of average of the lateral
changes in medium properties.

In the anisotropic inversion of this data set, in order to reach a good compromise
between resolution and stability, I used 60 layers of 21.583 feet each. Reducing the layer
thickness by half has the effect (not shown) of increasing the resolution at the expense of
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large variations and instabilities in the vertical component of the velocity that is not well
sampled by the recording geometry. The horizontal component of velocity is generaily
more stable than the vertical for smaller layer thicknesses. Obviously, at the expense of

resolution, increasing the layer thickness made the inversion more stable.

2-D inversion

When the relationship between the data and the unknown is linear, we should obtain
the model that best fit the data in only one solution of the ray tracing problem. When
the problem is nonlinear one approach is to solve it as a sequence of linearized steps.
We usually call these steps ezternal iterations, to differentiate them from the internal
iterations needed to solve each linear problem when using iterative techniques such as
conjugate gradients. Ideally, if the problem has n unknowns, each external iteration
should consist of m CG-steps (m internal iterations), where m < n is the number of
different singular values. When dealing with field data, however, we might not be able to

take that many steps because of the presence of the noise. Noise can affect the solution of
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each linearized problem in the following ways: (a) it might be amplified into the model by
the smallest singular values recovered when m iterations are performed, and (b) it might
considerably affect the accuracy of the search directions and, consequently, the position
of the minimum associated with the solution. Therefore, we have to deal carefully with
the noise.

Under the straight-ray assumption, only one external iteration was needed in the 1-
D inversion to find the model shown in Figure 4.18. By selecting the layer thickness
appropriately, I was able to do the CG-iterations required to reach convergency without
being much affected by the noise. Thicker layers damped the solution, whereas thiner
layers introduced instabilities. In two dimensions, however, the situation is different. I
found here that the results were more sensitive to noise in the data than the 1-D solutions.
This is not surprising because in two dimensions, as explained in appendix A, we are trying
to estimate high-frequency variations in S;nMo, which are related to the smallest singular
values of the problem that amplify the noise.

Because of the sensitiveness to the noise of the 2-D inversion, it is necessary to avoid
doing “many” CG-iterations at each linearized step. After doing several tests that com-
bined in different ways external and internal iterations with mean-average smoothing of
the slowness model, I adopted a conservative approach to minimize the error (4.12). The

approach consisted of the foliowing steps:

1. Compute traveltimes in the given model, calculate the matrix J, and find the resid-
uals.

2. Approximate the solution of the linear problem (4.11) by applying a few (typically
one or two) CG-iterations. Limiting the number of CG-iterations is, for practical

purposes, equivalent to damping (Scales and Gersztenkorn, 1988).
3. Smooth the updated slowness model.

4. Repeat the preceding steps until there is no reduction in the sum (4.12). When this
happens, either stop the process or increase the number of CG-iterations by one and

check whether further reductions in the residuals are obtained.

When the problem is linear, the solution is not obtained in only one iteration because of

the presence of the noise.
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When the previous procedure was applied to estimate an isotropic model from the data,
I obtained the image shown in Figure 4.23 (error = 0.54 ms). In this case, the unknown
model was discretized into 131 x 26 square cells (10 x 10 ft® each). It is interesting to
note that adding more degrees of freedom to describe the heterogeneity (i.e., more cells)
does not substantially improve the parameter error obtained with 28 times fewer degrees
of freedom in the 1-D anisotropic inversion. The model shown in Figure 4.23 is similar to

the one obtained by Harris et al. (1990), where ray bending has been taken into account.
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Figure 4.23: 2-D isotropic inversion. g @) 2
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The result of the 2-D anisotropic inversion is shown in Figure 4.24 (error = 0.45 ms).
As in the 1-D example, that V,, is remarkably similar to V;,,. The main difference between
these two images is that in V, (Figure 4.24) the events tend to be more horizontally
smeared than in Vi,, (Figure 4.23). This result was predicted from the 2-D synthetic
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example shown in Figure 4.10.
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Figure 4.24: 2-D anisotropic inversion. Each image has been divided into 131 X 26 square
cells (10 x 10 ft2 each). Left: V;. Center: Vynmo. Right: V/V.nmo0. The spatial resolution
of V,nMo is poor when compared with the spatial resolution of V,. The ratio V.. /V,xmo
has been separated into four areas that show percentages of anisotropy: white (ratio >
1.25), light gray (1.06 < ratio < 1.25), dark gray (0.90 < ratio < 1.06), and black (ratio
< 0.9). The dark gray areas can be considered isotropic.

Since V; is not adequately sampled by the recording geometry, the events in the es-
timated vertical component of the velocity tend to be smeared in the direction of the
steepest rays, and the spatial resolution in this component is poor when compared with
Viso and V;. In the 1-D case, this lack of information is compensated for by assuming a
layered model, which allows us to do more CG-iterations without having problems with the
noise. In two dimensions, however, doing more CG-iterations is not possible and therefore
the results obtained can be in a stage where V, is close to convergency but V,ymo is far

from that point. This difference in the speed to convergency of the different components
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of the velocity may introduce artificial anisotropy.

Because V; and V;nMo cannot be estimated at the same resolution (at least using only
this type of recording geometry), it is not possible to estimate spatial variations in velocity
anisotropy (the ratio V;/V;nmo for example) at the same resolution of the variations in
velocity. Nevertheless, an image that shows variations in velocity anisotropy can be useful
if it accounts only for the large-scale variations that are well resolved by the inversion.
Such an image is shown in Figure 4.24. This image is divided into four areas: highly
anisotropic, moderately anisotropic, isotropic, and anisotropic with V,xmo > V. We can
see that most of the model is isotropic whereas the anisotropic areas are associated with
high-velocity zones, possibly shales.

Figure 4.25 summarizes how the mean absolute value of the residual (error) changes
for the different parametrizations used. The error decreases roughly 50 percent from the
homogeneous to the 1-D inversion and about 60 percent from the homogeneous to the
2-D inversion, which means that when trying to estimate lateral variations in the medium
(smallest singular values), a 10 percent reduction in the mismatch is gained with respect to
the estimation of vertical variations only (largest singular values). The residual does not
reduce substantially when we compare the 1-D anisotropic inversion (letter D in the plot)
with the 2-D isotropic (letter E), with 28 more degrees of freedom, which suggests that
anisotropy in the data can be reconciled with either isotropic heterogeneity or anisotropic,

less heterogeneous media.

4.5.2 Devine test site

BP’s Devine test site is located southwest of San Antonio, Texas. A sketch of the geology
at this site is shown in Figure 4.26. This test site has been cited in recent publications
to illustrate the application of different techniques. For example, Harris (1988) reports
cross-well seismic measurements using a cylindrical piezoelectric bender transducer both
as a source and as a receiver. Miller and Chapman (1991) and Onishi and Harris (1991)
have concentrated on the problem of estimating velocity anisotropy from cross-well data
(tomographically and by head-wave analysis, respectively). Lazaratos et al. (1991) present
reflection images also from the cross-well data, and Raikes (1991) has studied the propa-
gation of S-waves from a multicomponent VSP survey.

