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Two-dimensional finite-difference seismic modeling of an open fluid-filled
fracture: Comparison of thin-layer and linear-slip models

Chunling Wu', Jerry M. Harris', Kurt T. Nihei?, and Seiji Nakagawa?

ABSTRACT

Within the context of seismic wave propagation, frac-
tures can be described as thin layers or linear-slip in-
terfaces. In this paper, numerical simulations of elastic
wave propagation in a medium with a single fracture
represented by these two models are performed by 2D
finite-difference codes: a variable-grid isotropic code for
the thin-layer model and a regular-grid anisotropic code
for the linear-slip model. Numerical results show excel-
lent agreement between the two models for wavefields
away from the fracture; the only discrepancy between
the two is the presence of a slow wave traveling primar-
ily within the fracture fluid of the thin-layer model. The
comparison of the computational cost shows that mod-
eling of the linear-slip model is more efficient than that
of the thin-layer model. This study demonstrates that
the linear-slip model is an efficient and accurate model-
ing approach for the remote seismic characterization of
fractures.

INTRODUCTION

The presence of fractures critically affects the permeability
of rocks and, therefore, the character of fluid flow in hydrocar-
bon reservoirs. Thus, fracture detection and characterization
is very important in hydrocarbon recovery. Seismic modeling
of fractured media is an efficient tool for investigating the pos-
sibilities of using seismic waves to characterize the fractures.

For purposes of seismic wave propagation, fractures are of-
ten described as linear-slip interfaces with displacement dis-
continuities (Schoenberg, 1980; Pyrak-Nolte, 1988). In the
linear-slip model (LSM), it is assumed that a fracture can
be represented by an interface across which the displace-
ments caused by a seismic wave are discontinuous while the

tractions remain continuous. The linear relationship between
the jump in the displacement vector and the traction vec-
tor is determined by the fracture compliance tensor. Coates
and Schoenberg (1995) introduced an equivalent medium the-
ory approach for embedding a linear-slip interface within an
anisotropic finite-difference (FD) code.

Alternatively, an open fluid-filled fracture can be rep-
resented by a thin fluid layer following the approach of
Groenenboom and Fokkema (1998). For the thin-layer model
(TLM), variable-grid FD methods (Moczo, 1989; Jastram and
Behle 1991; Falk et al., 1996; Pitarka, 1999) can be used to
smoothly vary the cell spacing from the far-field mesh to the
vicinity of the fracture, thus approximating the fracture di-
rectly by a number of grid points (Groenenboom and Falk,
2000). This variable-grid approach for explicit modeling of
open fluid-filled fractures requires more cells than the Coates-
Schoenberg approach. However, the use of the variable grid
around the fracture significantly reduces the number of extra
cells needed to model the fracture, compared to a regular, very
fine grid.

The purpose of this paper is to compare a variable-grid FD
method for the TLM with the Coates-Schoenberg approach
for the LSM to determine to what extent the TLM agrees with
the LSM. Numerical results show that the agreement between
the two models is excellent except for the existence of a slow
fracture wave in the TLM. Two calculations also demonstrate
that modeling the LSM is more efficient than modeling the
TLM. The sections that follow present the methods and their
comparison in greater detail.

METHODOLOGY
Variable-grid FD method for the TLM

FD seismic modeling is commonly based on regular grids.
Grid spacing, and hence the computational effort, is deter-
mined by the smallest length scale to be modeled, usually
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the shortest seismic wavelength. Explicitly modeling a frac-
ture described by the TLM introduces a length scale (the frac-
ture width), which is often two or three orders of magnitude
smaller than the shortest seismic wavelength, thus greatly in-
creasing the computational load and restricting calculations
to models of very small overall dimensions. To overcome this
problem, we apply a variable-grid FD scheme (Pitarka, 1999)
for solving the 2D velocity-stress elastic-wave equation:
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where v, and v, are the particle velocity components; 7,,, T,
and 7, are stress components; p is density; and A and p are the
Lamé coefficients.

