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We present a high-order upwind finite-difference scheme for solving a useful family of first-order
partial differential equations, of which the linearized eikonal equation is a member. Fast solu-
tions of the linearized eikonal equation have applications in traveltime tomography and residual
migration algorithms. The technique, besides being both accurate and stable, escapes aperture
limitations inherent in static marching schemes. We use a time-sequential evaluation method
similar to Sethian’s Fast Marching strategy to insure causal operator evaluation. We apply our
technique to several complex slowness distributions, including the Marmousi model. We also use
an adaptation of our technique to compute Cartesian-to-Ray coordinate transforms for the same
slowness models.

1. Introduction

Traveltime calculation exists as a major component of modern seismic imaging algorithms
including reflection tomography and migration. Many of these algorithms are iterative in
nature and require traveltimes for models only locally perturbed from an initial slowness
distribution. In cases where this perturbation is sufficiently small, solving the linearized
eikonal equation can be an efficient approach to estimating the accompanying traveltime
variation.

We have developed a fast explicit finite-difference solution to the linearized eikonal equa-
tion which uses 2nd and higher order FD operators as well as a stable marching scheme.
Our method improves upon previous FD schemes which have suffered from either aperture
limitations ' or poor computational performance due to implicit formulations °. The lin-
earized eikonal equation is a member of an interesting class of linear PDEs, which includes

the equations governing the transformation between Cartesian and ray coordinate systems.
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We begin by deriving the linearized eikonal equation and describing some related PDEs
that are potentially useful in the context of seismic imaging. We then describe the two
components of our algorithm, a stable marching scheme and an accurate class of higher order
traveltime extrapolation stencils. The algorithm is then extended to solve the Cartesian-to-
ray mapping problem and tested on a simple model for which analytic solutions are available.
After applying both algorithms to realistic geologic models including the Marmousi model,
we conclude with a discussion of some problems we encountered in the development process.

2. Deriving The Linearized Eikonal Equation

The familiar non-linear eikonal equation relates a slowness distribution to a traveltime
field and is valid only at the high frequency limit. The non-linear eikonal equation can
be derived through WKBJ theory ¢ or via variational methods and Fermat’s principle.
Expressed in two dimensions, the non-linear eikonal equation is

(%)2 + (%)2 = S(z,2)?, (2.1)

where S and ¢ are the two dimensional slowness and traveltime fields respectively. The
linearized eikonal equation arises in several contexts but is most frequently appealed to in
traveltime tomography ', where it is used to justify the linear relation between perturbations
in slowness (0.5) and perturbations in traveltime (dt), or

/ 55 dt = dt, (2.2)
L

where L is a given ray-path and d¢ represents a differential arc-length element. To derive
the linearized eikonal equation, we perturb both the slowness and traveltime fields around
background fields Sy and tg.

S=5+4d5 t = tg + 0t, (23)

For convenience in notation we replace 0t with 7 when referring to the perturbed time field.
Substituting these expressions back into the eikonal equation and expanding yields
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Subtracting the non-linear eikonal equation in %y, dropping all higher order terms in 7 and
05, and division produces the linearized eikonal equation
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Intuitively, solving the linearized eikonal equation can be thought of as integrating slowness
perturbations over a path defined by the gradient of ¢y3. In the case of a constant slowness
background, this amounts to the integration of §S over straight rays. Figure 1 shows
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Fig. 1. A pictorial description of the solution to the linearized eikonal equation (5) : in the left panel (colors
and contours map to to + 7) we see the effect that a slowness perturbation (Sp) within the central block has
on travel times for a constant slowness background. The right panel depicts the point source, located at A,
and a series of characteristic curves. The ray connecting A to B is slowed while traversing the K-L segment.

the effects of a rectangular slowness perturbation on travel times, for a constant slowness
background.

3. A Useful Family Of Equations

The linearized eikonal equation derived above is just one example of a rather interesting
class of first-order partial differential equations which can be written as

%% + %% = R(z, z), (3.6)
where u is typically a variable that is integrated or fixed along the ray-paths defined by time
field t and R is a spatially varying material property. This form can be used, for example,
to develop equations describing the mapping between Cartesian coordinates (z,z) and ray

coordinates (0, /) ', where  is ray take-off angle and /: is arc-length.

ot 00 ot 00
£%+&&_0, (3.7)
ot ot ot ol
%%4-&&—5. (3.8)

Equation (3.7) simply states that take-off angle is constant along any given ray-path, hence
only take-off angle and arc length (3.8) are required to describe a point in ray coordinates.
In equation (3.8), S is an unperturbed slowness field.