The cross-well data I used were P-waves with frequencies between 200 Hz and 4000

Hz. They were recorded between two cased boreholes (Wilson 2 and Wilson 4) whose
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Figure 4.25: Mean absolute residual for the different parametrizations used. (A): Homoge-

neous isotropic. (B): Homogeneous anisotropic. (C): 1-D isotropic. (D): 1-D anisotropic.
(E): 2-D isotropic. (F): 2-D anisotropic.

separation at the surface is 330 feet. Receivers were separated by 10 feet and sources
by 20 feet. Figure 4.26 shows the corresponding sonic logs at each well. Although the
variations are mainly one dimensional, it is possible to identify small dips (= 1 degree)
from the sonic logs at the two wells as well as small lateral variations within thin layers
(for example, the top of the Del Rio clay).

A total 1660 traveltimes were picked from a small data set of only 26 gathers. Only
those traveltimes corresponding to angles of less than 45 degrees between source and
receiver were kept for the inversion.

Figure 4.27 shows the positions of sources and receivers for 10 percent of the data set.
The ray coverage is quite irregular, with no horizontal rays sampling large portions of the
medium. The horizontal velocities estimated in areas not sampled by horizontal rays are
the horizontal velocities of the best fitting ellipses.

A 1.5-D elliptically a.nisotrbpic model was used to fit the data. The starting model
(not shown) consisted of 140 horizontal layers five feet thick. The velocity for all layers
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Figure 4.26: Sketch of the geology at the Devine test site with the sonic logs at each well.
Although the site is mostly flat layered, small 2-D variations can be seen (modified from

Lazaratos et al., 1991).
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was 12 000 ft/sec. Layers thinner than one foot were not allowed in the model. The
inversion was not constrained to match the vertical velocities or depth of certain layers
using information derived from the sonic logs, although the information about dips was
already present in the initial model. The dips and the intercepts of the interfaces, as well

as the axes of symmetry of the different layers, were allowed to vary during the inversion.

distance (ft)
0 345

Figure 4.27: Ray coverage for the ex-
periment at the Devine test site for
a fraction (10 percent) of the total
data set. Notice how irregular the
coverage is.

The inversion produced a model with horizontal layers (all dips less than 0.1 degree)
and vertical axes of symmetry. Therefore, V, = V, and Vi = Vanmo. Figure 4.28 shows
Vz and V;ymo as well as the average sonic log (V;) from the two wells, blocked every seven
feet. As expected when the anisotropy is caused by fine layering, V; > V, > V,nmo for
almost all depths. We also see that V,ymo is much closer to the sonic log than V. In
the shale and clay intervals, V. is more than 30 percent larger than the log velocity The
vertical velocity contrast between limestone and shale is greater than 70 percent. Still,
the inversion does a good job in estimating V,nmo, which shows the importance of tracing
rays appropriately in anisotropic media when doing the inversion. For this model, the

average absolute value of the residuals is 0.2 ms (twice the sampling interval). Twelve
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layers were eliminated during the inversion procedure because their thicknesses fell bellow
the one foot threshold.
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Figure 4.28: 1.5-D inversion at the BP site. An average sonic log (thinner curve) blocked
every seven feet is compared with the two estimated velocities. The vertical NMO velocity
is closer and better correlated to the log. The amount of anisotropy changes through the
model, reaching a peak at the shale and clay intervals. The model is described by 128
layers.

These results agree with those presented by Miller and Chapman (1991) and Onishi
and Harris (1991).

Figure 4.28 also shows that the elliptical velocity model explains most of the P-wave
anisotropy at this site. The estimated vertical NMO velocity is in general smaller than the
log velocity, which is expected if the anisotropy is caused by fine layering. However, the
differences between the log velocity and the vertical NMO velocity show that the elliptical
model is not fully adequate to describe the possible transverse isotropic nature of this
medium. In a few places (the top of the clay, for example) the estimated vertical velocities

are larger than the log velocity. This is probably because of lateral variations in the real
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medium that are not correctly described by the model of heterogeneities.

Biases in the inversion

The main problem considered in the preceding sections was how the limited view of
the measurements affects our ability to estimate velocities in different directions. Unfor-
tunately, many other factors besides limited view produce effects that may depend on

direction and influence the anisotropy of the results. Among these factors we have:

1. Picking errors. These errors may systematically increase or decrease the velocities,
depending on which part of the first arriving wavelet has been picked. Picking
before the correct value speeds velocities up, whereas picking later arrivals slows the
velocities down. If the picking errors are constant for different vertical offsets, the
velocities that result from the inversion can be anisotropic because the errors have
more effect on the smaller traveltimes that usually correspond to rays that travel
horizontally. Picking errors may explain why in Figure 4.21 V,ymo0 is systematically

one or two percent faster than the sonic log.

2. Head waves picked as body waves. Although this bias may be considered a picking
error, it primarily affects traveltimes from small vertical offsets (i.e., ray paths close
to the horizontal) in low-velocity layers. Traveltimes from head waves picked as
body waves affect S; more than S,nMo because S;nmo is less sensitive to rays that
travel at small angles. Therefore, when head waves are inverted like body waves,

the estimated horizontal velocity may turn out to be faster than the actual one.

3. Well deviation. Often, wells deviate in three dimensions but the results are rarely
presented in three dimensions. Instead, the 3-D deviations are usually projected
onto a 2-D plane where conventional 2-D algorithms can be applied. If the well
deviation is not strong, and if the 3-D variations in the real medium are moderate,
the 2-D solution is a good approximation but otherwise it may not be. I didn’t
consider the well deviation when first testing the algorithm with field data. When
comparing the velocities that were estimated without considering well deviation with
those estimated by considering it (Figure 4.21), I obtained higher velocities where
the wells were actually closer and lower velocities where the wells were actually

farther apart. S; was more sensitive to well deviation than S,nmo.
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All these factors, when not considered correctly, may produce artificially anisotropic re-
sults, especially when complex models are used to describe both anisotropy and hetero-

geneity.

4.6 Conclusions

This chapter has presented the basic theory and examples of an algorithm that does aniso-
tropic traveltime tomography. The algorithm generalizes the well-known techniques of
tomographic traveltime inversion in isotropic media by using models discretized into a set
of homogeneous elliptically anisotropic cells. Each cell is characterized by two slownesses,
and the inclination of the axis of symmetry.

Cross-well geometries usually don’t adequately sample the vertical component of the
medium’s velocity. The opposite happens with the horizontal component of the velocity.
Therefore, it is easier to estimate V; than V, when using cross-well geometries alone.

In one dimension, both components of the slowness can be estimated accurately if the
range of ray angles that is wide enough. Otherwise the problem becomes ill-conditioned.
In two dimensions, however, the vertical component of the velocity has poor resolution
when compared to the horizontal component. Therefore, the spatial resolution in velocity
anisotropy is also poor. In general, it is difficult to separate small variations in velocity
anisotropy from reconstruction artifacts.

I have found that 1.5-D models, which consist of dipping elliptically anisotropic layers,
are a good compromise between the simplicity and restricted applicability of 1-D models
and the complexity and generality of full 2-D models. I use 1.5-D models to illustrate
the estimation of velocity anisotropy in a medium with strong anisotropy, strong velocity
contrasts, and variable inclination of the axis of symmetry.

