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Abstract

By considering arbitrary source–receiver configurations, compressional primary reflections can be imaged into time or
depth-migrated seismic sections so that the migrated wavefield amplitudes are a measure of angle-dependent reflection
coefficients. Several migration algorithms were proposed in the recent past based on the Born or Kirchhoff approach. All of
them are given in form of a weighted diffraction-stack integral operator that is applied to the input seismic data. The result is
a migrated seismic section where at each reflection point the source wavelet is reconstructed with an amplitude proportional
to the reflection coefficient at that point. Based on the Kirchhoff approach, we derive the weight function and the diffraction

Ž .stack integral operator for a two and one-half 2.5-D seismic model and apply it to a set of synthetic seismic data in noisy
environment. The result shows the accuracy and stability of the 2.5-D migration method as a tool for obtaining important
information about the reflectivity properties of the earth’s subsurface, which is of great interest for amplitude vs. offset
Ž . Ž .angle analysis. We also present a new application of the Double Diffraction Stack DDS inversion method to determine
three important parameters along the normal ray path, i.e., the angle and point of emergence at the earth surface, and also the

Ž .radius of curvature of the hypothetical Normal Incidence Point NIP wave. q 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Imaging; Ray; Migration; Inversion

1. Introduction

In the recent years, we have seen an increas-
ing interest in true amplitude migration meth-
ods. A major part of these works dealt with this
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topic either based on the Born approximation as
Ž .given by Bleistein 1987 and Bleistein et al.

Ž .1987 , or on the ray theoretical wavefield ap-
Ž .proximation as given by Hubral et al. 1991

Ž .and Schleicher et al. 1993 .
This paper follows the latter alternative of

working the migration problem by using the ray
theoretical approximation. We consider a geo-
physical situation where the propagation veloc-
ity of a point-source wave does not vary along

Ž .one of the three-dimensional 3-D Cartesian
coordinate axes, the so-called two and one-half
Ž .2.5-D model.
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Starting from the 3-D weighted modified
diffraction stack operator as presented by Schle-

Ž .icher et al. 1993 , we derive the appropriate
method to perform a 2.5-D true-amplitude seis-
mic migration. We find the weight function to
be applied to the amplitude of the 2.5-D seismic
data.

In summary, the paper presents a theoretical
development by which we derive an expression
for the 2.5-D weight that is a function of ray
parameters. We show examples of application
of the true-amplitude depth migration algorithm
to 2.5-D synthetic seismic data in noisy envi-
ronment in order to make the numerical analysis
more realistic and to verify the stability and
accuracy of the algorithm. In the final part,
based on the theoretical development given by

Ž . Ž .Bleistein 1987 and Tygel et al. 1993 , we
Ž .apply the Double Diffraction Stack DDS in-

version method to determine normal ray param-
eters, which are the keys for a more general
interval velocity inversion problem.

2. Review of 2.5-D ray theory

2.1. The seismic model

We use the general Cartesian coordinate sys-
Ž .tem being the position vector xs x, y, z . One

of the main concerns of this paper is to apply
the ray field properties to the 2.5-D seismic
model in order to study the true-amplitude seis-
mic migration method. We think of the earth as
a system of isotropic layers, where each layer is

Ž .constituted by a velocity field ÕsÕ x , whose
first derivative with respect to the second com-
ponent y vanishes in all space. Each layer has
smooth surfaces as upper and lower bounds.
The upper bound surface S is the earth sur-o

face. The curvature of each surface is zero
along the second component y-axis, i.e., the
seismic model has a cylindrical symmetry on

Ž .the y direction Fig. 1 . The intersection be-
tween the plane of symmetry ys0 and the

Fig. 1. 2.5-D seismic model. The in-plane central and
paraxial rays start at the earth surface. After reflecting at
the reflector, they reach the receiver positions.

earth surface S defines the seismic line. In theo

2.5-D seismic model, the wave velocity does
not vary along the y direction, while the point-
source seismic wave causes 3-D propagation.

At our seismic experiment carried out on S ,o

we consider only P–P primary reflections to be
Ž .registered at the source–receiver pairs S, G .