Further extensions can be developed to describe geometric spreading and hence to es-
1518~ The finite-difference scheme which we will describe is useful for
solving equations in the general form of (3.6).

timate amplitudes

4. A Finite-Difference Algorithm
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In most situations involving the linearized eikonal equation (2.5), g, Sp, and 65 are known
and the goal is to determine the related traveltime perturbation field, 7. We wish to
accurately solve for 7 on a regular rectangular grid with spacings Ax and Az. Explicit finite-
difference (FD) techniques are a highly efficient approach to solving this type of problem.
When developing such a scheme, one must choose a sufficiently accurate set of local FD
operators and a stable global evaluation pattern or marching order. The accuracy of the FD
operator is particularly crucial in cases where higher derivatives of the calculated field are
desired. A stable marching scheme is critical for development of a robust method that can
accommodate complex slowness fields. Another important component for such numerical

schemes is an accurate treatment of initial conditions and the near-source problem * 2.

4.1. Previous Work

The literature abounds with finite-difference treatments of the non-linear eikonal equation:
seminal papers by Reshef and Kosloff ?, Vidale 7, Podvin and Lecomte *, and van Trier
and Symes '6 have been followed by more recent methods that exploit flexible wave-like
marching schemes to preserve causality 8 10 12 13,

Previous finite-difference solutions to the linearized eikonal equation have either been
formulated implicitly 3 or explicitly with an aperture limitation. The implicit techniques,
while robust, are too computationally intensive to justify use as a cheap alternative to
explicit solution of the non-linear eikonal equation. The depth-stepping finite-difference
schemes used by Symes and others 't 15
rays experience significant bending without some type of iterative correction scheme

, while fast, cannot accommodate models where
14
Both of these problems can be avoided as we do here, by using an adaptation of the Fast
Marching algorithm developed by Sethian 2 3.

4.2. A Stable Global Marching Scheme

Static marching schemes, such as depth or box expansion, cannot guarantee first arrivals
in all cases 8. More stable marching schemes for the non-linear eikonal equation have
been obtained by evaluating upwind finite-difference operators in order of increasing time,
starting from an initial zero-time source array. This marching order mimics the physical
wavefront and insures that the true first arrival time is obtained. Among these techniques,
Sethian’s Fast Marching algorithm 2 13, has proved the most popular. In practice, the most
difficult part of implementing such wavefront-expansion solvers is an efficient method for
choosing the minimum traveltime node for updating. Sethian uses binary heaps to produce
an algorithm that is O(n lgn) where n is the total number of grid points within the model.
The “narrow-band” philosophy used in Fast-Marching techniques is shown in figure 2.

We use a similar technique for solving the linearized eikonal equation. However, since the
characteristics of the PDE are already captured in the background traveltime field ¢y, we
can simply sort these times and solve for 7 in this order. Since only a pre-sorting operation
is required, we do not have to maintain a binary heap during the FD evaluation stage.
This allows use of Hoare’s quicksort algorithm which, although asymptotically equivalent

to heapsort in average-case runtime, is faster in practice >. A simple flow-chart of our
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Fig. 2. A schematic representation of the Fast Marching algorithm. The FD operator is evaluated in order
of increasing times to insure that causality is preserved. When solving the linearized eikonal equation, this
ordering is obtained by sorting the background traveltimes, ¢y, and hence we do not require an active binary
heap within the marching phase.

algorithm is shown in figure 3.

Since the pre-sorting step is O(n lgn) in comparison to the O(n) complexity of the actual
stencil evaluations, considerable attention is paid to efficiently implementing the quicksort.
Recursion and associated call overhead is replaced with a managed stack. A low-level key
randomization phase is used to insure that quicksort is not laid low by its O(n?) worst-case
bound. We have also explored some cache-use optimizations which have potential to further
decrease runtime.

4.3. Accurate Upwind Finite Difference Operators

Upwind FD operators sample the field used for derivative calculation in a single direction.
This property is crucial in cases where we wish information to propagate across space
in a causal manner: the traveltime at a given point should be calculated using only the
information from previous times. The sorted marching scheme, described previously, insures
that the point being updated is on the “front” and is adjoining a region where times have
already been calculated. Use of an appropriate upwind FD operator guarantees that only
previous times are exploited in the traveltime extrapolation.