When the measurements have limited view, and iterative techniques such as conjugate
gradients are used to solve the linearized problem, early termination of the iterations may
produce artificial anisotropy. This problem is more severe in 2-D than in 1-D estimation
of velocity anisotropy.

Since the inclination of the axis of symmetry is also a variable in the inversion proce-
dure, certain types of azimuthally anisotropic media can be approximated, in particular

those formed by dipping, transversely isotropic layers.
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The estimated elliptical velocities can be transformed into elastic constants that de-
scribe a general TI medium, if compressional and shear wave traveltimes are available.
The next chapter addresses this topic. If any of the wave types is not available, the par-
tial solutions obtained are still useful since they can be interpreted in terms of medium

properties such a lithology or fine layering, as the field data examples in this chapter show.
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Chapter 5

Estimation of elastic constants in
heterogeneous transversely

isotropic media

Chapter 2 introduced the idea of fitting the traveltimes with elliptical velocity functions
as a first step in the estimation of the elastic constants of a homogeneous TI medium.
The techniques presented in chapters 3 and 4 ( anisotropic ray tracing and anisotropic
tomography) generalize to heterogeneous media the method of fitting the data with ellip-
tical velocity functions. After fitting the traveltimes, the next step is the mapping from
elliptical velocities to elastic constants. In this chapter, I show how all these techniques

work together in the estimation of elastic constants in heterogeneous TI media.

5.1 Introduction

As chapter 2 shows, obtaining the elastic constants of a homogeneous TI medium from
P-, SV- and, SH-wave traveltimes is a two-step procedure. The first step is to obtain
direct and normal moveout (NMO) velocities by separately fitting traveltimes from each
wave type with elliptical velocity functions. The second step is to map these elliptical
velocities into elastic constants using equations (2.22) or (2.23). In this chapter I show
that when the medium is heterogeneous, the elastic constants can be estimated by applying
the procedure for homogeneous media many times to a heterogeneous model described as

a superposition of homogeneous blocks. These blocks should incorporate our previous
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knowledge about the structure. The direct and NMO velocities needed at each block are
estimated tomographically, as explained in chapter 4.

I start by explaining how the data aperture should be constrained to use the algorithm
and how those constraints affect the estimation of both anisotropy and heterogeneity.
Then I show the application of the technique using synthetic P- and SV-wave traveltimes
generated through a heterogeneous TI model. Finally, I present a field data example from
a west Texas oil field. This example shows how the estimation of the elastic constants can

add useful information when we study the properties of reservoir and nonreservoir rocks.

5.2 Aperture constraints: consequences

The procedure for estimating elastic constants from P-, SV- and SH-wave traveltimes can
be summarized as tomographic estimation of elliptical velocities and transformation of the
elliptical velocities into elastic constants. These two steps have opposite requirements in
terms of data aperture. On the one hand, the mapping from elliptical velocities to elastic
constants requires velocities estimated from rays that travel as closely as possible to one
axis of symmetry, which is the assumption made in chapter 2 when deriving the equations
that relate elliptical velocities and elastic constants. One the other hand, the tomographic
estimation of elliptical velocities requires wide ray angles to improve the conditioning
of the problem, the accuracy of the NMO velocities, and the spatial resolution of the
result. Therefore, the aperture of the traveltimes used for the inversion should satisfy
the following two conditions simultaneously: it shouldn’t be too large because otherwise
the elliptical approximation may not be adequate, and it shouldn’t be too small because
otherwise the tomographic estimation of elliptical velocities fails, even if the medium is
actually isotropic.

Large ray angles are important for the estimation of moderate and large dips in the
medium. Since the procedure doesn’t allow the use of large ray angles in the inversion
of P- and SV-wave traveltimes, I assume that the dips in the medium are small. If the
dips are not small, they can be estimated first from SH-wave, wide-aperture traveltimes
(that are truly elliptical), and the result can be used to constrain the boundaries in the
inversion of P- and SV-wave data.

The axes of symmetry of the different homogeneous blocks that describe the model
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are assumed to be vertical or near vertical.! Therefore, when starting the iterations
in the anisotropic traveltime tomography by assuming vertical axes of symmetry, the
actual inclinations can be found while the estimation of the elliptical velocities remains
accurate, regardless of the wave type. If the axes of symmetry are neither vertical nor
close to vertical, we need to find their inclination first by fitting SH-wave traveltimes
with heterogeneous elliptically anisotropic models, as explained in chapter 4. Once the
inclination of the axes of symmetry of the different blocks is known, the elliptical group
velocities of P- and §V-waves at each block are estimated using only rays that travel near
the axes of symmetry. This process assumes that the axes of symmetry of the different
blocks are in the same plane of the survey, as explained also in chapter 4.

In summary, in the absence of SH-wave traveltimes, the medium is assumed to be
horizontally layered with vertical axes of symmetry. Small departures from this initial
assumption can also be estimated. Larger variations from this initial guess require elliptical
SH-wave traveltimes that allow the use of large data apertures.

When the inclination of the axes of symmetry varies across the medium, the estimated
elastic constants are referred to different coordinate frames, one for each different axis of
symmetry. For purposes of interpretation, having the elastic constants referred to different
frames is not a problem as long as we also use the inclination of the axes of symmetry.
However, for further computations (finite difference modeling, for example) it might be
necessary to transform the elastic constants to a common frame. This transformation can
be done by using Bond’s matrices (Auld, 1990).

5.3 Synthetic example

P- and SV-wave synthetic traveltimes were generated using the anisotropic ray tracing
algorithm described in chapter 3. Figure 5.1 shows the heterogeneous TT model where the
rays were traced. This model shows the variation in depth of V;; = m, the elastic
constants transformed to velocity assuming unit density. The cross-well geometry used to
compute the traveltimes consists of 92 sources and 92 receivers at each well. The distance
between wells is 390 feet, and the separations between consecutive sources or receivers is
23 feet.

!They can also be horizontal or near horizontal. The algorithm works equally well in either case
because the axes of symmetry of the ellipses are not constrained to be either the major or the minor axis,
as explained in section 4.3.3, “Which is the axis of symmetry?.”
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Since the elastic constants of the medium are known, the corresponding elliptical veloc-
ities (Vpz, Vp.NM0O, Vsv,z, and Vsv,:NM0) can be calculated easily by using the equations
derived in chapter 2. Figure 5.2 shows the result. These velocities can be used to check
how the algorithm performs in the first step toward the estimation of the elastic constants,
that is, the tomographic estimation of the elliptical velocities.

As chapter 2 shows, the paraxial elliptical approximation around the horizontal axis
(assuming vertical axis of symmetry) is accurate for angles of less than 30 degrees. For
this reason, the inversion only uses rays whose angle measured from the horizontal satisfies
this condition. However, no approximation is made in the computation of the synthetic
traveltimes through the model of Figure 5.1. The paraxial approximation is made only
during the inversion procedure in which the rays are traced in elliptically anisotropic
instead of transversely isotropic models.