We assume reproducible point sources with unit
strength and receivers with identical character-
istics. Their position vectors are denoted by:

x sx j and x sx j , 1Ž . ( ) Ž .s s g g

Ž .where js j ,j is a vector of parameters on1 2

S .o

The high frequency primary reflection wave-
field trajectory is then described by a ray that
starts at the source point S on S , reaches theo

reflector S at the reflection point R, definedr
Ž . Ž .by a vector x sx h , hs h ,h being ar r 1 2

vector of parameters within S , and returns tor

the earth surface at G, the ray path SRG. By
considering the 2.5-D case, the ray path SRG is
assumed to be totally contained in the plane
ys0.

We introduce three local Cartesian coordinate
systems with the first two having their origins at
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Žthe points S and G with components x , x ,1s 2 s
. Ž .x and x , x , x , respectively. The third3s 1 g 2 g 3 g

coordinate system has its origin at the point R
Ž .with components x , x , x . The axes x1r 2 r 3r 1 s

and x are tangents to the seismic line, while1 g

x and x are downward normal to the S .3s 3 g o
Ž . Ž .The components x and x are defined in1r 3r

such a way that the former is tangent to the
reflector S within the symmetry plane ys0,r

while the latter is upward normal to the reflec-
tor. The second components x , x and x2 s 2 g 2 r

have the same direction as the y component in
Ž .the general Cartesian coordinate system Fig. 1 .

2.2. Ray theory

The principal component primary reflection
of the seismic wavefield generated by a com-
pressional point source located at x and regis-s

tered at x is expressed in the 3-D zero-orderg
Ž .ray approximation given by Cerveny 1987 as:´

U j ,t sU W tyt j . 2Ž . Ž . Ž .Ž .o

The above cited principal component primary
reflection describes the particle displacement
into direction of the ray at the receiver point G.

Ž . Ž .In Eq. 2 , W t represents the analytic point-
source wavelet, i.e., this is a complex valued
function whose imaginary part is the Hilbert
transform of the real source wavelet, and the
real part is the wavelet itself. At the receiver
position x within the surface S , the seismicg o

trace is the superposition of the principal com-
ponent primary reflections.

Ž .The reflection traveltime function tst x
satisfies the 3-D eikonal equation

=tP=ts1rÕ2 x , 3Ž . Ž .

Ž .Being ÕsÕ x the P wave velocity. The am-
plitude factor U can be expressed by:o

U sU Õ=t , 4Ž .o o

Ž .where U sU x is a scalar function that satis-o o

fies the 3-D transport equation, in constant den-
sity and varying velocity media, given by:

2 =tP=U Õ2 x qÕ2U =
2tqU =tP=Õ2Ž . Ž . Ž .o o o

s0. 5Ž .
By considering only the 2.5-D wave propaga-

tion within the symmetry plane ys0, that is of
interest, we assume j sh s0, j sj and2 2 1

h sh, simplifying the notation, so that we1
Ž . Ž . Ž .have x sx j , x sx j and x sx h .s s g g r r

Ž .Following Bleistein 1986 , we introduce the
fundamental in-plane slowness Õector:

t
ps p ,q s s=t x , z , 6Ž . Ž . Ž .

Õ x , zŽ .
where the two-components unitary vector t is

Ž .tangent to the in-plane ray trajectory. In Eq. 6 ,
the components p and q are the so-called hori-
zontal and vertical slowness, respectively, which
are related to each other by the expression:

1
2qs" yp . 7Ž .( 2Õ

By using the in-plane initial values of the
Ž .slowness vector p s p ,q given as:o o o

sinb cosbo o
p s , q s , 8Ž .o o

Õ Õo o

where b and Õ are the start angle of the rayo o

and the velocity at the source point S, respec-
tively. The in-plane ray equations are alterna-
tively described by:

d x
sp , 9Ž .

ds

d z
sq , 10Ž .

ds

d p E 1
s , 11Ž .2ds Ex Õ x , zŽ .

dt 1
s , 12Ž .2ds Õ x , zŽ .