Upwind approximations to the x and z derivatives can be derived via Taylor series or
through differentiation of an interpolating polynomial (see 4 or the Appendix). Higher-order
approximations require more points for derivative calculation. If 7; is the point where we
wish to calculate 07/0z, upwind FD operators of order 1 through 4 can be expressed as
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Fig. 3. A basic flow chart for our linearized eikonal solver. The pre-sorting phase is used to calculate a stable
marching scheme. After sorting, appropriate high-order FD stencils are evaluated in order of increasing time
to calculate .

1st Order % = %4 (4.9)
2nd Order g—; = 2‘”* 2 +2 AT;“ _13” : (4.10)
3rd Order g—; = 8o 9Ti+262$ 87it1 — Lm (4.11)
Ath Order a_; _ Tita +67ig3 4 éizf + 107341 — 3373 (4.12)

Once a FD operator is chosen, we can replace the derivatives in the linearized eikonal
equation. The spatial derivatives of ¢ty can be calculated in the same upwind fashion as the
derivatives of 7 or they can be evaluated statically before solution of the linearized problem
begins. We assume that the derivatives of ¢y are available at all points and use first-order
upwind operators as an initial example:

Oty Tz‘+1j—Tij) (3to> <7'z'j+1—7'ij)
o).\ A — ] (=L =S, 05i;. 41
( afII )z,] < A.’,E + 82 i AZ Sola] 5SZJ ( 3)

We solve this equation for 7; ;, thereby obtaining an expression for extrapolating the value
at (7,7) given knowledge of 7 at (4,7 + 1) and (i + 1,7) (see figure 4).

(F2) 7y + (52) 701 — b S, 05

(32 +(52) '
We assume Az = Az = h for simplicity, although inclusion of these factors is not difficult.
A more general form for extrapolation formulas like equation (4.14) can easily be derived

(4.14)

TZ ’j =

for an arbitrary order upwind finite-difference operator. A compact form for writing such
a FD operator is
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Fig. 4. A schematic showing a first-order upwind extrapolation that uses the values of 7 at (¢, + 1) and
(i+1,7) to determine the value at (i, ).

or
% g Ax ch Tij (4.15)

or
07 0 Az ZC] ENE

(4.16)
where ¢; and ¢; indicate the appropriate coefficient for the difference formula. The variables
g, and g, are the multiplicative coefficients in the denominator of the FD stencil.

Assume again that the spacing in each dimension is equal, h = Az = Az, and let the
summation portion of these operators be P, and P, respectively. We can now substitute
these difference expressions into the linearized eikonal equation and solve for 7; ; to produce
an explicit linearized eikonal extrapolation formula for an arbitrary order operator,

(h s 9: So,, 6Si;) — (92 22 P;) — (9, %2 P, )

(4.17)
(9: Cxo %) + (92 Czo %tzo)

TZ ’j =

Similar expressions are easily derived for the ray-Cartesian mapping equations, (3.7) and
(3.8), or for any equation of form (3.6). The extrapolation formulae for the take-off and
arc-length equations become

(ngz%)_(gsz%)

0.
(gz Czo %) + (gfv Czo %)

l!j =

(4.18)

(hgm gz Si,j) - (gz % PCU) — (gm % Pz)

bij =
(9: Cxo %) + (9 Czo %)

, (4.19)
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source K d, (constant slowness background)
1

Fig. 5. A schematic depicting a simple single-layered model for which an analytic solution is available.

where the difference operators are defined over the appropriate variable. Our implementa-
tions allow the user to specify the order of operator used in solving the linearized eikonal
or mapping equations, although operators of order higher than 3 have produced stability
problems within our scheme.

5. Analytic Solutions For Models With A Single Perturbed Layer

To test the accuracy of our linearized eikonal solver, we compared computed solutions to
analytic results for a simple model with a homogeneous background slowness field and a
single perturbed layer, as shown in figure 5. The model assumes a point source at (0,0),
the upper left corner, and a single perturbed layer of thickness do starting at depth d;.
Since the Sy is constant, the solution to the linearized eikonal equation is simply a path
integral over a straight ray. Evaluation of 7 at location (z, z) reduces to,

if 2 <dy, [,08d0 =0
if d <2< (dy+dy), [,08d0 =3S[|Krl—|K1ll
if 2> (di +da), [, 08dt = 0S[||[Ka — [|K1ll], (5.20)

where the K components (segment lengths) can be expressed in closed form as

dy
Ki||l=————
I cos(tan=1%)

di + da

K|l = — 1%~
cos(tan=1%)

2z

KRl = (5.21)

cos(tan—12)’

We performed our error test on a 1000 by 1000 m domain with a single 200 m thick perturbed
layer at a depth of 400 m. The velocity of the layer was perturbed 3% from the background
wavespeed. Figure 6 shows peak relative error statistics for our 1st and 2nd order linearized
eikonal solvers over a variety of cell dimensions. The lower log-log plot clearly shows the
2nd order convergence of the 2nd order method.



