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Minimum traveltime calculations in anisotropic media using graph theory
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Summary
The efficient modeling of anisotropic wave propagation
is an issue of growing importance due to the need for
accurate traveltime tables in subsurface imaging algo-
rithms. We propose an adaptation of the shortest path
ray tracing (SPR)method that effectively calculates first
arrival times in transversely isotropic media, the most
commonly modeled form of anisotropy. The modification
does not change the asymptotic complexity of the SPR al-
gorithm and allows more accurate travel-time approxima-
tions with only a minimal increase in compute time. The
method calculates edge weights for the search graph by
using the edge’s orientation and an anisotropy function
relating group angle to group velocity. Once anisotropic
weights are assigned to all of the edges in the graph, Di-
jkstra’s shortest path algorithm can be applied to deter-
mine the first-arrival times for every node in the graph.
The method was initially tested on several models con-
taining elliptically anisotropic layers: we then generalized
the code to account for transversely isotropic media us-
ing Thomsen’s expressions for weak anisotropy. For ho-
mogeneous anisotropic media, comparisons between SPR
generated traveltimes and analytically determined trav-
eltimes show excellent agreement. Traveltimes for several
larger inhomgenous models are also included.

Introduction
Shortest path ray tracing (SPR) is a simple application
of Fermat’s principle; SPR relies on the assumption that
rays follow paths such as to minimize traveltime. The
first step of modeling P-wave propagation using SPR
is descritizing the subsurface into a regular network of
nodes and connecting each node to local neighbors. Trav-
eltime are then assigned to each edge; these values repre-
sent the time required to travel from one node to a neigh-
bor. After the graph representing the velocity model is
initialized, a shortest-path algorithm is applied to de-
termine the minimum traveltime between an arbitrary
source node and every other node within the network.
The most common methods used to determine shortest
paths are variants of Dijkstra’s algorithm using advanced
data structures.

Recent experiments applying graph theory towards the
modeling of seismic wave propagation (Moser, 1991) (Fis-
cher and Lees, 1993) (Cheng and House, 1996) have
shown SPR to be a robust method for obtaining first-
arrival traveltimes for isotropic media in 2 and 3 dimen-
sions. Unlike ray bending methods, SPR is guaranteed

to find a global minimum traveltime instead of possibly
converging on local features. SPR also avoids the tradi-
tional problems of ray shooting techniques and can pro-
vide accurate times for diffracted rays and times within
shadow zones. SPR’s weakest point is the high computa-
tional cost of the shortest-path calculation: a naive im-
plementation of Dijkstra’s algorithm can make modeling
too slow to process reasonably sized graphs. However,
advances in shortest path algorithms (Goldberg et al.,
1993) seem to promise much higher speeds if creatively
adapted for SPR. Although this paper examines work in
2D, SPR algorithms trivially extend to 3D due to the
nature of graph representations.

Another interesting property of graph theoretic model-
ing is the ease with which it can be adapted to handle
anisotropic models; situations where ray velocity is de-
pendent upon orientation.In previous SPR algorithms,
node-to-node traveltimes have been calculated by divid-
ing the Cartesian length of a given edge by the velocity
of the medium through which it passes. Two additional
steps in the graph construction phase allow SPR to be
generalized to transversely isotropic media. First, com-
putation of the direction of every edge is necessary. These
directions are then converted into velocities using knowl-
edge of the polar functions relating group angle to group
velocity for every zone of differing anisotropic parameters
within the model.

Graph Construction And Complexity
SPR algorithms can generally be broken into two stages,
a pre-processing stage that creates the graph and gener-
ates edge weights from the velocity model, and the actual
tracing phase that determines the shortest paths from a
particular source.

The tracing phase is usually implemented using Dijk-
stra’s algorithm, with the choice of data structure for the
priority que determining asymptotic complexity. Imple-
mentations using heaps are of O(E log N) if designed to
correctly exploit partial ordering, O(x) meaning “on the
order of x” in the notation of complexity theory. E and
N represent the number of edges and nodes in the graph
respectively. Naive implementations that depend on re-
sorting linear arrays are generally O(N2). SPR studies
in the literature have limited themselves to these algo-
rithms. However, implementations significantly faster do
exist; one example exploits fibonnaci heaps to achieve
O(Nlog N + E) = O(Nlog N).