Ž .where dssÕ x, z d s.
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Applying the above in-plane ray equations,
Ž .and considering the initial conditions 8 , to the

Ž .fundamental solution of the transport Eq. 5 as
Ž .found in Cerveny 1987 , the amplitude factor´

of the in-plane reflected wavefield is computed
by:

R AA Rc c
U s f . 13Ž . Ž .o 2.5 LL LL2.5 2.5

Ž .In formula 13 , R is the geometrical-opticsc

reflection coefficient at the reflection point R as
Ž .presented by Bleistein 1984 . The factor AA

corresponds to the total lost energy due to the
transmission across all interfaces along the
whole ray. In general, we assume this factor to
be negligible, i.e., the transmission loss to be
very small, or to be corrected by other means.
The amplitude factor LL is called in-plane2.5

point-source divergence factor or geometrical
spreading, whose expression will be given in
the Section 2.3.

2.3. Paraxial ray approximation

The paraxial ray approximation is based on
the a priori knowledge of a ray trajectory also
known as the central ray, which in our example

Ž .is the ray that starts at the source S j , reaches
Ž .the reflector at the reflection point R h , and

Ž .arrives at the receiver G j . Thus, a paraxial
ray is any ray that starts in the vicinity of S, at

XŽ X. XŽ X.the point S j , reflects at the point R h

nearby the point R, and reaches the receiver
XŽ X. Ž .point G j in the vicinity of G Fig. 1 .

By applying the concept of paraxial rays,
Ž .Cerveny 1987 derived the paraxial eikonal´

equation having as solution the two-point parax-
ial reflection traveltime from point SX at xX ss
Ž X. X X Ž X.x j to the point G at x sx j in thes g g

vicinity of points S and G, respectively. An
equivalent second-order approximation solution

Ž .was found also by Ursin 1982 and Bortfeld
Ž .1989 . In this paper, we use the formalism of

Ž .Schleicher et al. 1993 tailored to the in-plane

ray trajectory. The reflection traveltime is then
given by:

t s, g st ss0, gs0 qp gyp sŽ . Ž .R R G S

1 1
G 2 S 2ysN gq N s q N g .SG S G2 2

14Ž .

Ž . Ž .In Eq. 14 , the function t ss0, gs0R

denotes the traveltime along the central ray SG,
while s and g are linear distances in the axes
x and x , the so-called paraxial distances.1s 1 g

Ž .These distances are obtained as follows: 1 At
the source–receiver points SX and GX, the vec-
tors xX and xX are orthogonally projected ontos g

Ž .the respective axis x and x ; 2 the dis-1s 1 g

tances s and g are then defined as having
origin at the source–receiver points S and G
with end at the extremity of the projections of
xX and xX , respectively. On the other hand, thes g

so-called local horizontal slowness p and pS G

are obtained by two cascaded orthogonal projec-
tions of the initial and final in-plane slowness
vectors at source–receiver points SX and GX onto
the respective axes x and x .1s 1 g

The quantities N G and N S are second-de-S G
Ž .rivatives of the traveltime function 14 with

respect to the source and receiver coordinates
evaluated at ss0 and gs0, respectively. The
other quantity N is the second-order mixed-SG

Ž .derivative of the same traveltime function 14
evaluated at ssgs0.

In the next section, we will perform the
2.5-D true-amplitude migration by using a
proper weighted modified diffraction stack. For
that, we define for all points of parameters j on
the earth surface, and each point M within a
specified volume of the macro-velocity model,
the diffraction in-plane traveltime curve:

t j st S, M qt M ,G st qt . 15Ž . Ž . Ž . Ž .D S G

Ž .Following Schleicher et al. 1993 , we will
refer to this curve as the Huygens traÕeltime.
The traveltimes t and t denote, respectively,S G

the traveltimes from the source point S to some
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arbitrary point M within the model, and from
M to the receiver point G.

For obtaining the Huygens paraxial travel-
time at a reflection point within S in ther

Ž . X Ž .vicinity of R at x sx h , MsR in Eq. 15 ,r r
X Ž X.with position vector x sx h , we considerr r
Ž .two equations of type 14 for the paraxial

traveltime from SX to RX

t s,r st ss0, rs0 yp sqp rysN rŽ . Ž . S r SR

1 1
R 2 S 2q N s q N r , 16Ž .S R2 2

and from RX to GX

t r , g st rs0, gs0 yp rqp gŽ . Ž . r G

1 1
G 2 R 2yrN gq N r q N g .RG R G2 2

17Ž .