Peak Relative Error For Linear Solvers (1 PLayer Model)

25 T T T T T T T -
— 1st Order
[ | i 2nd Order
S
w15 .
[0
=
I}
° 1F f
o
X -
3 -
S o5 .
e — T T T
o He—— 4+ — ¥ — 1 = | | | | | |
2 4 6 8 10 12 14 16 18 20
Grid Size (m)
; Log Peak Relative Error For Linear Solvers (1 PLayer Model)
10 T

Log Peak Relative Error (%)

10° 10’ 10
Log Grid Size (m)

Fig. 6. Relative error and log error plots for a variety of grid sizes. The calculation was performed on a 1000
by 1000 m model with a single perturbed layer.

As is shown in figure 6, the 2nd order solver is extremely accurate: peak relative errors
of less than 1 percent are maintained even for very coarse (20m) samplings. Similar tests for
the arc-length and take-off angle calculation schemes on constant slowness models exhibited
the same error characteristics.

Student Version of MATLAB
6. Realistic Examples

Although homogeneous and one-layer models are excellent for accuracy analysis, tests on
geologically realistic slowness distributions provide the best test of robust behavior. We ran
our linearized eikonal solver on a synthetic salt-model with aspects similar to several Gulf
coast salt features. We tested the Cartesian-to-ray mapping scheme on both the salt model
and the classic Marmousi model.

As a preliminary test case we developed a relatively simple salt model. The background
was a smoothly varying v(z) field with several different velocity gradients. We chose to
add in the salt feature as a perturbation, located at a central depth of 2500 m. While
adding a salt feature is an unrealisticly large slowness perturbation for either tomographic
or residual migration iteration, the abrupt addition both stresses the algorithm and provides
an example of the difference between the linear and non-linear eikonal solutions. To compute
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the non-linear times we used a modified version of Sethian’s Fast Marching algorithm '3
with second-order FD operators. Figure 7 shows the velocity model. In regions where the
salt-body introduces significant ray-bending (far right) the linear and non-linear solutions
diverge, as would be expected. Figure 8 shows the traveltime perturbation due to the salt
body.

Simple Salt Model + Background Times (2nd Order FM)
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Fig. 7. A simple salt model with superimposed contours indicating both linear (blue) and non-linear (black)
eikonal solutions

The results of the take-off angle calculation applied to the composite salt-model are also
interesting. In figure 9 we see some of the focusing effects produced by the salt body’s
curvature.

Another test of our take-off angle and arc-length solvers was the popular Marmousi
velocity model, developed from studies in Angola’s Cuanza Basin. The model includes a
heavily faulted anticline with high velocity salt features and has become a standard test
model for traveltime calculation. From an imaging perspective, the desired target is a
small reservoir within the lower section of the anticline. The model is composed of 384x122
samples with a grid unit of 24 meters in both the x and z dimensions.

Of the two panels in figure 10, the top one displays the Marmousi velocity model with
2nd order non-linear eikonal traveltimes superimposed, while the bottom shows the results
of calculating take-off angle and arc-length using update operators (4.18) and (4.19). Sev-
eral interesting features are evident in the lower panel: due to head wave generation, the
angular family of rays implicitly followed by the eikonal solver is very narrow. At the far
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Linear Traveltime Perturbation Due To Salt
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Fig. 8. Traveltime perturbations due to addition of the salt-body. Note that the values are negative indicating
a time speed-up due to the salt feature’s high velocity.

right edge of the model, almost all of the rays followed are from within a 1 degree fan.
Discontinuities in arc-length delineate ray “families” and offer a rough guide of how the
first-arrivals are partitioned in space. Mathematically, these discontinuities indicate shocks
where multiple characteristics converge. They occur in regions where the time field should
be non-differentiable i.e. when “corners” exist in the contours. This phenomenon suggests
that the arc-length map might be useful as a computational shock or caustic detection tool.

7. Performance Analysis

Some preliminary examination of performance suggests that the linearized eikonal equation
is only useful as an update operator when the pre-sorting cost is amortized over multiple
updates or is determined during traveltime computation of the background field (a natural
by-product of using a Fast Marching solver for tg).