The fact that the straight line that connects a source-receiver pair forms a small angle
with respect to the horizontal doesn’t necessarily mean that the angle of the corresponding

ray path is also small. The angle of the ray path increases in low-velocity layers and
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decreases in high-velocity layers. However, if the velocity contrasts are not too strong, it
should be enough to look at the straight line that connects source and rzceiver to select
the rays that satisfy the proper constraints.

Figure 5.3 shows the result of inverting the P-wave traveltimes. This figure also shows
the theoretical elliptical velocities calculated from the elastic constants. The estimation of
the horizontal P-wave velocity is, as expected, almost perfect, whereas the vertical NMO
velocity is slightly overestimated (= 3%) in all layers. As Figure 5.4 shows, the estimation
of the vertical NMO velocity is more accurate when inverting SV-wave traveltimes than
when inverting P-wave traveltimes, which means that, for the range of ray angles used,
the elliptical approximation works better for SV-waves than for P-waves. The error in
Vsv,:NMo is less than one percent.

The errors in the NMO velocities Vp.NnMo and Vsy,:nmo come from using an elliptical
approximation for ray angles that are not sufficiently small. When the model is truly
elliptical, the estimation of the NMO velocities is accurate, as I show in chapter 4.

The variation with depth in the theoretical P- and SV-wave elliptical velocities has been

estimated accurately. Therefore, by using these two models of elliptical velocities, we can
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also expect an accurate estimation of the elastic constants, as Figure 5.5 shows.

Since P- and SV-wave traveltimes are inverted separately and the interfaces are not
constrained to move consistently with both data sets, the models obtained for P- and
SV-wave elliptical velocities may not have all the interfaces at exactly the same depths.
As a consequence, artificial thin layers (spikes) may appear when we estimate the elastic
constants because there may be slight relative mispositions of the same boundaries in the
two models. In Figure 5.5 these spikes are removed by applying a median filter to the
elastic constants after the mapping from elliptical velocities. Another way to solve this
problem is by describing the interfaces with the same parameters for both P- and SV-wave
velocity models and inverting the two sets of traveltimes simultaneously.

Depending on the radiation pattern of the source, traveltimes that correspond to nearly
horizontal rays may not always be available for either P- or SV-waves. When this happens,
it may be necessary to use ray angles that are far from the horizontal because nothing
else is available. Figure 5.6 shows an example where SV-wave elliptical velocities have
been estimated by using ray angles between 28 and 36 degrees. The estimated horizontal
component of the velocity is as accurate as in Figure 5.4 even though this component
is not well sampled by the ray paths used. The error in Vsy .nmo increases when using
larger ray angles. However, as Figure 5.7 indicates, the error in the estimation of the
elastic constants is still small because the P-wave elliptical velocities were estimated using
small ray angles.

In the field data example that follows, SV-wave traveltimes are not available for small

vertical offsets.

5.4 Field data example

Cross-well data were recorded at the McElroy field, a carbonate reservoir of the Per-
mian Basin in west Texas. This field has large oil reserves. It was discovered in 1926
and has been under continuous water-flooding since the early 1960s. McElroy field pro-
duces mainly from intertidal and shallow-shelf dolostones and siltstones of the Grayburg
formation, which is a stratigraphic/structural trap. Hydraulic fracturing has stimulated
reservoir performance. Porosity and permeability data from cores show that the Grayburg
formation is very heterogeneous, with significant changes over short distances. The reason

for the heterogeneity is that anhydrite and gypsum have plugged the pores (Avasthi et
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al,, 1991). Structurally, the region is flat with mildly increasing dips at the bottom of
the surveyed section (Lazaratos et al., 1992). The profile area is part of three 20-acre,
five-spot patterns in a CO2 pilot study.

A cylindrical piezoelectric bender was used as the source, a linear upsweep from 250
to 2000 Hz. Well spacing is 184 feet. The receiver well in the cross-well profiling was an
observation well drilled for the CO2 study, and the receiver system was a nine-level array of
hydrophones. The plane of the survey is almost perpendicular to the direction of natural
fractures measured in a nearby well (Avasthi et al., 1991). The target of the experiment
was a reservoir between 1850 and 1960 feet. Sources and receivers were centered around
the reservoir, from 1650 to 2150 feet.2 The vertical spacing between sources and receivers
was 2.5 feet. The survey consists of nearly 36 000 traces (201 sources x 178 receivers)
sampled at 0.2 ms. More details about the data acquisition can be found in Harris et al.
(1992).

Figure 5.8 shows a common receiver gather recorded at 1880 feet. Data editing and ge-

ometry definition was performed before picking the data. The total number of traveltimes

*Reservoir depths are changed for purposes of presentation in this chapter.
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picked from the field data was 33 519 and 20 887 for P-waves and S-waves, respectively.
Van Schaack et al. (1992) show that the source can be modeled as a radial horizontal
point source, which explains why no shear waves are clearly visible in the data for ray
angles less than = 28 degrees with respect to the horizontal, as Figure 5.8 shows.

P-wave energy is converted to shear energy at the source well. If the source well
is perfectly cylindrical, and if the downhole source is positioned symmetrically within
the source well, the polarization of the converted energy recorded at the receiver well is
contained in the plane of the survey. Therefore, it is safe to assume that most of the
recorded shear energy in this experiment corresponds to the §V-mode.

The P-wave traveltimes used for the inversion were from sources and receivers forming
angles between 9 and 36 degrees with the horizontal. Even though the corresponding range
of ray angles may be slightly different depending on how strong the velocity contrasts are,
Istill expect most ray angles at all layers to fall within the range of validity of the elliptical
approximation. By applying this constraint on the data aperture, the number of P-wave
traveltimes was reduced to 12 258 from the original 33 519. For similar reasons, the
number of S-wave traveltimes was reduced to 2922, which corresponds to sources and
receivers forming angles between 29 and 35 degrees.

The initial model for the tomographic inversion of P-wave traveltimes is homogeneous
isotropic. The model is described by 200 horizontal layers of equal thickness (2.5 feet).
Figure 5.9 shows the elliptical velocities that result after inverting the data. Vp.nmo
is larger than Vp_ in some strata, which indicates that the anisotropy is not caused by
fine, horizontal layering, according to the results of section 2.7 “Constraints on elliptical
velocities in layered media.” The mean absolute value of the residuals [equation (4.12)]
for this model is 0.086 ms.

Figure 5.10 shows the elliptical velocities that result from the inversion of shear-wave
traveltimes. The initial model in this case was also homogeneous isotropic and described by
200 layers of equal thickness. Seven layers were eliminated during the inversion procedure.
Vsv,znMmo is close to Vsy,:NM0, Which means that, as discussed also in section 2.7, the P-
wave anisotropy at this site is close to elliptical. As Figures 5.9 and 5.10 show, the
shear-wave anisotropy at this site is smaller than the compressional wave anisotropy. The
mean absolute value of the residuals computed for the model in Figure 5.10 is 0.240 ms,
approximately equal to the sampling interval.