These complexity expressions become more meaningful if

1517

Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Minimum traveltime calculations in anisotropic media using graph theory

we examine the size and sparsity of the graphs used for 11      +  = (3)
tracing. We descritize the velocity model into an n x m
grid with some number of nodes being placed on the edge
of each cell (NPE). Eac node is connected to all nodesh

 are components of the 6 x 6 elastic modulus matrix.

that are within adjoining cells and not collinear along
This relation will not be satisfied by media possessing

cell boundaries. This design has been well-explored by
anisotropy caused by fine layering (Berryman, 1979).

Fischer and Lee (1993): they estimate that between 2 - 4We follow Levin’s derivation of the phase velocity of p-
NPE are required for accurate tracing, depending uponwaves(v) with respect to phase angle  (Levin, 1978).
the optimizations and error correction methods used. WeThe relevant parameters for elliptical anisotropy are the
can easily derive expression relating the dimension of thehorizontal and vertical velocity of p-waves in the medium,
grid, the NPE count and the total number of nodes  and  respectively. V denotes group velocity while v
and edges (Et). denotes represents phase velocity.

     (1)  (4)

  (2)
The relation between  v, group velocity (V), and group
angle  can be determined via geometric construction.

The key step in adapting a velocity model for use by
SPR methods is the mapping of velocities from the first (5)
model into traveltime weights on the SPR graph. Previ-
ous studies (Moser, 1991) (Fischer and Lees, 1993) have
used isotropic models: the weight for a graph edge is cal-
culated by dividing the distance between the nodes byLevin derives an expression for  with respect to 

the velocity of the cell containing the link.
(6)

For an anisotropic model, the direction of the edge and
the anisotropy parameters for the cell are also required for
computation of the edge weight. We attached coordinate
information to each node in the graph to allow the direc-Substitution into equation 4 yields an expression for

tion of edges to be easily determined. Evaluation of thegroup velocity with respect to 

function relating group angle to group velocity proved to
be the most expensive part of the weight-determination
step.

The construction phase for anisotropic models will, in the
worst case, be proportional to Et: in an irregular graph,
the velocity function might have to be evaluated for every
edge. However, since the graphs we examine are strictly
regular, a caching system which stores the results of pre-
vious evaluations can reduce this to O(M) where M is
the number of distinct media in the graph. O(Et) will
be small in comparison to the ray-tracing time for any
significant value of Nt while M is usually almost insignif-
icant. Our anisotropic SPR code spent less then 0.1%
of its runtime constructing the graph and determining
weights for graphs with approximately 3000 nodes. Two
preprocessing modules were developed, one to handle el-
liptical anisotropy and a second for modeling weak TI
media.

Elliptical Anisotropy
Although elliptical anisotropy is a rare phenomenon in
p-wave propagation (Helbig, 1983), the simplicity of the
expressions describing it make this type of anisotropy
an attractive test formodeling algorithms. Elliptical
anisotropy forp-wavesoccurs only when

(7)

Weak TI anisotropy
Many solids possess transversely isotropic properties that
cannot be accurately approximated using the simple
equations for elliptical anisotropy. The full equations
for group velocity in a TI medium are fairly complex:
we decided to use the weak forms which hold for val-
ues of  much less then one,  being the most important
of the four anisotropic parameters provided by Thomsen
(Thornsen, 1986). The other relevant parameters are 
the second measure of P-wave anisotropy in TI media and

 the vertical p-wave velocity. We follow his derivation
of the group velocity expressions. The equation relating
phase angle to phase velocity is

V   +  + (8)

Although the calculation of phase velocity from phase an-
gle is fairly simple, the determination of group velocities

canis not quite as easy.
be expressed as . . .

The group velocity for p-waves
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( 9 )

We used a linearized approximation of the group velocity
expression.

(10)

This expression states that the group velocity for a given
 (group angle) is equivalent to the phase velocity for

an associated  (phase angle) specified by the following
relation.. .

