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Abstract

A finite difference method for the simulation of multi-component wavefield in viscous extensively dilatancy anisotropic
Ž .EDA media is presented. Transformation of the stress and strain relation from frequency domain to time domain reveals
that the viscous effect in EDA media is embedded into the terms of the third derivatives of the strain with respect to time.
Numerical examples for viscous EDA media with dry and saturated cracks are calculated, respectively. In the calculation of
the wavefields, the absorbing boundary conditions are used to suppress the artificial boundary reflection, the grid dispersion

Ž .is suppressed by flux corrective transformation FCT technique. Snapshots and seismic records show that the existence of
cracks and the material contents in the cracks exhibits significant influences on the wave propagation, especially on the
radiation pattern and attenuated factor. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Results from seismic exploration, seismic deep
sounding, and earthquake seismology have shown
that seismic anisotropy is widespread in the interiors
of the earth. Seismic anisotropy can be induced by

Žthin layering e.g., Backus, 1962; Helbig, 1984;
Thomsen, 1986; Schoenberg and Douma, 1988; Hsu

.and Schoenberg, 1993; Schoenberg and Muir, 1989 ,
Žoriented cracks or fractures e.g., Crampin, 1981;
.Hudson, 1981; Liu et al., 1993 and inhomogeneity

) Corresponding author. Fax: q86-10-6487-1995; E-mail:
zjzhang@mail.c-geos.ac.cn

Ž .e.g., Grechka and McMechan, 1995 . It is well-
known that the study of oriented cracks or fractures
is very important for reservoir description and char-
acterization, because cracks or fractures not only
may be the location of oil or gas reservoir, but also
be the pathway of the oil and gas transportation.
Maybe this is the reason why so many seismologists
put their attention to the study of cracks or fractures.

Ž . Ž .For example, Crampin 1981 and Hudson 1981
obtained an apparent constitute relationship for such

Ž .a cracked medium, and Crampin 1984 developed
Ž .the EDA extensively dilatancy anisotropy model.

In practice, the EDA model can be used to interpret
the shear wave splitting observed in surface, VSP,
cross-hole, and other seismic data.

0031-9201r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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In the last few years, seismic propagation in
non-elastically isotropic and anisotropic media was

Ž .studied. Kosik 1993 studied non-linear seismic
waves in an elastic and isotropic media, Carcione
Ž . Ž .1988, 1990, 1994 and Booth and Crampin 1983a,b
investigated the wave propagation and the influence
of non-elasticity on the wave velocities in dissipate

Ž .and anisotropic media. Crampin 1978 obtained ef-
fective elastic constants by modeling the variation of
wave velocities in cracked solids with a first-order

Ž .approximation theory by Garbin and Knopoff 1973
Ž .and Garbin and Knopoff 1975a,b . Hudson devel-

oped a more general approach to calculating the
elastic constants of cracked solids, which includes

Ž .the first-order Hudson, 1981 and second-order
Ž .Hudson, 1982 scattering interactions. Furthermore,

Ž . Ž .Crampin 1981 and Hudson 1981 used the com-
plex elastic constants to represent wave attenuation
and demonstrated how to calculate velocity and at-
tenuation variations in media with aligned cracks.
The theoretical studies by Crampin, Hudson and
others showed that the attenuation, compared to ve-
locity, is more sensitive to the existence of oriented
cracks and the material contents in the cracks. Dif-
ferent techniques have been developed to interpret
various seismic data. For example, Queen and Rizer
Ž . Ž .1990 and Liu et al. 1993 studied the anisotropic
effects on traveltime and polarization for cross-hole
and reverse VSP data in cracked and fractured me-
dia. But few results about the non-elastic effects on
traveltime, polarization, and other wave properties in
EDA media were published. In this paper, we pre-
sent a finite difference method to simulate seismic
waves in heterogeneous non-elastic EDA media. We
first present some results about the EDA constitute
relationship in time domain, then introduce the for-
ward modeling scheme of finite difference method,
the treatments of the grid dispersion and the artificial
boundary reflection. Some examples for the models
without cracks, with dry or saturated cracks are
calculated to investigate the effects of cracks, and
material contents on the wave propagation.