Finally, the elliptical velocities of Figures 5.9 and 5.10 are transformed into elastic
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Figure 5.8: Common receiver gather recorded at 1880 feet. The source depth interval is
2.5 feet. The well-to-well separation is 184 feet. First arriving compressional and shear
waves are clearly visible at most vertical offsets. Other wave modes are also visible. The
target of the experiment was a reservoir between 1850 and 1960 feet.
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constants by using equation (2.3) at each depth. Figure 5.11 shows the result of the trans-
formation. Vj; and Va3 (horizontal and vertical P-wave velocities, respectively) vary more
rapidly than Vi (§V-wave velocity). Va3 is almost the same as Vp,:NMo because the shear
wave anisotropy is not significant, as Figure 5.10 shows. The difference V;; — Va3 alternates
between zero or negative in the interval between 1700 and 2100 feet. If we assume that
the anisotropy is caused by fine layering, such changes in Vi; — Va3 can be explained by
a sequence of isotropic and anisotropic strata with horizontal axes of symmetry, probably
vertically fractured. The reservoir between 1850 and 1960 feet corresponds to one stratum
that is probably vertically fractured, which suggests that other intervals where V;; < Va3

may also correspond to vertically-fractured reservoir zones.
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Figure 5.12 compares the horizontal and vertical velocities estimated from the cross-
well measurements with the vertical shear and compressional velocities derived from the
sonic log. Comparing shear-wave velocities yields the results expected for a TI medium:
the vertical shear velocity from the sonic log is the same as the horizontal shear velocity
derived from cross-well measurements. For the compressional velocities, however, the

results are not as expected: the sonic log velocity is closer to the horizontal velocity than
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to the vertical velocity estimated from cross-well traveltimes.
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The differences between vertical P-wave sonic velocity and vertical P-wave velocity
estimated from cross-well traveltimes can be explained in several ways that are consistent
with the idea of vertically fractured strata alternating with isotropic strata. One explana-
tion is that fluids used when drilling can penetrate the reservoir zones causing a decrease
in the compressional velocities of waves that travel close to the well without affecting
either the velocities of waves that travel far from the well or the shear velocities. An-
other explanation assumes that the vertical fractures are embedded in a slow, fluid-filled
matrix. The fractures are well-separated and filled with fast material (anhydrite), which
can effectively increase the vertical velocity of waves that travel vertically in the interwell
region without affecting either the velocity of waves that travel horizontally (because the
fractures are thin) or the velocity of high-frequency waves that travel around the borehole
in the low-velocity matrix. Strong, lateral heterogeneities in the vertical component of
the velocity may cause the type of variation observed in the results, because the model
doesn’t account for them. This possibility, however, is less likely because reflection images

of the site show fairly laterally homogeneous layers (Lazaratos et al, 1992).
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Having out-of-plane shear arrivals would help to confirm the hypothesis of vertical

fractures, by allowing us to look at the shear-wave splitting in the near horizontal direction.

5.5 Conclusions

The procedure used to estimate elastic constants in heterogeneous TI media is a gen-
eralization of the technique presented in chapter 2 for estimating elastic constants in
homogeneous TI media. For homogeneous media, traveltimes from different wave types
are fitted with elliptically anisotropic models. The elliptical velocities that result are then
transformed into elastic constants. For heterogeneous media, the elliptical fit is performed
by using anisotropic traveltime tomography, and the transformation to elastic constants
is performed locally at each point in space.

The examples presented in this chapter show that the procedure is accurate as long as
the maximum aperture satisfies the following constraints: it must be not too small because
that would impede the estimation of the NMO velocities and not too large because the
elliptical approximation might not be adequate.

In this chapter, I tested the algorithm with simple layered models. The estimation
of elastic constants in media with more complex heterogeneities may require traveltimes
from wider apertures, which could yield in less accurate results. This problem can solved

by using traveltimes from all wave types from different recording geometries.
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Appendix A

Singular value decomposition for

cross-well tomography

Singular value decomposition is performed on the matrices that result in tomographic
velocity estimation from cross-well traveltimes in isotropic and anisotropic media. For
a simple recording geometry, this appendix shows the singular vectors in both data and

model space along with their corresponding singular values.

A.1 Introduction

In ray theoretic traveltime tomography, the solution of a linear system of equations is the
heart of the problem. Solving this linear system transforms variations in traveltimes into
variations in model parameters. This transformation from data to model depends on the
properties of the matrix that describes the linear system, and singular value decomposition
(SVD) is the tool for studying such properties.

SVD has been applied in the past to study the structure of the matrices involved in
tomographic traveltime inversion problems. White (1989), Bregman et al. (1989), and
Pratt and Chapman (1992) among others, present singular values and singular vectors in
model space for cross-well geometries. Stork (1992) also shows singular values and the
corresponding singular vectors in model space for the problem of reflection tomography.
All these studies, however, have not completely reported the results of the SVD because
they make no reference to the properties of the singular vectors in data space.

For a small cross-well geometry, in this appendix presents the complete results of the
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SVD (singular values and singular vectors in both data and model spaces) of matrices that
result from the following four types of parametrization: 1-D isotropic, 2-D isotropic, 1-D
anisotropic, and 2-D anisotropic. The anisotropy is assumed to be elliptical. These four
models differ as to how they incorporate the prior information that might be available
about the medium. My results show that the model that makes more assumptions about
the medium (1-D isotropic) is the one that can be estimated better whereas the model that
makes fewer assumptions (2-D anisotropic) contains a large null space that may distort
the anisotropy as well as the heterogeneities in the solution. Although these results are
not surprising, they remind us that when prior information about the medium is available
it is important to incorporate it in the parametrization, because otherwise the results may
not even contain the expected features or they may be severely distorted, especially when
the medium is anisotropic.

The results of the SVD of the previous matrices show how damping the matrix inversion
affects the solution when the velocity model is isotropic and anisotropic. As expected,
when the model is isotropic, damping the solution results in smoothness in the image.
However, when the model is anisotropic, damping not only creates smoother images but
also may distort the anisotropy or create artificially anisotropic results.

This appendix is an example of the type of analysis that can be performed for any
recording geometry to gain insight into how data and model parameters relate. This insight

can help to improve both the data acquisition and the estimation of the parameters.

A.2 The linear system

Regardless of how the model is described, the problem of ray theoretic traveltime tomog-

raphy always reduces to the solution of a linear system of equations of the form:
dm =t (A.1)

where J is a matrix whose elements depend on the ray paths and on how the model is
described, m is the vector of model parameters, and ¢ is the vector of measured traveltimes.
The vectors m and ¢ may also represent veriations with respect to a given model and to
measured traveltimes, respectively.