        
1 (11)

We used a modified bisection algorithm to solve the above
relation for phase angle given group angle. Because the
bisection algorithm is somewhat slow, a caching system
was used to store    relations already computed,
minimizing the number of times equation 11 must be
solved. Bisection is guaranteed to converge if proper ini-
tial bounds for the result can be given. Other approaches
that were considered included a truncated Fourier-type
cosine approximation of the group velocity (Faria and
Stoffa, 1994)and a tedious closed-form relating  in terms
of  based upon the general closed form for quartic equa-
tions.

Examples
The first tests were performed on very simple elliptically
anisotropic media (Fig.1). The resulting traveltime im-
ages clearly show anisotropic propagation. A simple pro-
gram was also written to analytically compute the trav-
eltimes for a homogeneous anisotropic medium given the
group velocity function.This was accomplished by tak-
ing the Cartesian distance between the source and every
grid point and then dividing the group velocity for the
angle of each segment by the length of the segment. All
of the models shown below were computed on a coarse 30
x 30 grid with 4 nodes per graph edge. The traveltime
contours are depicted in intervals of 1 second.

We later tested the SPR algorithm on several homo-
geneous media with anisotropy parameters equivalent
to real rocks discussed by Thomsen (Thornsen, 1986).
Pierre Shale at 5000psi was the most anisotropic medium
modeled (Fig.2).

Faria and Stoffa tested their TI traveltime computation
scheme on the same model and produced similar results
(Faria and Stoffa, 1994). We also tested two heteroge-
neous models. The first model (Fig.3) was composed of
4 layers possessing transversely isotropic properties. The
thickness of each layer is notated as St.

FIG. 1. Modeled traveltimes in a homogeneous ellipti-
cally anisotropic medium: Vv = 2km/s and Vh = 5km/s

FIG. 2. Modeled traveltimes for a homogeneous TI
medium with attributes identical to the Pierre Shale at
5000 psi (Thornsen, 1986) .

Heterogeneous TI Model - Layer Parameters

1. Cotton Valley Shale,  = 2.890,  = 0.205,  =
0.135,  = 8

2. Pierre Shaleat 5OOOpsi, = 3.048, = -0.050,
 = .255, St = 6

3. Taylor Sandstone, = 3.368, = -0.035, =
,110, St = 9

4. Ft. Taylor Siltstone, = 4.877,  = -0.045, =
.045, St = 7
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FIG. 3. SPR traveltimes for a 4-layer TI model

We also calculated the traveltimes for a 4-layer elliptically
anisotropic model.

Discussion and Conclusions
The analytic traveltimes (not shown) and the modeled
traveltimes calculated for the homogeneous models agree
closely. One should note that since both the analytic and
SPR packages use the same group velocity computation
subroutines the comparison only detects errors due to an-
gular and spatial descritization in the modeling process.
The average error across the Pierre Shale times was ap-
proximately 0.5%. Comparisons of spatial error plots for
several media at different NPE counts reveal that both
the distribution of nodes and the type of anisotropy ef-
fect accuracy.Extreme anisotropy produced the great-
est (still under 0.8%) errors. Xu and Lathrop (1994)
produced an examination of this problem in the context
anisotropic forest-fire spread and GIS systems.

Shortest path ray tracing requires only simple modifica-
tions for use on anisotropic models. The only significant
addition needed is a module that computes group veloc-
ity from group angle for the particular type of anisotropic
medium. Because these modifications are part of the
graph construction phase and not the path-finding phase,
the additional time required to model anisotropic media
is, in worse case, linearly related to the number of edges
in the graph. Since the algorithms currently being used
for determining shortest paths run in either O(V2) or
O(E/ZogV), the time to initialize an anisotropic graph
will be small in comparison to the tracing time. Travel-
time determinations for the method are accurate for the
case of homogeneous and simple heterogeneous materi-
als: evaluation of the accuracy of the method on larger,
more complex models is an area for future investigation.
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FIG. 4. A spatial plot of absolute traveltime error for
the Pierre Shale model. These values were calculated by
computing the time difference between the analytic and
SPR results. The contour interval is .0l seconds.
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