We use a simple FD gridding scheme to represent the x-z
fracture plane. The plane is partitioned into (1) domains of
fine grid spacing for resolving fractures, (2) domains of coarse
grid spacing constrained by the shortest wavelength, and (3)
transition regions where the grid spacing smoothly varies be-
tween these extremes (see Figure 1). The smooth refinement
from the coarse grid to fine grid avoids the spurious reflection
problems associated with sudden changes in grid spacing.

Solving the elastic wave equation on a variable grid requires
the spatial derivatives in equation 1 to be approximated using
a stretched stencil. Several techniques exist for efficiently cal-
culating the coefficients for the stretched difference operators.
We use the method proposed by Pitarka in 1999 (Appendix A)

dxg=9mm dx,=3mm dx;=1mm dx;=27 mm dxz=60mm

to precompute explicit fourth-order operators for all spatial
locations. Since the mesh is only distorted along the x- and
z-axes, coefficients are invariant along grid lines, reducing the
memory required for stencil storage. The variable mesh is also
staggered to increase stability and minimize numerical dis-
persion. The staggered scheme is crucial for handling solid-
liquid contacts present in fractured media. Time derivatives
are staggered across the velocity and stress variables and are
approximated using an explicit second-order central differ-
ence operator.

To minimize numerical dispersion during the computation,
the spatial discretization is chosen to satisfy the following in-
equality (Pitarka, 1999):

Vmin
Sfmax ’

where h,,,, is the maximum grid spacing, V,,;, is the lowest
velocity in the media, and f,,,, is the maximum frequency of
the propagating signal.

The stability condition for the 2D fourth-order staggered-
grid FD scheme with constant grid spacing /4 is (Levander,
1988)
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where oy = 9/8 and o, = —1/24 are the inner and outer coeffi-

cients of the fourth-order approximation to the first derivative.
Vuax 18 the highest velocity in the media.

Through a series of numerical tests, we found that the
variable-grid FD scheme used in this paper is stable when the
temporal increment At is chosen to satisfy equation 3 with the
minimum grid spacing in the variable grid.

Coates-Schoenberg approach for the LSM

To incorporate a fracture described by the LSM into an FD
code, Coates and Schoenberg (1995) introduced an equiva-
lent medium approach. In this approach, all FD grid cells con-
taining a fracture are replaced by grid cells with equivalent
anisotropic properties that model the fracture and host com-

Figure 1. Grid spacing in the vicinity of a fracture. The hor-
izontal grid spacing smoothly increases from 1 mm to 6 cm
with a factor of 3 over a transition region 11.7 cm wide. The
vertical grid spacing is 6 cm throughout the grid. The fracture
dimensions are 4 mm width x 10.56 m length.

dz =[60 mm pliances (Figure 2).
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Figure 2. Representation of a vertical fracture in an FD model
as a single column of anisotropic cells. The elastic constants
for these cells are computed using the Coates-Schoenberg ap-
proach described in the text.
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The variables required for the equivalent medium calcula-
tion in each FD cell are Lamé constants A and u of the back-
ground medium, the length of the fracture L (in two dimen-
sions) in each cell, its orientation, and the normal and shear
fracture compliances Zy and Z7, respectively.

For a vertical fracture with its normal in the x-direction, the
four independent anisotropic elastic constants for a 2D model
in the x-z plane are (Nihei, et al., 2001)

cil =
(4 2u)(1 — 8y) A1 = 8y) 0
A1 —8y) (A +2p)(1 = r28y) 0 .
0 0 p(l —é7)
(4)

where r =v/(1 —v), 8y = Zy(A+21)/[L+ Zy (X +21)], 87 =
Zru/(L + Zyp), and v is the background Poisson’s ratio. The
equivalent medium described by equation 4 is transversely
isotropic with a horizontal axis of symmetry (HTI media). A
fracture oriented at an angle to the FD grid can also be mod-
eled by applying a rotation transformation to equation 4, as
described by Coates and Schoenberg (1995); this leads into a
full anisotropic medium with six independent elastic constants
in two dimensions.