The model space represented by m consists of two separate models: one for the het-

erogeneities ard one for the velocities. If the model for velocities is isotropic, the elements
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m usually represent the coefficients of the expansion of the slowness model in a basis func-
tion that describes the model of the heterogeneities. Moreover, if the basis function is also
orthogonal (i.e., its different elements do not overlap), each component of m represents
the slowness within one particular region in space. Although other basis functions that
don’t have the property of orthogonality have been recently proposed (Van Trier, 1988;
Harlan, 1989; Michelena and Harris, 1991), those that have such a property are still the
most widely used to represent 1-D layered models (large, rectangular cells) and arbitrary
2-D variations (small, square cells). In this appendix, I focus on these two types of basis
function to describe the model of heterogeneities. In both cases, the isotrepic slowness

model can be expressed as .
S(z,2) = ZSjRj(:z:,z), (A.2)

j=1
where R;(z,z) is nonzero only at the j** cell, S; is the slowness within that cell, and N
is the total number of cells (either layers or square pixels). The corresponding vector of

model parameters is
m = (5,82,..,5x)7. (A.3)

When the model for velocities is anisotropic, our choices for defining the global model
space m increase substantially because all the models available in the isotropic case
for describing the heterogeneities are now combined with all the different models avail-
able for describing the anisotropy. The selection of the proper combination velocity-
model/heterogeneity-model should be made according to any prior knowledge we might
have about the medium. The examples that follow show that introducing prior informa-
tion in the proper way in each of these two models helps to estimate both of them more
accurately but, unfortunately, if one of the models is incorrect or too general, the results
obtained with the other model may be also incorrect.

In this appendix, I assume that the anisotropy is elliptical and that the model of
heterogeneities is described either by horizontal homogeneous layers or by square pixels.
Even though most rocks are not elliptically anisotropic, by using elliptical anisotropy
I can show some of the difficulties we may encounter when tomographically estimating
variations in velocity with both direction and position. When the anisotropy is elliptical,

the representation of the slowness images is a generalization of expression (A.2) as follows:

N
S:(z,z) = Esszj(m,Z), (A.4a)
J=1
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N
S:(z,2) = ZS,,.Rj(z,z). (A.4b)
—~

The corresponding vector of model parameters is
m = (Szl ) Szz, ) SzNa Sz1 ) Szza ceey Sz;v)T’ (A5)

where S;; and S, are the horizontal and vertical components of the slowness, respectively.

If the vector m is not transformed into an image(s), it is difficult to understand the
relations among its different components. The same applies for the vector ¢ of traveltimes.
A simple method of mapping t into an image has been used in recent publications (see,
for example, Squires et al., 1992). The mapping consists of plotting each component of
t at its corresponding source-receiver location in a 2-D space where the axes are source
depth and receiver depth. Traveltimes corresponding to sources and receivers at the same
depth map into the diagonal of the image and other traveltimes corresponding to rays
that travel at nonzero angle with respect to the horizontal map off the diagonal. This
transformation of the vector ¢ into an image and the transformations (A.2) and (A.4) are
used extensively in the next sections to visualize the vectors in both data and model space
that result from the SVD.

A.3 SVD: a short review

Any MxN-matrix J can be decomposed in the following way (Golub and Van Loan, 1989):
J =ULVT, (A.6)

where U is an MxM orthogonal matrix of eigenvectors that span the data space, Vis
an NxN orthogonal matrix of eigenvectors that span the model space, and L is an MxN
diagonal matrix whose elements are the singular values of J. The columns of U (u) are
the eigenvectors of J J T, and the columns of V (v) are the eigenvectors of J T'.l . The
decomposition (A.6) is called singular value decomposition.

When a singular value is zero, the corresponding singular vector in data space cannot
be mapped into model space or vice versa. Data vectors or model vectors with zero
singular value belong to the null space and cannot be resolved. When a singular value is
not zero but is small compared with the largest one (i.e, the condition number is large),
the contribution of the corresponding eigenvectors to the solution must be eliminated or

attenuated, that is regularized, because the matrix inversion may become unstable.
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A.4 SVD: application

SVD (Dongarra et al., 1979) was performed on the matrix J after describing the model
space as described by equations (A.2) and (A.4). In order to represent the results of the
SVD, I show the singular values simultaneously with the singular vectors in data and
model space, both sets of vectors having been transformed into images as explained in
the previous section. This representation of the SVD results follows Pratt and Chapman
(1992), with the addition of the singular vectors in data space.

The ray geometry used to compute the SVD for the differents parametrizations is
shown in Figure A.1. It is the same as the one used by Pratt and Chapman (1992): five
sources and five receivers in separate wells in a constant slowness medium. When the
model is isotropic, the matrix J depends only on the ray geometry and when the model
is anisotropic, J depends on both the ray geometry and the slowness model (which is
constant in this case) which means that even when the rays are straight the tomographic
estimation of velocity anisotropy is in general a nonlinear problem. Ray bending adds

another nonlinearity to the problem.

Figure A.1: Recording geometry
used to do the SVD for the different
parametrizations. The slowness is
constant and therefore, the ray paths
are always straight.
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A.4.1 Isotropic models

Figure A.2 shows the SVD when the model is discretized using six horizontal isotropic
layers [equation (A.2)]. The differences among the singular values are small, which means
that the problem is well-conditioned. The largest singular values correspond to singular
vectors in data and model space (u and v, respectively) whose components are roughly
of the same magnitude. With this parametrization only some “big structures” (averages)
in data space can be explained whereas in model space all the parameters can be well
resolved. By representing the singular vectors in data space u as images, it is possible
to identify source-receiver pairs whose traveltimes belong to the null space and therefore
cannot be resolved or have no influence in the estimation of the model parameters. For
this reason, errors in these particular traveltimes (noise) will also have little or no effect
in the solution, which means that this parametrization is not too sensitive to errors in the
data.

Allowing lateral variations in the previous parameterization results in a matrix J
whose SVD is shown in Figure A.3. The largest singular value corresponds roughly to
horizontal layers (in model space) and non-horizontal rays (in data space). As the singular
values decrease, the eigenvectors in model space tend to contain more horizontal and high-
frequency variations and the eigenvectors in data space tend to span near and far vertical
offsets (diagonal and non-diagonal structures in the data images). In model space, the
smallest singular values correspond to “pure” horizontal variations, which means that the
data is not sensitive to this type of variation in the model. In data space, the smallest
singular values correspond to rapid changes among nearby traveltimes that have little or
no influence on the model. Rapid changes among nearby traveltimes might be produced
by noise that, unfortunately, is not necessarily confined to the less influential part of the
data. Therefore, in some applications it might be necessary to damp the effect of singular
values larger than those contained in the null space in order to attenuate the effect of
certain components of the noise.

The results shown in the previous two figures are as expected. In both cases the
largest eigenvalues correspond to gross features in both model and data space. When few
parameters compared with the number of data points are used (Figure A.2), the data is
not well resolved, and when the number of parameters is increased, some components of
the model (pure lateral variations, for example) may be difficult or impossible to retrieve

from the given data, even if the problem is overdetermined as in Figure A.3.
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Even though these results were expected, they have received little attention. The
discretization of the model in square pixels assumes that we don’t know anything about
the spatial variations in the medium, unlike the discretization of the model in layers. Since
the discretization of the model in layers is a subset of the discretization of the model in
square pixels, we may think that whatever can be estimated by using homogeneous layers
can be also estimated by using homogeneous square pixels. What Figures A.2 and A.3 show
is that this statement is not necessarily true. The estimation of the parameters depends on
bow the data and parameters relate to each other. In problexs of tomographic estimation
of velocities, 2-D inversions are done often in places that are known to be isotropic and
horizontally layered in order to account for all possible “unexpected” variations in the
medium. The extra degrees of freedom (and the null space) introduced in the inversion
have to be penalized appropriately in the objective function, which produces an image
with less resolution overall than the one obtained by directly estimating the parameters of
a 1-D model. Of course, if well logs are available and the medium is known to be isotropic
and horizontally layered, 1-D inversions are not interesting, and the intrinsic advantages of
the parametrization (fewer unknowns and better conditioning) are not useful. However, as
the next section shows, if the medium is anisotropic and known to be horizontally layered,
using a model of heterogeneities that appropriately incorporates such prior information
can make the difference between retrieving or not (accurately) variations of velocity as a
function of direction.