1.1. Elastodynamic equation in Õiscous EDA media

In frequency domain, the elastic constants of EDA
media, which include the non-elasticity caused by
the existence of oriented cracks and inclusive materi-

Žals in the cracks, are described as Crampin, 1981;
.Hudson, 1981 :

CsCR q iv 3C I 1Ž .

� 4 Ž .where, Cs C i, j,k,ls1,2,3 is a complexi jk l

elastic parameter matrix, v is the angular frequency,
3 I'and is y1 for the sign i before v C in the

above equation. Here, the real part of these elastic
constants can be expressed in a perturbation form:

CR s C 0 q C1 q C 2 , 2Ž .� 4 � 4 � 4i jk l i jk l i jk l

and the imaginary part omitting the term of v 3 can
be approximated by the following formula:

C I� 4i jkl

C rC A A 0 0 011 0

A C rD B 0 0 022 0

A B C rD 0 0 022 0s . 3Ž .
0 0 0 0 0 0
0 0 0 0 C rF 055

0 0 0 0 0 C rF11

Ž . 0In Eq. 2 , C represents the elastic properties ofi jk l

the medium surrounded the crack, and C1 and C 2
i jk l i jk l

are the first and second perturbations induced by the
existence of oriented cracks and the inclusive materi-
als in cracks. Explicit expressions of these parame-
ters and constants A, B, C , D , E, F are given in0 0

Appendix A.
Ž .We can transform Eq. 1 from frequency domain

into time domain, and obtain the following constitu-
tive relationship as follows:

E3
R ICsC yC . 4Ž .3Et

Then, the wave equation for non-elastic EDA media
can be expressed in time domain as:

E2U E EU E E4Ui k kR Is C y C qFi jk l i jk l i2 3ž / ž /Ex Ex ExEt Et Exj l j l

5Ž .

where, F , denotes the force component in x direc-i i
Ž . Žtion x sx, y, z, z for is1, 2, 3 Zhang et al.,i
.1998 .
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When we study the 2-D wavefields in x–z plane,
Ž .Eq. 5 can be written as:

E2

r x , z U x , z ,tŽ . Ž .2Et
E E

s B x , z U x , z ,tŽ . Ž .R
Ex Ex

E E
q D x , z U x , z ,tŽ . Ž .R

Ex Ez

E E
q E x , z U x , z ,tŽ . Ž .R

Ez Ex

E E
q G x , z U x , z ,tŽ . Ž .R

Ez Ez
4E E

q B x , z U x , z ,tŽ . Ž .R 3Ex ExEt

4E E
q D x , z U x , z ,tŽ . Ž .R 3Ex EzEt

4E E
q E x , z U x , z ,tŽ . Ž .I 3Ez ExEt

4E E
q G x , z U x , z ,t 6Ž . Ž . Ž .I 3Ez EzEt

where, x, z and t are Cartesian coordinates and time
Ž .variable, respectively. The r x, z is density of the

Ž . w Ž . Ž . Ž .xTmedia. U x, z,t s U x, z,t ,U x, z,t ,U x, z,t ,x y z
Ž . Ž . Ž .U x, z,t , U x, z,t and U x, z,t are displacementx y z

components in x, y and z directions, respectively.
w Ž . Ž . Ž .xTF s F x, z,t ,F x, z,t ,F x, z,t is the forcex y z