After the equivalent medium properties of each cell are ob-
tained, the standard FD scheme for anisotropic media can
be applied. The code we used is a regular staggered-grid
FD scheme with fourth-order spatial differencing and second-
order temporal differencing.

OPEN FLUID-FILLED FRACTURE MODEL

Both the variable-grid FD method and the Coates-
Schoenberg approach are used to model wave propagation
in a medium with an open water-filled fracture to examine to
what extent the TLM agrees with the LSM.

Figure 3 shows the model. A vertical water-filled fracture
with 4 mm thickness and 10.56 m length is embedded in a ho-
mogeneous elastic medium. A monopole source (S), located
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Figure 3. A vertical fracture model.

at (12.78 m, 12 m), radiates a Ricker pulse with a central fre-
quency of 3 kHz. Two receivers (R; and R;) are located at
(10.2 m, 18 m) and (6 m, 18 m). For variable-grid FD model-
ing of the TLM, the horizontal grid spacing smoothly increases
from 1 mm to 6 cm with a factor of 3 over a transition re-
gion 11.7 cm wide in the vicinity of the fracture; the vertical
grid spacing is 6 cm throughout the grid (Figure 1). For the
Coates-Schoenberg approach of the LSM, a constant FD grid
spacing of 6 cm is used in both the x- and z-directions. The cal-
culation of effective medium properties of the LSM cells con-
taining the fracture is based on the transverse fracture com-
pliance Zr = oo, and the normal fracture compliance Zy =
h/K = 0.004 m/2.25 GPa (h is the fracture width and K is the
bulk modulus of the fluid). The parameters of the background
medium are A = 7.6194 GPa, u = 18.152 GPa, and v = (0.148
calculated from the P-wave velocity V,, S-wave velocity Vi,
and density p.

Snapshots of horizontal and vertical particle-velocity com-
ponents of the TLM and the LSM are shown in Figure 4.
In order to make the faint fracture tip-diffracted waves vis-
ible, the gain was chosen such that amplitudes were clipped
at 1% of the maximum value. It can be seen that the body
wave (P) and the head wave (H) are in good agreement. The
tip-diffracted waves (PdP, PdS) are similar but with small
differences in amplitudes. The incomparable event is a guided
wave (G) propagating along the fracture, which is present in

a) Vx(TLM) ¢)

Vz(TLM)

b) Vx(LSM)

0 10 20
x(m) x(m)

Figure 4. Snapshots of the horizontal and vertical particle-
velocity components (V, and V,) at 2.8 ms: (a) and (c) are the
results of the thin-layer model (TLM); (b) and (d) are the re-
sults of the linear-slip model (LSM). P, H, and G are direct P-
wave, head wave, and fracture guided wave, respectively; PdP
and PdS are P-to-P and P-to-S diffracted waves, respectively.
The fracture is indicated by the white dashed line.
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the snapshots of the TLM but absent in the snapshots of the
LSM. This guided wave, with a velocity around 1210 m/s, is
the very slow wave predicted by Ferrazzini and Aki (1987).
In theory, the TLM supports a family of symmetric and anti-
symmetric normal modes (Ferrazzini and Aki, 1987); the LSM
supports only one symmetric and one antisymmetric mode
(Haugen and Schoenberg, 2000; Pyrak-Nolte and Cook, 1987).
Because the symmetry of the source-fracture geometry used in
this study (Figure 3) generates only symmetric particle motion
with respect to the fracture plane, only symmetric modes are
considered in the fracture-guided wave analysis presented in
Appendix B. As Figure B-1 shows, except for the slow wave
(the fundamental symmetric mode) of the TLM, none of the
other symmetric modes is expected in our numerical results
because the frequency of interest (3 kHz) is far below the cut-
off frequencies of those modes (29.1 kHz for the first symmet-
ric normal mode of the TLM and 20.4 kHz for the symmetric
mode of the LSM).