Ž . Ž .In both formulas 16 and 17 , the quantity r
is the linear distance between R and the extrem-
ity of the orthogonal projection of xX onto ther

axis x tangent to the reflector at the point R.1r

The local horizontal slowness p is built by twor

cascaded projections of the in-plane slowness
vector at x onto the x axis.r 1 r

It is necessary to point out that in general, the
earth surface is not a horizontal plane, instead, it
can be even an arbitrary surface. In our case, we
consider it as a smooth surface with cylindrical
geometry with axis in direction of the y coordi-
nate. Thus, s and g are paraxial distances eval-
uated within tangent planes to the earth surface

Ž X .at S and G, respectively. Moreover, x x ands s
Ž X . Ž X.x x are position vectors of the points S Sg g

Ž X.and G G in the general Cartesian coordinates.
The same geometrical assumption is required
for the reflector surface, by the way the paraxial
distance r is evaluated within the tangent plane

Ž X .at the reflection point, while x x are ther r
Ž X.position vectors of the points R R .

The quantities N and N are second-orderSR RG

mixed-derivatives, respectively of the travel-
Ž . Ž .times 16 and 17 calculated at ssgsrs0,

while N R and N S are the second-order deriva-S R
Ž .tives of the traveltime function 16 with respect

to s and r, respectively. The quantities N G andR

N R are the second-order derivatives of the trav-G
Ž .eltime function 17 with respect to r and g.

Ž . Ž .Following Bleistein 1986 , Liner 1991 ,
Ž . Ž .Stockwell 1995 and Hanitzsch 1997 , the ex-

pression of the geometrical spreading factor,
when tailored to the 2.5-D zero-order ray ap-
proximation of the seismic wavefield, is given
by:

cos a cos a s qs( (S G S G
LL s2.5 (< <Õ NNs

p
=exp yi k . 18Ž .

2

Ž .In the above formula 18 , we have that aS

and a are the start and emergence angles ofG

the central ray measured with respect to the
normal at S and G on the earth surface, while
Õ is the velocity at the source point S. The terms

NN in the denominator is given by the ratio:

N NSR GR
NNs . 19Ž .S GN qNR R

Moreover, we have that s and s are twoS G

quantities related with each branch of the in-
plane central ray SR and RG, and calculated by
the expressions:

R G
s s Õ x d s and s s Õ x d s. 20Ž . Ž . Ž .H HS G

S R

Ž .The exponential term in Eq. 18 represents
the phase shift due to the caustics along each
branch of the central ray. For obtaining this
factor, it is necessary to use dynamic ray trac-
ing.

Ž .From Eq. 18 , the 2.5-D geometrical spread-
ing LL can be expressed then as function of2.5

the 2-D spreading LL , given by:2

LL sLL FF , FF s s qs , 21( Ž .2.5 2 2.5 2.5 S G

where FF is called the out-of-plane factor.2.5

Essentially, the LL depends only on parame-2.5
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ters of 2-D rays. The 2.5-D amplitude factor of
the zero-order ray approximation is then rewrit-
ten as:

UŽ .o 2
U s . 22Ž . Ž .o 2.5 FF2.5

Ž . Ž .In the expression 22 , we have that Uo 2

denotes the in-plane 2-D wavefield amplitude.
An equivalent relationship between 2-D and
2.5-D amplitude factors can be found in Bleis-

Ž .tein 1986 . This means that if we know the 2-D
amplitude factor, we need only to divide it by
the out-of-plane factor FF in order to obtain2.5

the 2.5-D amplitude.

3. 2.5-D ray migration theory

By following the zero-order ray approxima-
tion of the 2.5-D seismic wave, we have the
true-amplitude defined as:

U t sLL U j ,tqt sR W t .Ž . Ž . Ž . Ž .TA 2.5 o R c2.5

23Ž .