Ž . Ž . Ž . Ž .matrix. B x, z , D x, z , E x, z , G x, z ,R R R R
Ž . Ž . Ž . Ž .B x, z , D x, z , E x, z and G x, z are the ma-I I I I

trices consisted of real and imaginary part of the
Ž .elastic parameters C i, js1,2, . . . ,6 .The corre-i j

sponding relationship between C , and C can bei j i jk l
Ž .seen in the works of Crampin 1981 and others, and

in
R R R R R RC C C C C C11 15 16 15 13 14

R R R R R RC C C C C CB x , z s D x , z sŽ . Ž .15 55 56 55 35 45R R

R R R R R RC C C C C C16 56 66 66 36 46

R R R R R RC C C C C C15 55 56 55 35 45

R R R R R RC C C C C CE x , z s G x , z sŽ . Ž .13 35 36 35 33 34R R

R R R R R RC C C C C C14 45 46 45 34 44

I I I I I IC C C C C C11 15 16 15 13 14

I I I I I IC C C C C CB x , z s D x , z sŽ . Ž .15 55 56 55 35 45I I

I I I I I IC C C C C C16 56 66 66 36 46

I I I I I IC C C C C C15 55 56 55 35 45

I I I I I IC C C C C CŽ . Ž .E x , z s G x , z s .13 35 36 35 33 34I I

I I I I I IC C C C C C14 45 46 45 34 44

2. Finite difference modeling scheme in viscous
EDA media

Ž .By discretizing Eq. 6 with finite difference tech-
nique, we can obtain the discretized formula for the
simulation of three component wavefields in viscous
EDA media:
U i , j,nq1Ž .

s2U i , j,n yU i , j,ny1Ž . Ž .
2

D t 1Ž .
q B iq , j U iq1, j,nŽ .R2 ½ ž /2r D xŽ .

1
yU i , j,n yB iy , j U i , j,nŽ . Ž .R ž /2

2
D tŽ .

yU iy1, j,n q D iq1, j�Ž . Ž .R5 r D xD zŽ .
= U iq1, jq1,n yU iq1, jy1,nŽ . Ž .
yD iy1, j U iy1, jq1,nŽ . Ž .R

yU iy1, jy1,n qE i , jq1Ž . Ž .R

= U iq1, jq1,n yU iy1, jq1,nŽ . Ž .
yE i , jy1 U iq1, jy1,nŽ . Ž .R

yU iy1, jy1,n 4Ž .
2

D tŽ .
q G i , jq1Ž .R2 ½

r D zŽ .
1

= U i , jq1,n yU i , j,n yG i , jyŽ . Ž . R ž /2
2

D tŽ .
= U i , j,n yU i , jy1,n qŽ . Ž . 25

r D xŽ .
1

= B iq , j V iq1, j,n yV i , j,nŽ . Ž .I½ ž /2
1

yB iy , j V i , j,n yU iy1, j,nŽ . Ž .I 5ž /2
2

D tŽ .
q D iq1, j V iq1, jq1,n� Ž . Ž .I

r D xD zŽ .
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yV iq1, jy1,n yD iy1, jŽ . Ž .I

= V iy1, jq1,n yV iy1, jy1,nŽ . Ž .
qE i , jq1 V iq1, jq1,nŽ . Ž .I

yV iy1, jq1,n yE i , jy1Ž . Ž .I

= V iq1, jy1,n yV iy1, jy1,n 4Ž . Ž .
2

D tŽ .
q G i , jq1 V i , jq1,nŽ . Ž .I2 ½

r D zŽ .
1

yV i , j,n yG i , jy V i , j,nŽ . Ž .I 5ž /2

qF i , j,n 7Ž . Ž .
with the following initial conditions

Tw xU x , z ,ts0 s 0,0,0 ,Ž .
T˙ w xU x , z ,ts0 s 0,0,0 8Ž . Ž .