The large number of data singular vectors u contained in the null space in Figure A.2
also suggests that, if the medium is known to be isotropic and horizontally layered, the
data acquisition can be optimized in order to increase the number of measurements that

influence the solution, which results in a better estimation of the velocities.

A.4.2 Anisotropic models

The SVD for a 1-D anisotropic parametrization [equation (A.4)] is shown in Figure A 4.
The upper half of each eigenvector in model space corresponds to S, (z, z), the lower half
to S.(z,z). As expected, the largest singular values correspond to gross features in both
model and data space. In descending order of singular value, the corresponding singular
vectors in data space span first S,(z,z2), then S,(z,z). The least sensitive part of the
model (singular values 11 and 12) is spanned by vectors that contain only information

about S;(z, z). In data space, the behavior for the largest singular values is similar to the
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isotropic 1-D case.

Figure A.5 shows the SVD when the model is 2-D anisotropic. The result for this
parametrization is roughly a combination of the SVD for the 2-D isotropic and the 1-D
anisotropic model (Figures A.3 and A.4 respectively); that is, vertical variations in S (z, z)
correspond to the largest singular values and horizontal and high-frequency variations in
S:(z,z) to the smallest ones. Nearly half the vectors in the null space (Figure A.6) contain
information about S, (z, ) only and the other half contain information about both S, (z,2)
and S.(z,z). These vectors cannot be estimated from the data.

Figures A.4, A5, and A.6 show that when we introduce anisotropy in the model,
the sensitivity of the data to the vertical component of the slowness is lower than the
sensitivity to the horizontal component, which is not a surprise for cross-well geometries
that don’t adequately sample the vertical direction. This limitation, however, doesn’t
impede an accurate estimation of variations of velocity anisotropy with position if we use
at the same time the proper model to describe the heterogeneities, as shown in Figure A 4,
where most singular vectors in model space correspond to large singular values.

When using a model that assumes nothing about the heterogeneities (square pixels),
estimating spatial variations in slowness anisotropy may become a very difficult task be-
cause we have to deal with the features of the medium about which the data give less
information: horizontal and high-frequency variations in the vertical component of the
slowness. Even if the inversion can retrieve the singular vectors corresponding to the
smallest singular values, the result can still be images with different resolutions for the
horizontal and the vertical components of slowness because most vectors in the null space
are related to the vertical component (Figure A.6).

For these reasons, performing 2-D inversions in places known to be one dimensional
may create serious problems, in particular when the model is anisotropic. From Figure A.4
we see that all variations in S, (z,z) can be retrieved from the data because the smallest
singular values are related to S;(z,z) only. However, when we allow 2-D variations in the
model, several components of S:(z,z2) go to the null space, as Figure A.6 shows. This fact
has two implications. First, features that could be easily recovered with one parametriza-
tion have become more difficult or impossible to recover with another parametrization that
is more general. Second, taking 1-D averages or smoothing across the horizontal direction
2-D images is not necessarily the same as performing true 1-D inversions, because the 2-D

images may be less accurate and contain more artifacts than the images obtained using
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1-D parametrizations.

When the velocity model is isotropic, a common way to deal with the noise and ill-
conditioning when solving the system (A.1) is by damping the least-squares solution or by
truncating the SVD. The purpose of these two techniques is to attenuate or eliminate the
effect of the smallest singular values of the problem. When the model is isotropic, damping
translates into smoothing because what is being attenuated are the high frequency and
horizontal variations in the model. However, when the velocity model is anisotropic,
damping out the smallest singular values affects not only the smoothness of the model but
also its anisotropy (or isotropy) because the effect of the vertical component of the slowness
compared with the horizontal has also been reduced. Therefore, common techniques used
to regularize the problem in isotropic media may not be adequate in anisotropic media
because they may introduce artificial anisotropy.

Besides damped least-squares or SVD truncation, conjugate gradients (CG) is another
common way to solve the system (A.1). In practice, if the data energy distribution among
the different singular values is even, early CG iterations tend to be more sensitive to the
largest singular values, whereas later iterations tend to be affected by both large and small
singular values (Stork, 1988). For this reason, stopping the CG iterations after a small
number of steps is similar to the effect of damping or of truncating the SVD (Scales and
Gersztenkern, 1988). As a consequence, when the model is anisotropic, early truncation of
the CG iterations may also produce artificially anisotropic results because the horizontal
component of the slowness converges faster than the vertical, which belongs to the less
sensitive part of the model. Figures 4.7 and 4.8 show examples of how the two components
of the slowness converge at different speeds. Early truncation of the iterations may be
necessary because of noise or ill-conditioning.

The effect of damping can also be seen in data space. On the one hand, when the
damping is large, only gross features in data spaced are resolved. On the other hand, when
the damping is small or zero, the high-frequency variations in the data that correspond to
the smallest singular values can be also resolved. Therefore, depending on the amount of
damping (or, equivalently, where the SVD solution is truncated or when the CG iterations
are terminated) some portions of the data may be better resolved than others, which has

to be taken into account when interpreting traveltime residuals.
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A.5 Conclusions

By performing the SVD of the matrices that result from a small scale numerical ex-
periment, I have shown the relations between data and model space for four different
parametrizations. The parametrizations vary according to the amount of prior informa-
tion that they contain about the medium.

All the results have in common that the largest singular values correspond to gross
features in both data and model space. The main differences among the results are in
the type of feature in data and model space that the small singular values represent, the
size of the null space, and the effect of regularization when dealing with such insensitive
parts of the data and the model. When the model is 1-D isotropic, the problem is well
conditioned and all the parameters can be resolved well but the resolution of the data is
poor. For this type of model cross-well traveltime tomography performs the best if the
medium is also 1-D isotropic.

I have generalized the 1-D isotropic model in three ways: by allowing the layers to
vary lateraly, to be anisotropic, and to be both heterogeneous and anisotropic. The
effect of lateral heterogeneities in the data was negligible even when the problem was
overdetermined. Lateral heterogeneities also introduced into the model high-frequency
variations whose influenc= in the inversion needs to be attenuated. The effect of anisotropy
in one dimension was to introduce structures in the vertical component of the slowness
that are not sensitive to the data. Most other vertical variations, however, can still be
easily retrieved. The effect of lateral variations and amisotropy in the parametrization
was to create a large null space in the model related mostly to horizontal and high-
frequency variations in the vertical component of the slowness. This means that when
2-D anisotropic models are used anisotropy and heterogeneity cannot be estimated with
the same resolution, no matter how simple the real medium is. Hence the importance of
using the appropriate parametrization when information about the medium is available
beforehand.