In order to build the appropriate true-ampli-
tude migration operator, we start from the 3-D

Ž .integral given by Schleicher et al. 1993 :

y1
˙V M ,t s dj dj w j , M UŽ . Ž .HH 1 22p A

j ,tqt j , M , 24Ž . Ž .Ž .D

Ž .where the symbol P means the first derivative
Ž .with respect to time, and w j , M is the weight

function used to stack.
By assuming the paraxial distances s and g

to be linear functions of j , we can write:

ssG j and gsG j , 25Ž .S G

Ž . Ž .where G s EsrEj and G s EgrEj , whichS G

are calculated at js0. In the same way, we
consider r a linear function of h so that:

Er
rsG h , where G s . 26Ž .r r

Eh

Ž .As a consequence of the above relations 25
Ž .and 26 , we can express the traveltime func-

Ž . Ž .tions t st j and t st j , R . Moreover,R R D D
Ž . Ž .we can define the function t j , R st j , RF D

Ž .yt j .R

By using the result obtained in the Appendix
Ž .by Eq. A8 , we have the 2.5-D modified

diffraction stack integral in frequency domain
given by the stationary phase solution:

'y iv
ˆ ˆV R ,v f dj w j , R U j ,vŽ . Ž . Ž .H 2.5 2.5'2p A

=exp ivt j , R . 27Ž . Ž .D

Inserting the 2.5-D zero-order approximation
Ž . Ž .13 of the primary reflection into integral 27
we have:

'y iv Rcˆ ˆV R ,v f dj w j , R W vŽ . Ž . Ž .H 2.5' LL2p A 2.5

=exp ivt j , R . 28Ž . Ž .F

Ž .The above integral 28 is once again calcu-
lated approximately by the stationary phase
method. At this time, we apply the stationary

Ž . Ž .
)phase condition Et r Ej N s0. Thus, weF jsj

have:

w j ) , R RŽ .2.5 cˆ ˆV R ,v fW v =Ž . Ž . Y
)< < LLt j , R( Ž . 2.5F

= )exp ivt j , RŽ .F

ip
Y

)y 1ySgn t j , R . 29Ž Ž . Ž .Ž .F4

YŽ ) . Ž 2 Ž . 2.
)Where t j , R s E t j , R rEj NF F jsj

is the second-order derivative of the Taylor
expansion:

t j , R st j ) , RŽ . Ž .F F

1 2Y
) )q t j , R jyj . 30Ž . Ž . Ž .F2
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After some algebraic manipulations involving
Ž . Ž . Ž .the 14 , 16 and 17 , we can express the

second-order derivative term by:

2
G N qG NŽ .S SR G GRY

t s . 31Ž .F S GN qNŽ .R R

3.1. Weight function

The 2.5-D weight function at an arbitrary
point M in the macro-velocity model through
the high frequency approximation of the diffrac-
tion stack integral, for a critical point j ) within
the migration apperture A. The weight function
is then obtained so that the stack integral is
asymptotically equal to the spectrum of the
true-amplitude migrated source wavelet multi-
plied by a phase shift operator. In other words,
the phase of the asymptotical result is shifted by
a quantity equal to the difference between the
in-plane reflection and diffraction traveltime
curves at the stationary point. Thus, we have:

ˆ ) )w xŽ . Ž .R W v exp ivt j , M : j g Ac FˆŽ .V M ,v f
)½ 0 : j f A

32Ž .

By using the stationary phase approximation
Ž . Ž .29 and definition 32 , the 2.5-D weight func-
tion is then obtained as:

w j ) , MŽ .2.5

Y
)< <sLL t j , M( Ž .2.5 F

=
ip

Y
)exp 1ySgn t j , M . 33Ž Ž . Ž .Ž .F4

After replacing the appropriate definition of
Ž .LL as given by Eq. 18 and including the2.5

Y Ž .evaluation of t from the expression 31 , weF

have the result:

cosa cosa( S G
)w j , M sFFŽ .2.5 2.5

Õs

=
G N qG NS SM G GMž /N N( SM GM

=
yip

exp k qk . 34Ž .1 22

Based on the 3-D weight function found in
Ž .Tygel et al. 1996 by using the so-called

Ž .Beylkin’s determinant, Martins et al. 1997
Ž ) .derived a similar 2.5-D weight w j , M . ThisJ

result is related with the 2.5-D weight function
given in the present paper by:

yip
) )w j , M sw j , M exp k qk .Ž . Ž .2.5 J 1 22

35Ž .
The difference between both results can be

explained by the assumption used in Beylkin

Fig. 2. Top: Synthetic seismic data used as input in the
2.5-D true-amplitude depth migration algorithm, with the
signal-to-noise ratio equal to 1:0.1. Bottom: Seismic model
used for the generating the synthetic data.
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Fig. 3. 2.5-D true-amplitude depth migrated seismic data,
real part, obtained after migrating the synthetic seismic
data in Fig. 1.

