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Abstract 
 
 Data substitution as a means of evolving time lapse sparsely acquired data has been 
tested and is presented in this report. Results show that it is a viable option for analyzing 
data acquired for monitoring subsurface flow such as monitoring sequestered CO2. 
Results however, also show that artifacts are bound to occur because changes in the old 
data that may have been caused by changes in the subsurface are not taken into account. 
A more efficient method is a one that takes these changes into account and methods with 
this property are currently being researched.   
 
 
Introduction 
 
 The primary objective of this study is the development of data and model evolution 
methods for use in 4-d dynamic tomography. In carrying out a time lapse monitoring 
experiment, given the same resources, two scenarios are possible; 1) acquiring complete 
dataset at every large time step and 2) acquiring incomplete (sparse) dataset at every 
closely spaced time step. Scenario 2 gives the opportunity for tracking the changes in the 
reservoir more frequently. Throughout the lifetime of the reservoir being monitored, a 
few sources and receivers can be used to acquire quasi-continuous data. A complete 
dataset may have been acquired during site characterization and can be used as the “base” 
dataset. Having acquired a dense dataset and several sparse datasets, the challenge 
becomes how to use the sparse data efficiently. One potential quandary is the 
development of an under-determined tomographic inversion problem, in which case, we 
have less data than the number of unknowns. A solution to this queue is to predict what 
the data would have been if additional sources and receivers were used. 
 
 A lot of work has been done on image reconstruction from incomplete data especially 
in the field of medical imaging where data may have been acquired over incomplete 
aperture (e.g. [1], [2]) as well as in the field of astronomy (e.g. [3]). The studies in the 
stated examples reconstructed spatially incomplete data. In this study, my intention is to 
reconstruct temporally incomplete data. Techniques considered include the 
implementation of the Kalman filter, locally varying mean kriging and simple data 
substitution. So far, only data substitution has been successfully implemented. Because of 
the efficiency of diffraction tomography in terms of speed, I have decided to use it in 
testing data/model evolutions techniques. An alternative approach is conventional 
traveltime tomography which will involve the generation of synthetic seismic data that 
simulates data acquired by a specific source – receiver geometry, followed by traveltime 
picking and then iterative traveltime inversion. The advantage of using diffraction 
tomography is that significantly less amount of time is required to generate an ideal 



recoverable model. The inherent idea behind diffraction tomography is that every 
geologic model occupies a certain portion of Fourier space. In like manner, every source 
– receiver geometry can recover a certain portion of the Fourier space [4]. The portion of 
the geologic model that can be reconstructed is the portion of Fourier space where both 
the acquisition geometry and the geologic models overlap [4].  
 
 
Background 
 
 This section gives the mathematical backing for data substitution in the Fourier 
domain. Data substitution is a method that uses the linearity property of Fourier 
transforms. The Fourier transform is linear which means that if we consider two periodic 
sequences ),(1 yxf  and ),(2 yxf , with periods of N, and combined as shown in the 
equation 
 

),(3 yxf  = ),(1 yxaf  + ),(2 yxbf     (1) 
 
then the discrete Fourier series (DFS) representation of (1) is given as 
 

),(3 yx kkF  = ),(1 yx kkaF  + ),(2 yx kkbF                   (2) 
 
all with period N [5]. 
 
Following this line of argument, we can define a given 2-D geologic model, ),( zxfm , at 
time t0, as 
 

),(0 zxfm  = ),(00 zxfa         (3) 
 
and at time t1, as 
 

),(1 zxfm  = ),(0 zxfm  - ),(11 zxgb  + ),(11 zxfc            (4) 
 
where ),(11 zxgb  and ),(11 zxfc  are zero everywhere except at the points where the 
models ),(0 zxfm  and ),(1 zxfm  are different. There, ),(11 zxgb  is equal to ),(0 iim zxf  and 

),(11 ii zxfc  is equal to ),(1 iim zxf . In the same vain, the geologic model at time 
t2, ),(2 zxfm  can be expressed as 
 

),(2 zxfm  = ),(1 zxfm  - ),(22 zxgb  + ),(22 zxfc             (5) 
 
In a generalized form,  
 

),( zxf nm  = ),(1 zxf nm
!  - ),( zxgb nn  + ),( zxfc nn              (6)   



 
where n = 1, 2, 3…. is the time step. 
 
From the linearity principle explained with equations (1) and (2), the DFS representation 
of (6) is 
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n

m kkF !  - ),( yxnn kkGb  + ),( yxnn kkFc          (7) 
 
It is noteworthy to state that the same logic will apply if we start with the Fourier 
representation. The outlined steps above govern the implementation of data substitution 
in Fourier space presented in the report. 
 
 
Results 
 
 Data substitution was tested using “hand drawn” geologic models. One of the units in 
the geologic model was chosen to be the reservoir for storing the sequestered CO2. A 
fault is allowed to exist in the model. This fault permits the upward flow of CO2 to 
another geologic unit with reservoir characteristics. There are a total of 221 models 
representing 221 snapshots in time. Each one of the geologic models is 250 by 250 
elements in dimension and represents an earth unit 1000m by 1000m. Figure 1 shows the 
geologic model at different states and its corresponding flow model (difference model). 
Figure 2 shows the 2-D Fourier transforms of the geologic model at time t0 and selected 
difference models. Parts of the Fourier transform corresponding to the fault structure as 
well as the curved shape of geologic units are readily identifiable. 
 