Ž . Ž .where, U i, j,n s U iD x, jD z,nD t is the dis-
w Žcretized displacement component matrix U iD x,x

Ž Ž .xTjD z, nD t, U iD x, jD z, nD t, U iD x, jD z, nD t ,y z
Ž . Ž .V i, j,n sV iD x, jD z, nD t are the discretized

third derivatives of the displacement component with
{ {w Žrespect to time t, namely, u iD x, jD z,nD t,u -x y

{ TŽ . Ž .x Ž .iD x, jD z,nD t ,u iD x, jD z,nD t . F i, j,n sz
Ž .F iD x, jD z,nD t are the vectors consisted of three

force source components in x, y and z direction,
w Ž . Ž .namely, f iD x , jD z , nD t , f iD x , jD z , nD t ,x y

Ž .xTU iD x, jD z,nD t , D x, D z and D t are the spatialz

and temporal increments, respectively.
Ž . Ž .The value of V i, j,n in Eq. 7 is calculated

using the acceleration components of particle mo-
tion, i.e.,

¨ ¨U i , j,n yU i , j,ny1Ž . Ž .
V i , j,n s 9Ž . Ž .

D t

with the initial conditions
{ T¨ w xU x , z ,ts0 sU x , z ,ts0 s 0,0,0 . 10Ž . Ž . Ž .

Therefore, we can calculate three-component wave-
Ž .field at t s nq1 D t from the wavefields atnq1

Ž .t snD t and t s ny1 D t by combining Eq.n ny1
Ž . Ž . Ž .7 with initial condition Eqs. 8 – 10 . Repeating
this process, we can obtain the complete synthetic
seismograms.

3. Artificial boundary treatment

As the limitation of computer memory, we can
only calculate the seismic wavefields within limited
zone. We need to handle the artificial boundaries in
the numerical computation. These boundaries can
create the artificial reflections. The reflections on
artificial boundaries should be eliminated. In this

Ž .Fig. 1. Snapshots of y component wavefield. a Without the
treatment of artificial boundary reflection. The wavefront events
A, B and C are the reflections on the left, right and bottom
Ž . Ž .artificial boundaries. b After the treatment of artificial bound-
ary reflection, the reflection events A, B and C are suppressed
effectively.
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work, we assume that the media at the artificial
boundaries are elastically anisotropic, and use the
following method to suppress the artificial reflec-
tions. The detailed derivations can be found in the

Ž . Ž .works of Zhang et al. 1993 , He and Zhang 1996
Ž .and Yang 1996 :

1
1E E2™ ™ ™yI qr R Us0 for the right boundary,2ž /Et Ex

11Ž .

1
1E E2™ ™ ™yI qr R Us0 for the left boundary,2ž /Et Ex

12Ž .

1
1E E2™ ™ ™yI qr B Us02ž /Et Ex

for the bottom boundary, 13Ž .

Ž . Ž .Fig. 2. Snapshots of x, y and z component wavefields in homogeneous isotropic media. a The x component slice, b y component slice,
Ž .c z component slice after the propagation for 0.08 s from the source position.
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™ ™
where matrices R and B have the following forms
for generally anisotropic media:

C C C C C C11 16 15 55 45 35
™ ™

C C C C C CRs Bs16 66 56 45 44 34� 0 � 0C C C C C C15 56 55 35 34 33

Fig. 1a–b are the snapshots of component without
and with the treatment of artificial boundary for a
model with two layers, respectively. From the snap-
shots, we can see that the above absorbing conditions
work well at the artificial boundaries, and the artifi-
cial reflections have been suppressed effectively.

4. Grid dispersion treatment

In the computation of wavefields, grid dispersion
would happen. Increasing grid number within indi-
vidual wavelength can reduce dispersion effects, but
requires more inner memory of the computer. The

Ž .flux corrective transportation FCT technique was
Ž .developed Boore, 1972a,b; Yang, 1996; and others

and successfully applied to suppress the grid disper-
sion when we solve large gradient problems in dis-
cretized domain. Here, we extended the FCT tech-
nique to treat the grid dispersion in the modeling of
seismic waves in anisotropic media.