Ž .1985 , which does not allow for any caustics
along rays.

The above weight function is to be applied to
the amplitude of the 2.5-D seismic data, that is
generated when we have a situation of a point
source lined up to a set of receivers in the plane
j s0, by considering a seismic model where2

the velocity field does not depend on the second
coordinate j . If the chosen point M inside the2

model coincides with a real reflection point R
and jsj ), the result of applying the difraction

Ž Ž ..stack migration operator Eq. 28 to the seis-
mic data is proportional to the reflection coeffi-
cient. Putting this result into the point R, we
have the so-called true-amplitude depth mi-
grated reflection data. In cases of special con-
figurations, we can apply the weight function
Ž . Ž .34 as follows: 1 Common-offset: G sG sG S

Ž .1 for S/G; 2 Common-shot: G s0 andS
Ž .G s1 when the source point S is fixed; 3G

Fig. 4. In the cross line, we have the reflection coefficients picked from the reflector position in the migrated data. The
continuous line corresponds to the exact value of the reflection coefficient. In the continuous line, the gaps correspond to the
reflector region where there is no illumination. In the migrated result these gaps are filled by interpolated values from the
migration operator.
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Common-receiver: G s1 and G s0 when theS G
Ž .receiver point G is fixed; and 4 Zero-offset:

G sG s1 for S'G, and then a sa , kS G S G 1

sk and s ss . In the common-midpoint2 S G

configuration, the weight function is not ade-
quate because in this case, the stationary phase
solution is not valid.

4. Application of 2.5-D true-amplitude migra-
tion

The true-amplitude migration algorithm was
tested on synthetic data obtained from the
SEIS88 ray tracing software. The seismic model
is constituted by a layer above an arbitrary

Ž .curved reflector Fig. 2 . The interval velocity
of the P–P wave in the overburden is 2.5
kmrs, and 3.0 kmrs in the half-space. The
seismic data was generated into a common-shot
configuration, with the source at xs0.1 km in
the earth surface and 177 geophones positioned
between 0.3 and 1.4 km, being the geophone
interval distance 6.25 m. The source pulse is
represented by a Gabor wavelet as proposed by

Ž .Gabor 1946 , with frequency 80 Hz, while the
seismic trace has the sample interval of 0.5 ms.
In the seismic data a random noise with uniform
distribution was added, in which the maximum
value is 10% of the maximum amplitude of the
seismic data. The macro-velocity model and the
seismogram with noise are presented in Fig. 2.
The seismic data were migrated by using the
true constant velocity model, having the target
zone 0.19FxF1.32 km; 0.3FzF0.75 km,
with D xs5 m and D zs1 m. The migrated

Ž .seismic image real part is presented in Fig. 3.
In Fig. 4, we have the reflection coefficients,
where the continuous line corresponds to the
exact values, while the crosses indicate the am-
plitudes determined from the migrated section.
As a consequence of the addition of noise to the
input data, the seismic migration algorithm does
not correctly recover the original source wavelet.
But even in spite of the noise, we can see that
the obtained seismic image represents the true

reflector very well. In case of noise in the data,
it is not so easy to determine where the so-called
boundary effects begin to influence the migrated
data.

