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Summary 
 
A stochastic approach to seismic inversion using the 
ensemble Kalman filter (EnKF) is proposed. Seismic depth 
and time image data are used as the input for EnKF 
stochastic seismic inversion. The sonic log is used to 
estimate source wavelet and create initial models for the 
inversion, which provides an efficient integration of sonic 
log data and seismic data. We use both travel time and 
waveform data for the inversion and obtain the absolute 
seismic velocity instead of the relative impedance. EnKF 
can continuously update the model using time-lapse data. A 
synthetic example is used to demonstrate the possible 
application to seismic monitoring. 
 
Introduction 
 
The purpose of seismic inversion is to recover the 
subsurface elastic properties (e.g., acoustic impedance and 
velocity) from seismic data. For example, Oldenburg et al. 
(1983) discussed the deterministic impedance inversion; 
Hass and Dubrule (1994) introduced a stochastic 
impedance inversion; Cao et al. (1989) presented an 
inversion method to estimate background velocity and 
impedance simultaneously. Francis (2005) and Sancevero 
et al. (2005) compared deterministic and stochastic 
impedance inversion using examples. In general, stochastic 
seismic inversion has higher vertical resolution than 
deterministic inversion.  
 
The stochastic seismic inversion proposed in this study is 
an implementation of ensemble Kalman filter (EnKF). A 
complete introduction to EnKF can be found in Evensen 
(2007). EnFK can perform linear and non-linear stochastic 
inversion. It can also integrate different types of data for 
the inversion. Taking advantage of these features, we 
combine waveform data and travetime data for the seismic 
inversion. The waveform inversion in our study is a non-
linear inversion. The use of travetime data improves the 
estimation of the absolute seismic velocity. 
 
This study is motivated by seismic monitoring for 
geological CO2 sequestration. CO2 sequestration provides a 
possible solution for reducing the green gas emission to the 
atmosphere. For safety and operational reasons, we need to 
monitor the containment of the CO2 storage in the 
subsurface. The monitoring is a dynamic process. EnKF is 
naturally suitable for dynamic inversion. We will use the 
CO2 monitoring as an example to demonstrate our method, 
though it can also be used for general stationary reservoir 

characterization using surface reflection seismic data and 
sonic logs.    
 
Method 
 
Let us consider the seismic signal d recorded at surface that 
is a function of subsurface model parameters m.  In this 
seismic inversion problem, d is normal incidence reflection 
data obtained after all necessary signal processing, and m is 
the 1-D seismic velocity directly below the receiver. Data d 
and model m are related through an observation matrix G 
for a linear case:  
    d  =  Gm,          (1) 
or a general observation function g including non-linear 
cases: 
   d  = g(m).            (2) 
We want to estimate model m from observed data d by a 
stochastic inversion procedure implemented with the 
ensemble Kalman filter.  
 
We here follow the derivation in Evensen (2003) and apply 
the general EnFK theory to our problem, i.e., joint seismic 
inversion using both waveform and traveltime data. In our 
case, m is an n-dimensional model vector composed with 
discretized 1-D velocity below the receiver; d is an m-
dimensional data vector having m1 waveform data points 
and m2 traveltime data points, where m=m1+m2. A proper 
scaling factor is needed to normalize the two types of data.  
 
Assume that model m has Gaussian probability distribution 
with mean m0 and covariance C, and data d also has 
Gaussian probability distribution with mean d0 and 
covariance R. We create a model ensemble  
   M = [m1, …, mN]          (3) 
that has the mean m0 and the covariance C, and a data 
ensemble  
   D = [d1, …, dN]          (4) 
that has the mean d0 and the covariance R. Here, mi and di 
are ensemble members; N is the ensemble size that should 
be large enough in order to provide a good approximation 
to the probability distribution for the model and the data. 
The EnKF gives the statistical solution for a linear problem 
shown in equation 1 as 
              )(ˆ GMDKMM −+= ,         (5) 

where 
              1)( −+= RGCGCGK TT          (6) 
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is called Kalman gain. The EnKF solution for a non-linear 
equation 2 will be discussed in next section. M̂  is an Nn×  
matrix; each column represents a realization from the 
posterior probability distribution. The average of all 
columns (or realizations) forms the solution for the model 
estimation. In a time-lapse inversion problem, new data are 
coming continuously, and the model can be continuously 
updated by repeating the procedure above (equations 3-5) 
using the estimated model obtained in current step as the 
initial model for next time step.  
 
Implementation 
 
We start with an initial model m0 created from prior 
knowledge, e.g., sonic logs and their interpolations, or just 
a constant model in the worst case. Then we construct the 
model ensemble in equation 3 as 
   

ii εmm += 0
        

where εi is an n-dimensional random vector from Gaussian 
distribution. Convolution is used as the observation 
function for waveform data modeling. We calculate 
reflection coefficients from 1-D velocity and convolve the 
reflection profile with a wavelet extracted from the normal 
incidence seismogram and a sonic log. The observation 
function g in this study is not a linear function, and we 
cannot directly use equation 6, because it is difficulty to 
find an observation matrix G for this convolution modeling 
operation. We have to use an observation matrix-free 
implementation (Mandel, 2006) for this inversion.  
 
The model covariance C in equation 6 can be approximated 
by the ensemble covariance as 
   )1/( −= NTAAC ,           (7) 

where  
          . 1)(

1
∑
=
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Then model update (equation 5) can be done with  
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and the ith column of matrix GA can be obtained from 
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For the data ensemble D, we perturb the observed data d 
and have  
   

ii γdd += . 