Ž . Ž .Fig. 3. Snapshots of x, y and z component wavefields in elastic EDA media with dry cracks. a The x component slice, b y component
Ž .slice, c z component slice after the propagation for 0.08 s from the source position.
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After each step of wavefield computation, we can
eliminate the grid dispersion effects by following
procedures:
1. calculate diffusion flux and smooth the numerical

solutions of finite difference equations at the n-th
step;

2. calculate the diffusion flux and smooth the nu-
merical solutions of finite difference equations at

Ž .the nq1 -th time step;
3. calculate the offsetting diffusion flux;

4. eliminate the effect of grid dispersion for the
three component wavefields.
The detail about the processing technique of grid

dispersion can be seen in Appendix B.

5. Computation and analyses

We use the finite difference method developed
above to simulate multi-component seismic wave-

Ž . Ž .Fig. 4. Snapshots of x, y and z component wavefields in elastic EDA media with water saturated cracks. a The x component slice, b y
Ž .component slice, c z component slice after the propagation for 0.08 s from the source position.
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fields in viscous EDA media. In the following exam-
ples, they have the same the model geometrical
parameters, namely, the grid numbers of the model
are N s N s 101, d x s d z s 0.006 km, d t sx z

Ž0.0004 s. The source is located at the node of 51,
.51 .

5.1. Isotropic model

For the isotropic model, the velocities for P and S
waves are 3.0 and 1r73 kmrs, respectively. The
snapshots of P, SV and SH waves are shown in Fig.
2a–c. It can be seen that the wavefronts of these

Ž . Ž .Fig. 5. Snapshots of x, y and z component wavefields in non-elastic EDA media with dry cracks. a The x component slice, b y
Ž .component slice, c z component slice after the propagation for 0.08 s from the source position.
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waves are circular and isotropic. The dispersion ef-
fect after grid dispersion treatment is very weak.

5.2. Elastic EDA model

For the elastic EDA model, we consider the me-
dia with dry cracks and water saturated cracks, re-
spectively. The velocities of P and S waves for the

surrounding rock of cracks are 3.0 and 1.73 kmrs.
The crack density is 0.1 crack ratio ds0.001. We
do not consider the effect of non-elasticity in the
calculation of wavefield here. Fig. 3a–c are the three
component seismic snapshots at 200th step in the
isotropic media without cracks. Fig. 4a–c are the
multi-component seismic snapshots at 200th step in
EDA media without the consideration of viscous
effects. The snapshots of qP, qSV and qSH waves

Ž .Fig. 6. Snapshots of x, y and z component wavefields in non-elastic EDA media with water saturated cracks. a The x component slice,
Ž . Ž .b y component slice, c z component slice after the propagation for 0.08 s from the source position.



( )Z. Zhang et al.rPhysics of the Earth and Planetary Interiors 114 1999 25–3834

show that the seismic velocities depend on the prop-
agating direction. The difference of seismic velocity
between qSV and qSH wave can be clearly seen. The
existence of oriented cracks cause shear wave split-
ting, but the effects of material content in cracks on
seismic propagation are not significant.

5.3. Viscous EDA model

For the viscous EDA model, we also consider the
media with dry cracks and water saturated cracks,
respectively. The models are same as the above ones,
but we consider the effect of non-elasticity. Figs.

5a–c and 6a–c are the multi-component seismic
snapshots at 200th step in EDA media for dry cracks
and water saturated cracks under the consideration of
viscous effects, respectively. By the analysis of the
seismograms calculated for the models of elastic and

Ž .non-elastic EDA media Figs. 7 and 8 , we can see
that, in addition to the phenomenon of shear wave
splitting, the seismic waveforms are widen, and the
amplitude of qSV and qSH waves are attenuated
much more fast than the qP-wave. Meanwhile, the
radiation pattern exhibits some changes for qP and
qSV waves in media with dry and saturated cracks,
but no change for qSH wave exists, because of the

Ž . Ž .Fig. 7. VSP seismograms for elastic EDA media and non-elastic EDA media with dry cracks. a The x component record, b z component
Ž . Ž .record for elastic EDA model, c x component record, d z component record for non-elastic EDA model.
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Ž . Ž .Fig. 8. VSP seismograms for elastic EDA media and non-elastic EDA media with water saturated cracks. a The x component record, b z
Ž . Ž .component record for elastic EDA model, c x component record, d z component record for non-elastic EDA model.

assumption of vertical oriented cracks in their sur-
rounding rock. This means the attenuating effects are

Žgood indicator of inclusive materials oil, gas or
.other kind of material in cracks.