5. Seismic inversion method

Based on the Born and on the ray theoretical
Ž .approximations, Bleistein 1987 and Tygel et

Ž .al. 1993 , respectively, presented a new inver-
sion method, the so-called DDS, through which
it is possible to estimate several parameters on
the trajectory of a selected ray between the
source and geophone, for any arbitrary configu-
ration of the seismic data. This inversion tech-
nique is based on the weighted diffraction stack
migration integral, used above for determining
the reflection coefficient. In this paper, the DDS
inversion technique is used to determine three

Fig. 5. Synthetic seismic data, used as input in the DDS
inversion technique. The seismic model is constituted by
two layers above a half-space, with velocities 2500 mrs
Ž . Ž .upper layer and 3000 mrs bottom layer .
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parameters related to the trajectory of the nor-
Ž .mal reflection ray, to be known: 1 the radius

of curvature, R , of the Normal IncidenceNIP
Ž .Point NIP wave associated with the normal

Ž .ray; 2 the emergence point x of the normalo
Ž .reflection ray; and 3 the emergence angle bo

of the normal reflection ray. The NIP wave, as
Ž .defined by Hubral 1983 , is a hypothetical

wave that starts at the reflection point at time
zero, propagates with half the medium velocity
and returns to the earth surface at the two-way
time of the normal ray.

By applying the DDS inversion technique,
we make use of the weighted diffraction stack

Ž .integral. Alternatively, we write V M,t s
Ž .V M,t , where j is the index for specifying thej

Ž .Fig. 6. Final products of the DDS inversion technique: a coordinate of the emergence points of the normal reflection rays;
Ž . Ž .b radii of curvatures of the NIP waves; c emergence angles of the normal reflection rays.
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Ž .Fig. 7. Exact values of wavefront parameters calculated by ray theory: a coordinate of the emergence points of the normal
Ž . Ž .reflection rays; b radii of curvatures of the NIP waves; c emergence angles of the normal reflection rays.

used weight to stack the input data. The DDS
inversion technique is then done by a double
stack, each one with a different weight function
js1 and js2. The result is obtained by the
ratio between the two stacks given by:

V M ,tŽ .1
V M ,t s . 36Ž . Ž .DDS V M ,tŽ .2

If we choose as the weight function for the
first stack a ray parameter specified by the
trajectory starting at point M in the reflection
point up to the earth surface, and for the second
stack the unity, the V will result in the valueDDS

of the selected ray parameter. In this paper, we
have used for the first stack the values of R ,NIP

x or b , calculated for each one of the diffrac-o o

tion trajectories starting at a point M within the
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subsurface, having as input data a zero-offset
seismic section. The result of this inversion
technique is a mapping of normal ray parame-
ters associated with primary reflection events in
the zero-offset data. By choosing a minimum
amplitude value in the denominator of the for-

Ž .mula 36 , we have empirically avoided the
division by zero in the DDS algorithm.

6. Application of the DDS

In order to do a numerical experiment, we
have generated a set of zero-offset seismic traces
by using the ray theoretical modeling algorithm
SEIS88. We have used the seismic model of
Fig. 5 constituted by two layers above a half-
space with two reflectors. The P–P wave ve-
locities are 2500 and 3000 mrs for the first
Ž . Ž .upper and second bottom layers, respec-
tively. By using a Gabor wavelet as proposed

Ž .by Gabor 1946 with a frequency of 60 Hz, a
sample interval of D ts1 ms and a space inter-
val D xs25 m, we have obtained an ensemble

Ž .of zero-offset seismograms Fig. 5 used as
input data in the DDS process. The final prod-
ucts are obtained by using the same P-wave
velocities of the original seismic model, in order
to find the following parameters of the normal

Ž .rays at the second interface: 1 the coordinates
of the emergence points of the reflection normal

Ž . Ž .rays Fig. 6a ; 2 the radii of curvatures
Ž .radiusgram of the NIP waves associated with

Ž . Ž .each reflection normal ray Fig. 6b ; and 3 the
emergence angles of the reflection normal rays
Ž . Ž .anglegram Fig. 6c . As we can see in Fig. 7a,
b and c, the obtained values by DDS technique
are very similar to the true values, which pro-
vides an evaluation of the accuracy of the pro-
posed inversion method.

In the above results, we have shown that the
DDS inversion technique can be used for deter-
mining a selected parameter along the ray tra-
jectory. The three parameters here obtained
Ž .R , b , x are the key for solving theNIP o o

interval velocity inversion problem. A more de-

tailed discussion about the inverse problem can
Ž .be found in Hubral and Krey 1980 .