Since the singular value distribution is different for the different parametrizations, the
effect of conventional regularization procedures such as damping, SVD truncation, or a
simple early termination of CG iterations is also different when each of these parametriza-
tions is used. When the model is isotropic, regularization translates into smoothness in
the resolution of both data and model spaces. When the model is anisotropic, diminishing
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the effect of the smallest singular values in the solution not only creates smoother images

but may also introduce anisotropy where it doesn’t actually exist or, more generally, may
distort the anisotropy of the medium.
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Figure A.2: SVD when the model is 1-D isotropic (six horizontal isotropic layers). u
represents the singular vectors in data space and v represents the singular vectors in
model space. The origin of the axes is at the upper left corner of each image. r is the
receiver axis, s is the source axis, x is the horizontal distance, and z is the depth. The
gray scale goes from black (negative) to white (positive).
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Figure A.3: SVD when the model is 2-D isotropic (6 x 4 homogeneous isotropic squared
regions). The amount of lateral variation in the model space increases as the size of the
singular values decreases.
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Figure A.4: SVD when the model is 1-D anisotropic (6 x 2 model parameters). The
upper half of each image in the model space corresponds to S;(z,z2), and the lower half
corresponds to S,(z,z). The origin in the data space is at the upper left corner of each

image.
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Figure A.5: SVD when the model is 2-D anisotropic. (24 x 2 model parameters).
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Figure A.6: Vectors that span the null space of the model for the SVD shown in Figure
A.5. Most vectors contain information about S,(z,z) (nonzero components in the lower
half of each image), and therefore, S;(z, z) cannot be estimated at the same resolution of
Sz(z, z) from cross-well traveltimes alone.
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Appendix B

Coefficients of the equation that

relates ray parameter and

scattered phase angles

This appendix shows the explicit form of the coefficients a; in equation (3.8), the fourth

order polynomial that relates the angles of the scattered phases and the incident ray

parameter. The coefficients are

where
To
I
Tz

a0

a1

a2

as

a4

= Yt -TE,

= =2TpTh,

= 2b°c%p* — 4d%p* - T? - 2Ty T,
= =2D1,

= -3,

2sin?(y) — p*(c* + 20%),
2sin(272),

2 cos?(2) — p2(b? + 2a2),
caa/p,
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b2 = (c11 - caa)/p,
02 = (633 - C44)/P,
2 = [(e11 = caq)(cs3 — caq) — (13 + C44)2]/,02.

The constants c;; are four of the five elastic constants that describe a homogeneous trans-
versely isotropic medium, 7, is the orientation of the axis of symmetry measured from the

normal to the interface, p is the ray parameter, and p is the density.
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Appendix C

Traveltime in homogeneous
elliptically anisotropic media with

a nonvertical axis of symmetry

The expression for the ray velocity in a medium with elliptical velocity dependency is

given by the expression

1 cos?a  sina

V@ = vt (C.1)

where o is the ray angle measured from the axis of symmetry (positive counterclockwise),

and V}j and V) are the velocities in the directions parallel and perpendicular to the axis of
symmetry (Figure C.1a). When the axis of symmetry is vertical, the angle that measures
the direction of propagation of the ray with respect to the vertical is the same as the group
velocity angle.
When the axis of symmetry is rotated an angle v (Figure C.1b), the expression for the
ray velocity (for the same ray direction) becomes
1 cos® (¢ —v) = sin®(a—17)

Vi@ T T vg T Vi

(C.2)

where o — 7 is the angle from the axis of symmetry to the ray (the group velocity angle).
If the ray travels a distance d between two points (Figure 4.1),

d = VAz: +AZZ (C.3)
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Vx=Vi

tion of direction in an elliptically (@
anisotropic medium: (a) Vertical
axis of symmetry (ray angle = group
velocity angle). (b) Tilted axis of
symmetry (ray angle = a; group ve-
locity angle = ¢). A

\ /
Figure C.1: Ray velocity as a func- —/
Y

the corresponding traveltime ¢ is
(dcos(a — 7))? 4 (dsin(a —7))?
» 2 2
Y Vi
(dcosacosy + dsinasiny)? | (dsinacosy — dcosasiny)?
2 + ) ‘
VII Vi

To further simplify this equation we need to know the values of d cos @ and dsin . In

t2

order to do this, we need to be careful about the sign of a (clockwise or counterclockwise)
for the given ray direction. We also need to be careful about the signs of Az and Az. It
turns out that regardless of how the signs of these quantities are defined (as long as they
are consistent) the final expression for 2 is always, as expected, the same. The result is

2 (—Azcosy + Azsiny)?  (Azcosy+ Azsiny)?

{ 1
This is the expression for the traveltime of a ray that travels between two points separated
by a distance d in a homogeneous elliptically anisotropic medium with the axis of symmetry

forming an angle v with the vertical. This equation is the heart of the inversion procedure

t

that I propose in chapter 4.
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Appendix D

Partial derivatives of the
traveltime with respect to the

model parameters

In this appendix, I show the expressions for the partial derivatives of the traveltime ¢;
[equation (4.5)] with respect to the model parameters my, where my is a component of

the vector m as follows:

M = (M1, MN TN 41y 0oy 2Ny TR2N 41y o0y TREN s MBN+1y oy TN TUAN+15 -y M5EN)

= (S_Ll y ooy SJ_N, 5”1, seny S”N,’Yl, oy TN, b]_, veny bN, Qlyeeey G.N).

First, the derivatives with respect to the interval parameters S 15 S and 5 (1 <

j < N)are

AXE Sk fl1<k<N

tik

)
ot Sdut fN+1<k<2N
- Y AX;_;‘S:(—A::‘-,,, sinye+Az; 5 cos'n,)+
t

s,k
. 2 , 3 .
S Ens BNt ATACOT) 9N 1< k <3N,

Note that, for the interval parameters, the derivatives with respect to the j** variable
depend only upon the properties of the jt* layer.
The derivatives of the traveltime with respect to the boundary parameters (a; and b;)
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depend on the properties of the medium above and below that boundary, as follows:

= sin 7 AX;, e S +cos i AZ; 1S3, \ +

ik
B ) sinnei8Xino S meosmoiBZiaa Sy if3BN+2<k<4N
omy, tik—1 SKES
iz g if AN +2 <k <5N.

Since the traveltime ¢; is not affected by the position of the top boundary, g;‘*;— = gfli = 0.

When a ray travels horizontally, only the first N components of the vector of partial
derivatives are nonzero. For the forward modeling this is not problem; it simply means
that the horizontal component of the velocity is the only parameter that affects the trav-
eltime of a horizontally traveling ray. Problems arise, however, when we try to invert
these traveltimes, because there are infinite combinations of the other parameters (null
space) that satisfy the data equally well. This problem casues instability in the inversion
procedure. For this reason, the inversion procedure described in chapter 4 does not use
rays that travel exactly along the horizontal.

Making the appropriate simplifications in the above equations for the case of isotropic
media results in a set of equations similar to the ones obtained by Lee (1990), except for

two misprints in Lee’s equations.
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