Figure 5 shows the seismograms of the horizontal and ver-
tical particle velocity components recorded off the fracture
at receivers R; and R, of the TLM (blue solid line) and
the LSM (red dashed line). The fit between the two mod-
els is excellent. The corresponding normalized differences be-
tween the two models at these two receivers are shown in
Figure 6. We can see that they are all less than 5%. These
results quantitatively demonstrate the excellent agreement of
the two models for the body waves and fracture tip diffracted
waves.

The simulations were performed on a 1.4-GHz Athlon com-
puter with 1-GB DDR RAM. The memory requirements of
the two models are comparable (8.7 MB for the TLM and
8.1 MB for the LSM). However, the CPU time used by the
TLM (74 minutes) is much longer than that of the LSM
(14 minutes). This is due to a very small time-step required by
the finest spacing used to satisfy the stability condition (equa-
tion 3) in the TLM.

SUMMARY AND CONCLUSIONS

We have compared numerical modeling re-
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Figure 5. Comparison of seismograms of the horizontal and vertical particle-
velocity components (V, and V,) of the TLM (blue solid line) and the LSM (red
dashed line) at receiver Ry (left) and R, (right) in the model (Figure 3).

Time (ms)

computational cost of the LSM will be sig-
nificantly less than that of the TLM on both
memory and CPU time.

While this comparison study indicates that
the TLM is required to model the propagat-
ing slow wave in the fluid of an open fracture,
this wave would only be observable in a bore-
hole intersecting such a fracture. Thus, for

the remote seismic characterization of frac-
tures, the LSM is an efficient and accurate

modeling approach.
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APPENDIX A

FOURTH-ORDER VARIABLE-GRID
FINITE-DIFFERENCE OPERATOR

Pitarka (1999) derived a fourth-order staggered-grid FD op-
erator on a variable-grid mesh. We use this operator to ap-
proximate the first-order spatial derivatives in equation 1 for
efficient modeling of fractures described by the TLM. In this
appendix, we briefly review the derivation of this variable-grid
FD operator.

Suppose that the field variable g represents one compo-
nent of particle velocity (v,, v,) or stress tensor (., T,;, Tx;)
in equation 1. The approximation of the first-order derivative
of g with respect to x by a fourth-order FD operator on a vari-
able grid spacing dx is given by

W =c1g(x + A1, 2) +eg(x — Az, 2)

+e3g(x + Az, 2) +cag(x — Ag, 2), (A1)

where ¢; are four coefficients to be determined. Spatial incre-

ments A; can be expressed in terms of the variable grid spacing

dx. The increments A; are schematically shown in Figure A-1.
Doing a Fourier transform of equation A-1, we obtain

ik = 1™ creT B2 4 036tk A3 oy TRR (A-2)

Using Taylor’s expansion up to order O(A?) to approximate
the exponentials in equation A-2 and rearranging, we obtain a
system of four linear equations:

1 1 1 1 cl
Al A Ay A e
AT A A A s

A A=A A cs
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Solving system A-3, we find the coefficients ¢; of the fourth-
order variable grid FD operator.

The coefficients ¢; are generated prior to the FD calculation,
once the variable grid is chosen.
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Figure A-1. Grid nodes with variable spacing in the x-
direction. Spatial increments A; (i = 1, 4) are used to calcu-
late the FD operator centered between (a) the nodes i and
i+ 1, and (b) that centered at the node i.

APPENDIX B
FRACTURE-SYMMETRIC WAVE MODES

In this study, the comparison of numerical results between
the TLM and the LSM is made on a model with a symmet-
ric source-fracture geometry (Figure 3); therefore, only sym-
metric wave modes along the fracture will be excited. In the-
ory, the TLM supports a family of symmetric modes and the
LSM supports only one symmetric mode. However, we only
observe a slow guided wave in the TLM. To explain this,
we present the analysis of fracture-symmetric modes in this
appendix.