6. Conclusions

The finite difference method for the simulation of
multi-component seismic wavefields in viscous EDA
media is presented. The viscous effect in EDA media
can be embedded in the terms of the third derivatives
of the strain with respect to time. In the calculation

of multi-component wavefields, the artificial bound-
ary reflections are suppressed with absorbing bound-
ary conditions, and the grid dispersions is effectively
treated with FCT technique. The stress continuity
condition at inner interface is kept using the FBI

Ž .technique Zhang et al., 1996 . The computation
shows that, the existence of oriented cracks or frac-
tures would give rise to the phenomenon of shear-
wave splitting; with the consideration of viscosity,
seismic waveform will widen, radiating pattern is
different from the elastic cases, the attenuation of
seismic waves are also anisotropic; the content in the
cracks have significant effects on the radiating pat-
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terns; attenuation is more sensitive than velocity to
the existence of the crack, especially to the content
in the cracks.
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Appendix A

For a weak distribution of parallel penny-shaped
cracks, normal to the x direction, with crack density

3 Ž .´sNa rÕ ´<1 , where N is the number of
cracks of radius a in volume Õ in an isotropic solid

Ž .with Lame constants l, and m. Hudson 1981, 1982
showed that the general expression for effective elas-

� 4tic constants C applicable to the propagation ofi jk l

long-wavelength seismic waves through a cracked
solid is:

C s C 0 q C1 q C 2� 4 � 4 � 4 � 4i jk l i jk l i jk l i jk l

� 1 4 � 2 4where C is the first order and C is thei jk l i jk l

second order perturbation of the isotropic elastic

� 0 4constants C of the solid without crack.i jk l

lq 2 m l l 0 0 0

l l q 2 m l 0 0 0

l l l q 2 m 0 0 0
0C s� 4i jkl 0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m

´
1C s y� 4i jkl

m

2
lq 2 m l l q 2 m l l q 2 m 0 0 0Ž . Ž . Ž .

2 2l l q 2 m l l 0 0 0Ž .
2 2l l q 2 m l l 0 0 0Ž .

= D
20 0 0 m 0 0

20 0 0 0 m 0
20 0 0 0 0 m

´ 2
2C s y� 4i jkl 15

lq 2 m q lq lq 0 0 0Ž .
2 2lq l qr l q 2 m l qr l q 2 m 0 0 0Ž . Ž .
2 2 2lq l qr l q 2 m l qr l q 2 m 0 0 0Ž . Ž .= D

0 0 0 x 0 0
0 0 0 0 x 0
0 0 0 0 0 x

Ž .2 Žwhere q s 15 lrm q 28lrm q 28, x s 2m 3l

. Ž .q8m r lq2m . The trace of the matrix D is trace
Ž . w x ŽD s U ,U ,U ,0,U ,U , and U s 4 l q11 11 11 33 33 11

. w Ž .Ž .x Ž . w Ž2m r 3 lqm 1qk , U s16 lq2m r 3 3lq33
.Ž .x Ž X X.Ž . w Ž4m 1qM , Ks l q2m lq2m r p dm lq
.x XŽ . w Ž .xm , M s 4m l q 2 m r p dm 3l q 4m and

Ž . w x wtrace D s U ,U ,U ,0,U ,U , X s 1.5 q11 11 11 33 33
Ž .5 x 2V rV U ,x p 33

3 5
15 V V Vs s s 2Ys 2q y10 q8 U .11ž / ž /4 V V Vp p p

Ž 2 2 . X XŽ X 2 X 2 .Meanwhile, lsr V y2V , l sr V y2V ,p s p s

msrV 2, m
X sr

XV X 2.s s

V and V are P and S waves velocity of rockp s

surrounding crack. V and V are the P and S wavesp1 s1

velocity of material inclusive in the cracks. r and r
X

are densities of the rock containing cracks and that
of material inclusive in cracks. ´ is the crack den-
sity, d and a are the ratio and radius of longer axis,
respectively.