Here, γi is an m-dimensional random vector from Gaussian 
distribution.  Then the data covariance R required in 
equation 9 can be obtained from the ensemble covariance 

   ).1/( −= NTγγR  

We next apply the procedure above to a synthetic example. 
  
An Example of Time-lapse Seismic Monitoring  
 
We have utilized a simulation study for seismic monitoring 
on CO2 sequestration in coalbeds. This study is part of the 
Global Climate and Energy Project (GCEP) at Stanford 
University.  
 
Time-lapse Models 
We first build a 2-D reservoir flow model according to the 
geology and flow parameters of unmineable coalbeds in the 
Powder River Basin. The primary goal of this flow 
simulation is to create a series of relatively realistic CO2 
storage models for monitoring tests. For a period of 10 
years, 175 time-lapse models are generated using the flow 
simulator GEM. Various cases, e.g., CO2 storage with or 
without leakage, are simulated. In the coalbed, matrix 
porosity = 5%, cleat porosity = 1-5%, matrix permeability 
= 0.5md and cleat permeability = 100md. 
 
We then convert the flow simulation results to time-lapse 
P-wave velocity models with the help of a rock physics 
model. Figure 1 shows four velocity models at time =0, 3 
months, 1 year, and 3 years. It can be seen that the P-wave 
velocity decreases due to the CO2 saturation. The method 
discussed in previous sections is applied to these models to 
test if we can track the CO2 front using EnKF. 
 

 
 

Figure 1: Four time-lapse P-wave velocity modes created 
based on CO2 flow simulation in the coalbeds. A: time=0; B: 
time=3 months; C: time=1 year; D: time=3 years. 

 
 
Seismic Data 
A finite difference method is used to calculate the relatively 
realistic seismic data (served as observed data) for all 4 
time-lapse models. 40 shot gathers are calculated for each 
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model. The source peak frequency is 50 Hz. Figure 2 just 
gives a few samples of the shot gathers calculated using 
model D.   
 
Prestack depth migration is used to image the calculated 
seismic data and one of the resulting depth images is shown 
in Figure 3. The time image shown in Figure 4 is the zero-
offset traces. The reflection waveform in the depth images 
plus the reflection picks from time and depth images are 
used for joint seismic inversion. Table 1 lists the reflectors 
picked from depth and time images (Figures 3 & 4) at 
distance=500 m, which is the travetime data used for the 
joint inversion.  
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Figure 2: Samples of the shot gathers calculated using the 
finite difference.    
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Figure 3: Depth image of model D. 
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Figure 4: Time image of model D. 

 
Table 1:  Samples of  traveltime picks used for the inversion. 

Reflector 1 2 3 4 5 

Depth (m) 270 310 550 670 750 

Time (sec) 0.1675 0.1918 0.3340 0.4173 0.4595 
 
 

 
 

Figure 5: Time-lapse velocity models inverted using EnKF. 
Models A-D correspond to time=0, 3 months, 1 year, and 3 
years, respectively. 

 
Seismic Inversion with EnKF 
Fast forward modeling tools are essential for EnKF 
inversion, because we have to calculate g(mi) (see equation 
10) for each sample of the ensemble that usually has a size 
of hundreds. There are two types of forward modeling are 
involved in this joint inversion. For waveform data, we 
assume a sonic log is available for source wavelet 
estimation and use the source wavelet for convolution 
modeling. In this study, we just simply use the true velocity 
profile for the wavelet estimation. Constant density is 
assumed for impedance calculation. The forward modeling 
in the inversion for traveltime t is a summation down to a 
given reflector, i.e., 
   , ∑=

i
ivt /12     

where vi is the 1-D velocity of ith depth pixel.   
 
Applying the procedure described in previous section to the 
“observed” seismic data, we obtain the inverted velocity 
models shown in Figure 5. In order to see the velocity 
changes more clearly, the velocity difference between 
models B-D and base model A are shown in Figure 6. A 
constant initial model is used in this test. It can be seen that 
the overall absolute velocity structure and the velocity drop 
due to CO2 injection are sufficiently recovered. Profiles in 
Figure 7 give a close comparison between the given model 
and the inverted model. Figure 8 compares the “observed” 
(or given data) and the data calculated with inverted 
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velocity. The given data and modeled data are virtually 
identical, though the given velocity model and the inverted 
velocity model exhibit some difference, which may be 
caused by the amplitude distortion in the depth imaging. 
True amplitude imaging is very important for this seismic 
inversion.  
 

 
Figure 6:  Velocity differences between time-lapse models B-D 
and base model A. Left: given models. Right: Inverted models.  
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Figure 7:  A comparison between true model (solid black line) and 
inverted model (Dashdot blue line) at distance=500 m. Dotted 
yellow line is the initial model. 
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Figure 8:  A comparison between “observed” data (solid line) 
and modeled data (dotted line). Solid line is sampled from 
distance=500m from depth image and the dotted line is 
calculated from inverted velocity at the same location.  

 
 

Conclusions 
 
The ensemble Kalman filter provides a powerful tool for 
stochastic seismic inversion, especially for dynamic 
inversion in seismic monitoring.  Integrating travetime data 
into the inversion makes the estimation of absolute velocity 
possible. Waveform data used in the joint inversion gives 
the high resolution components of inverted velocity.     
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