Following Ferrazzini and Aki (1987), the symmetric modes
existing along a fracture described by the TLM are given by
the following dispersion equations:

h s
F="Lcoth®™ L P Rey=0, for &>1/V;,
qar qp
(B-1a)
h 5
PI ot L4110 _ p—R(E) =0, for 1/V,<&<1/Vy,
ar 2 qp

(B-1b)

where & is the phase slowness of the mode; p, and p, are
the density of fluid and solid, respectively; 4 is the fracture
aperture; o is the angular frequency; and R is the Rayleigh
slowness relation R = (2V2£%2 — 1)? — 4V24£2q,q,, with the
Rayleigh slowness of R = 0. The definitions of the gs are
a5 =12 —1/V7l, 4, = /IEZ — 1/ V2], g, = \/1€2 — 1/ V2I.

The solution of equation B-la is the fundamental mode,
which exists for all frequencies. The phase velocity of this
mode is lower than the fluid velocity for all frequencies and
decreases as the frequency decreases. Ferrazzini and Aki call
this mode “very slow waves.”

Solutions of equation B-1b are a family of normal modes,
which exist with ascending series of low cutoff frequencies at
coth (whqy/2) = —(psqy)/(prqp) With § =1/V;. The phase
velocities of these modes start from the S-wave velocity of the
solid at the cutoff frequencies and approach the fluid velocity
at high frequencies.

Theoretically, the linear-slip interface (the LSM) has only
one symmetric mode, which has the dispersion relation
(Haugen and Schoenberg, 2000; Pyrak-Nolte and Cook, 1987)
wZy Ps
2 qp
where Zy is the normal fracture compliance.

This symmetric interface wave, like the first normal mode
in the TLM, has a low frequency cutoff, which is at ® =
2,/1/V2 —1/VZ2/(psZy), corresponding to a phase velocity of
V;. But unlike the first normal mode in the TLM, the phase ve-
locity of this symmetric mode approaches Rayleigh wave ve-
locity at high frequencies.

Figure B-1 shows the dispersion curves of the slow wave
(the fundamental symmetric mode) and the first symmetric
normal mode in the TLM, and the symmetric mode in the
LSM with the material parameters of the fracture model in
this paper (Figure 3). We can see that the slow wave in the
TLM exists for all frequencies, whereas the first normal mode
of the TLM and the symmetric mode of the LSM have low
cutoff frequencies of 29.1 kHz and 20.4 kHz, respectively. For

1—

R(E) =0, (B-2)



T62 Wu et al.

< T T T : v - V,
] SE s 1 Ve
2000 } \\
- el T T==a-_
£ 1500 [ororeerremeesssee s st o 1V
k=l
@
-
L
f:rg 1000
o
— Slow wave of the TLM
500 - - First normal mode of the TLM
- Symmetric mode of the LSM

D i i i L i L i i i
0 100 200 300 400 500 600 700 800 900 1000
Frequency (kHz)

Figure B-1. Phase velocity as a function of frequency for the
slow wave (the fundamental symmetric mode), the first sym-
metric normal mode of the TLM, and the symmetric mode of
the LSM. The material properties used are those for the frac-
ture modeling in the text. Vi is the Rayleigh wave velocity.

this model, a source pulse with central frequency of 3 kHz
(which is far below the cutoffs) only excites the slow wave in
the TLM. The numerical simulations in the paper confirm this
theoretical prediction.

The slow wave observed in the snapshots of the TLM is trav-
eling with a velocity around 1210 m/s. From equation B-1a, we
obtain a formula to theoretically predict the slow-wave group
velocity:

_ 3kF_ 1 B3
vg__aw—F_%_ 1_a)3wF . (_)
E0:F

At 3-kHz frequency, the slow-wave phase velocity is 810 m/s
(from Figure B-1); its group velocity calculated from equation

B-3 is 1213 m/s, which is very close to that estimated from
the numerical results. This further verifies the observed slow
wave in the TLM and the used variable-grid FD modeling
code.
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