With the real parts of the complex elastic con-
stants, we can calculate the imaginary part of elastic

Ž .constants with Eq. 5 , in which A, B, and other
terms can be written as follows:

As C qC r2qC q2CŽ .1111 2222 1122 1212

rQ y C qC r2y2qC IŽ .1 1111 2222 1212

BsC I y2C I ,2222 2323
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C s15p V 3r Y´a 3 ,Ž .0 s

15p V V 3
s p

D s0 22Vp3Y´a y2ž /Vs

Fs15p V 3r ´ Xa 3 ,Ž .s

15p V V 3
s p

Q s .I 22° ¶Vp3~ •´a XqY y1ž /¢ ßVs

Appendix B

The FCT for the suppression of grid dispersion
includes the following steps after obtaining the

Ž . Ž . Ž .wavefields U i, j,k , U i, j,kq1 and U i, j,ky1 .
Ž .1 Calculate diffusion flux and smooth the nu-

merical solutions of finite difference equations at the
n-th time step with the following expressions:

1
P iq , j,k sh U iq1, j,k yU i , j,kŽ . Ž .1 žž /2

yU iq1, j,ky1Ž .

qU i , j,ky1Ž . /
1

Q i , jq ,k sh U i , jq1,k yU i , j,kŽ . Ž .1 žž /2
yU i , jq1,ky1Ž .
qU i , j,ky1Ž . /
=0.008Fh F0.051

and

Ũ i , j,kq1 s U i , j,kq1Ž . Ž .
1

q P iq , j,ky1ž /ž 2
1

yP iy , j,ky1ž / /2
1

q Q i , jq ,ky1ž /ž 2
1

yQ i , jq ,ky1 .ž / /2
Ž .2 Calculate diffusion flux and smooth the nu-

merical solutions of finite difference equations at the

Ž .nq1 -th time step. The diffusion flux components
of x and z direction are:

1
P̃ iq , j,kq1ž /2

˜ ˜sh U iq1, j,kq1 yU i , j,kq1Ž . Ž .2 ž
˜ ˜yU iq1, j,k qU i , j,kŽ . Ž . /
1

Q̃ i , jq ,kq1ž /2

˜ ˜sh U i , jq1,kq1 yU i , j,kq1Ž . Ž .2 ž
˜ ˜yU i , jq1,k qU i , j,kŽ . Ž . /

=0.008Fh F0.05,2

then, we can smooth the numerical solutions of finite
difference equations with following expression:

1
˜ ˜U i , j,kq1 sU i , j,kq1 q P iq , j,ky1Ž . Ž . ž /ž 2

1
˜yP iy , j,ky1ž / /2

1
˜q Q i , jq ,ky1ž /ž 2

1
˜yQ i , jq ,ky1 .ž / /2

Ž .3 Calculate the components of offsetting diffu-
sion flux:

1
X iq , j,kq1ž /2

˜sU iq1, j,kq1 yU iq1, j,kŽ . Ž .

˜y U i , j,kq1 yU i , j,kŽ . Ž .ž /
1

Y i , jq ,kq1ž /2

˜sU i , j,q1,kq1 yU i , jq1,kŽ . Ž .

˜y U i , j,kq1 yU i , j,k .Ž . Ž .ž /
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Ž .4 Eliminate grid dispersion effects:

1
˜U i , j,k sU i , j,kq1 y X iq , j,kŽ . Ž . ž /ž 2

1 1
yX iy , j,k y Y i , jq ,kž / ž // ž2 2

1
yY i , jy ,k .ž / /2
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