7. Conclusion

Starting from the paraxial ray theory, we
have derived a 2.5-D weight function to be used
in the 2.5-D diffraction stack migration opera-
tor. Based on the double diffraction stack inver-
sion technique, we have also built an algorithm
to determine fundamental parameters related to
the normal ray trajectory. From the results ob-
tained in this paper, we claim that the present
2.5-D weight function when applied to the 2.5-D
seismic data is able to recover the reflection
coefficient even in a noisy environment. The
2.5-D true-amplitude migration algorithm is sta-
ble, i.e., we have that small perturbation in the
input data provides only slight deviation in the
output migrated data. It is to be stressed that the
proposed 2.5-D true-amplitude migration algo-
rithm works very good in more complex situa-
tions when there are triplications in the input
data due the presence of caustics. In addition,
we have shown that the DDS inversion tech-
nique is able to determine parameters along the
ray trajectory that are of interest for the interval
velocity inversion problem.
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Appendix A

Ž .Following Schleicher et al. 1993 , the
weighted modified diffraction stack is consid-
ered an appropriate method to perform a true-
amplitude migration. For each point M in the

Ž .macro-velocity model and all points j ,j in1 2

the migration aperture A, the diffraction stacks
are then performed by summation along the

Ž .Huygens surfaces t j ,j , M for all points MD 1 2

into a region of the model. The true-amplitude
migration is achieved by the summation using
certainly Huygens surface and derived weight
function, such that the stack output is propor-
tional to the desired reflection coefficient.
Mathematically, this operation is described by
the 2-D integral

y1
˙V M ,t s dj dj w j , M UŽ . Ž .HH 1 22p A

= j ,tqt j , M , A1Ž . Ž .Ž .D

Ž .where the symbol P means the first derivative
Ž .with respect to time, and w j , M is the weight

function used to stack.
Ž .By transforming the expression A1 into the

frequency domain:

yiv
ˆ ˆV M ,v s dj dj w j , M U jŽ . Ž . Ž .HH 1 22p A

=exp ivt j , M . A2Ž . Ž .D

Ž .In order to specialize the 3-D formula A2 to
the 2.5-D geometry, we start considering Ms
R, i.e., the reflection point itself. The migration
integral needs to be solved asymptotically by
the stationary phase method as found in Bleis-

Ž .tein 1984 with respect to the coordinate j , by2

making use of the stationary condition as showed
Ž .in Bleistein et al. 1987 :

Et Et S j , R Et R ,G jŽ . Ž .Ž . Ž .D
s q N s0,SoEj Ej Ej2 2 2

A3Ž .

which can be expressed through the identity:

E
< <t S, M qt M ,G sp qpŽ . Ž . S S2 s 2 go oEj 2

s0. A4Ž .
By applying the in-plane ray condition p s2

p into the 3-D ray equation as given by2o
Ž .Cerveny 1987 , we have:´

x ss p N and x ss p N , A5Ž .2 s s 2 s S 2 g g 2 g So o

with s and s calculated along the ray pathss g

SM and MG, respectively. By considering the
2.5-D geometry, x sx sj , we finally have2 s 2 g 2

the result:

1 1
p qp s q j s0. A6Ž .2 s 2 g S S 2o ož /s ss g

Ž .From Eq. A6 , we conclude that the station-
ary phase condition is j s0. For completeness2

of our asymptotic analysis, we calculate the
second derivative of the phase at j s02

E2 1 1
t S, R qt R ,G N s q .Ž . Ž . j s02 o o2Ej s s2 S G

A7Ž .
Here, s o and s o are the ray parameters forS G

the ray branches RS and RG, calculated on the
earth surface S .o

The above results yield the stationary phase
solution

'y iv
V̂ R ,v f dj w j , RŽ . Ž .H'2p A

=

y1r21 1
ˆq U j ,vŽ .o ož /s sS G

=exp ivt j , R , A8Ž . Ž .D

ˆŽ .As a consequence of the fact that U j ,v is
the in-plane observed point-source wavefield
amplitude factor, the 2.5-D weight function is
defined as:

y1r21 1
w j , R sw j , R q , A9Ž . Ž . Ž .2.5 o ož /s sS G
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Ž .where w j , R is the in-plane version of the 3-D
weight function of the 3-D modified diffraction

Ž .stack by Schleicher et al. 1993 . The weight
Ž .expression A9 can be readily generalized to

any arbitrary depth point M.
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