The cost of this type of FD algorithm can be divided into the marching costs (O(n lgn)
in this case) and the stencil evaluation costs (O(n)). While our linearized eikonal solver is
computationally equivalent to a non-linear Fast Marching eikonal solver in an asymptotic
or “Big O” sense, the constants associated with evaluating the linearized FD stencil are
substantially smaller due to the absence of square-root operations. The constants associated
with quicksort are also substantially lower than those of the dynamic heapsort use in Fast
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Simple Salt: Take-Off Angle + Traveltimes (2nd Order FM)
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Fig. 9. Take-off angle map with superimposed 2nd order non-linear eikonal traveltimes

Marching. Figure 11 shows a performance comparison for linear and non-linear eikonal
algorithms solving for times (or perturbations) over a 500 by 500 2D model.

8. Remarks And Conclusions

Care must be given to the proper treatment of initial state and near-source conditions.
Since a singularity exists in the traveltime field at the point source, direct application of
finite-differences in the near-source region will introduce 1st order error into any scheme,
regardless of formal order. We tackled this problem using a combination of straight-ray
tracing and LUMR or Locally Uniform Mesh Refinement 4 although elegant solutions
based on fully adaptive grids are available 2, if slightly more difficult to develop. We
experienced some difficulties in using our Cartesian-to-ray coordinate transform as the basis
for a geometric amplitude estimation code. This might be due to insufficiently smooth
traveltime derivatives.

We have developed a high-order FD scheme for solution of the linearized eikonal equa-
tion. The method is efficient, stable, and free from aperture limitations. Comparison to
the analytic solution for simple three-layer slowness models has quantitatively verified the
method’s accuracy while tests on more complicated structures, including the Marmousi
model, have yielded reasonable results. Performance analysis suggests that the solver is
most useful in situations where computation of the marching order can be amortized over
multiple evaluations of d¢. Use of similar techniques for computing Cartesion-to-Ray coor-
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Marmousi Model And Traveltime Contours
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Fig. 10. The top panel shows the Marmousi velocity model with 2nd order non-linear traveltime contours
superimposed. The bottom panel shows take-off angle calculations for the same model with superimposed
arc-length contours.

dinate transformations offer an interesting way of viewing the results of gridded traveltime
calculation algorithms.

Appendix A

For completeness, we derive our second-order upwind finite-difference operator by differen-
tiating a Lagrange interpolating polynomial. A polynomial of degree N — 1 can interpolate
N points: assume the form 7 = 7(z1), 72 = 7(22),..., 7 = T(z,) and the interpolating
polynomial is given explicitly by Lagrange’s formula,

(x — z9)(z — 3)...(x — zN) _— (x — z1)(z — z3)...(x — zN)
(1 — z9)(z1 — z3)...(x1 — zN) ! (g — z1)(z2 — 3)...(T2 — ZN)
(x —z1)(z — z2)...(x —zN_1)
(xny —z1)(zNy — x2)...(TN —ZN-1)

7'(27) = To +

s ™ (A1)

We are interested in a second-order FD approximation, or equivalently, the derivative of an
interpolating quadratic polynomial in z with respect to 7. A quadratic fit requires three
points and can be written as an instance of Lagrange’s formula
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Performance Comparison: NL vs L (500x500 model)
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Fig. 11. Performance comparison for non-linear and linear eikonal solvers of various order with and without

the pre-sorting step. The algorithms were executed on a single processor 233mhz Pentium 1 (MMX) with
48 megabytes of RAM and no substantial exterior system load.

_ o m)le -2y (2 = 1)@ — z3) (2 = 1) (@ — 2)
)= (w1 — ) (w1 — 73) ' - (w2 — 1) (z2 — 23) - (@3 — 21) (235 — 32) (4-2)

In this expression we have values of 7 at locations z; , z9, and z3. Differentiating with
respect to x and evaluating the expression at x; yields

Or(w1) _ (@1 —22) + (21 —23) (@1 —a3) (1 — z2)
ox (1 — z9)(x1 — 3) ! (9 — x1) (22 — 23) 2 (23 — 21) (23 — T2)

T3, (A3)

assuming that 1 = a, £2 = ¢ — Az, and 23 = a — 2Ax (equal spacing between sampled
points) we can evaluate to obtain the second-order difference operator used in our method,

ot (a) Az + 2Ax 2A1 Az 311 — 41y + 73

or 2002 T Canan T Can(—an T T 2As

(A4)
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