 Filters corresponding to surface data acquisition, crosswell data acquisition and 
vertical seismic profiling (VSP) acquisition were used. 21 shots and 21 receivers were 
used in all three cases; surface acquisition frequency range was 5 – 50 Hz, crosswell 
acquisition frequency range was 100 – 1000 Hz and VSP acquisition frequency range 
was 5 – 100 Hz. I applied an acquisition strategy which involved full/complete coverage 
at time t0 and sparse/ incomplete coverage at every other time. Excluding the first time 
step, an equivalent of a full coverage was acquired every 42 consecutive time steps. The 
advantages of such a strategy include the fact that old data are frequently replaced and 
also, it gives room for data tracking which is useful for any prediction scheme. Figures 3, 
4 and 5 show filter states at time t0 and at selected time steps.  
 
 In this analysis, data refers to the function upon which the inverse Fourier transform 
is applied in the equation 
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as derived by Harris[6] and Wu & Toksöz [4] for diffraction tomography, where ),( zxO  
is the reconstructed image. Substitution was done in Fourier space. Figures 6, 7 and 8 



show reconstructed images (with and without data substitution) after they have been 
subtracted from the reconstructed image at time t0 i.e. difference images. See the 
appendix for an illustration of the procedural steps followed. More accurate results were 
produced from inversions that involved data substitution when compared to those without 
data substitution. In fact, without data substitution, the results were not interpretable. 
There are however, some artifacts in the reconstructed images obtained when data 
substitution was used. These artifacts may be a result of replacing only a partial spectrum 
of the changes that occurred in each time step, keeping in mind that not all changes were 
captured due to the limited aperture used. If this is truly the cause, a better approach is to 
predict the current state of old data at each time step. Kriging the time axis as well as 
applying Kalman filter schemes are methods that are being considered to be used to 
predict data. 
  
 
Progress 
 
 Progress has been made in the area of understanding the diffraction tomography 
concept and its implementation. Some previously (earlier quarters) identified problems 
have been solved. Mathematical formulations to support presented ideas have been 
developed. Results presented in this paper have increased my confidence in the ability to 
use diffraction tomography in developing data evolution schemes. This work is meant to 
culminate in the development of data/model evolution techniques applicable to 
monitoring sequestered CO2. Data evolution techniques can be applied to quasi 
continuous seismic data which is best suited for time lapse imaging. Quasi continuous 
data acquisition is economical when sparse, hence the need for a data evolution 
technique. 
 
 
Future Plans 
 
 Over the summer, I intend to continue my literature review to better understand the 
problem and to equip myself with the skills required to obtain a solution to the problem. 
Of particular interest are the field of data reconstruction and the applications and 
implementation of Kalman filters. I plan to implement the Kalman filter in the Fourier 
domain. I also plan to apply a locally varying mean kriging algorithm to my data. These 
two are deliverables I intend to have at the end of the summer. 
 
 



Figures 

    
(a)        (b) 
 
Figure 1. a) The geologic model at different states. b) Its corresponding difference model 
(flow model). A difference model is obtained by subtracting the model at time tn from the 
model at time t0.



                                               

   
 
Figure 2. The absolute values of the 2-D Fourier transform of the geologic model at time 
t0 and selected 2-D Fourier transform difference models. A 2-D Fourier transform 
difference models is obtained by subtracting the absolute values of the 2-D Fourier 
transform of the model at time tn from the absolute value of the 2-D Fourier transform of 
the model at time t0. 
 
 
 
 



                  
(a)      (b) 
 
Figure 3. Surface acquisition geometry filter states at a) time t0 and at b) selected time 
steps.  
 
 
 

         
(a)      (b) 
 
Figure 4. Crosswell acquisition geometry filter states at a) time t0 and at b) selected time 
steps.  
 
 
 
 



 
 
 
 

                   
(a)      (b) 
 
Figure 5. VSP acquisition geometry filter states at a) time t0 and at b) selected time steps.  



    
   
 
(a)        (b) 
 
Figure 6. Reconstructed difference images from surface acquisition geometry.  a) 
Without data substitution. b) With data substitution.  The reconstructed image at time tn 
was subtracted from the reconstructed image at time t0 to produce a difference image. 



    
(a)        (b) 
 
Figure 7. Reconstructed difference images from crosswell acquisition geometry.  a) 
Without data substitution. b) With data substitution.  The reconstructed image at time tn 
was subtracted from the reconstructed image at time t0 to produce a difference image. 



    
(a)        (b) 
 
Figure 8. Reconstructed difference images from VSP acquisition geometry.  a) Without 
data substitution. b) With data substitution.  The reconstructed image at time tn was 
subtracted from the reconstructed image at time t0 to produce a difference image. 
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