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Finite-difference calculation of direct-arrival traveltimes
using the eikonal equation

Le-Wei Mo∗ and Jerry M. Harris‡

ABSTRACT

Traveltimes of direct arrivals are obtained by solving
the eikonal equation using finite differences. A uniform
square grid represents both the velocity model and the
traveltime table. Wavefront discontinuities across a ve-
locity interface at postcritical incidence and some in-
sights in direct-arrival ray tracing are incorporated into
the traveltime computation so that the procedure is sta-
ble at precritical, critical, and postcritical incidence an-
gles. The traveltimes can be used in Kirchhoff migration,
tomography, and NMO corrections that require travel-
times of direct arrivals on a uniform grid.

INTRODUCTION

Wave propagation in high-frequency asymptotics can be de-
scribed by the WKBJ Green’s function, which consists of trav-
eltimes and amplitudes (Cerveny et al., 1977). In this approxi-
mation, the traveltimes satisfy the eikonal equation that relates
the gradient of the traveltimes to the slowness of the medium.
The amplitudes satisfy the transport equation. We address the
problem of numerically solving the eikonal equation for direct-
arrival traveltimes. One way of solving the eikonal equation is
the method of characteristics (Cerveny et al., 1977). There,
the ray equations are solved for the raypaths, or characteristic
curves of the eikonal equation, and traveltimes are interpo-
lated from the raypaths to gridpoints. However, ray tracing is
a slow procedure and has difficulty penetrating shadow zones
(Vidale, 1988). Traveltimes on a uniform grid used in seismic
migration can be calculated much more efficiently by solving
the eikonal equation using the finite-difference method.

Vidale (1988, 1990) presents an efficient finite-difference
scheme that solves the eikonal equation for traveltimes in uni-
form Cartesian grids. The traveltime computation is carried out
by recursively solving rings of an expanding square outward
from the source point. However, Vidale’s scheme encounters

Manuscript received by the Editor August 24, 1999; revised manuscript received December 11, 2001.
∗Fairfield Industries, Inc., 14100 Southwest Freeway, Suite 100, Sugar Land, Texas 77478. E-mail: lmo@fairfield.com.
‡Stanford University, Department of Geophysics, Stanford, California 94305.
c© 2002 Society of Exploration Geophysicists. All rights reserved.

instability when the argument of a square root in the travel-
time equation becomes negative. Podvin and Lecomte (1991)
dissect wave propagation in a cell into all possible modes of
transmission, diffraction, and head waves, resulting in a stable
scheme of traveltime calculation. Van Trier and Symes (1991)
formulate the traveltime calculation in polar coordinates and
allow more densely sampled computations nearer the source.
However, mapping the slowness field from Cartesian to polar
coordinates and the traveltime field from polar to Cartesian
coordinates requires extra computations.

The above finite-difference traveltime calculation schemes
all calculate traveltimes of first-arrival waves, which may carry
very little energy, e.g., head waves and diffractions (Geoltrain
and Brac, 1993). In this paper, we first analyze direct-arrival ray
tracing. A direct arrival is a transmitted wave without any part
of its propagation path being reflection or diffraction or head
wave. Next, we present our procedure to calculate the travel-
times of direct arrivals resulting from a point source. Finally,
we show several numerical examples, including results of mi-
grating the Marmousi data set with direct-arrival traveltimes.

DIRECT-ARRIVAL RAY TRACING

Figure 1 is a two-layer velocity model. The source is in the
layer of slower velocity. In direct-arrival ray tracing, the in-
cident ray at point C on the interface is at critical incidence,
and it generates a critically refracted creeping ray along the
velocity boundary. The incident rays to the left of point C, e.g.,
at point A, are at precritical incidence, and they generate re-
fracted waves in the lower layer. The incident rays to the right
of point C, e.g., at point B, are at postcritical incidence: total
reflection occurs and transmission ray tracing is stopped. For
precritical incident rays, the sine of the refraction angle is <1
and the incident wavefront (traveltime contour T1) in the slow
layer and the corresponding refracted wavefront in the fast
layer are continuous across the velocity interface. For postcrit-
ical incident rays, however, the incident wavefront (traveltime
contour T2) in the slow layer and the refracted wavefront in
the fast layer are discontinuous across the velocity interface.
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ALGORITHM

In a 2-D medium, the traveltime of wave propagation is de-
scribed by the eikonal equation,(

∂t

∂x

)2

+
(
∂t

∂z

)2

= s2(x, z), (1)

which relates the gradient of traveltimes to the slowness of
the medium, where (x, z) is the spatial coordinate, t is travel-
time, and s(x, z) is slowness (reciprocal of velocity). We pa-
rameterize the medium using square cells, with mesh spacing
h and constant slowness within a cell (Figure 2). In a square
cell when traveltimes at three corners a, b, and c are known,
the traveltime at the fourth corner, d, can be computed using
a finite-difference method assuming local plane-wave propa-
gation. We use the centered finite-difference operator (Vidale,
1988) to approximate the two differential terms in equation (1)
and obtain the traveltime td at corner d:

td = ta +
√

2(hs)2 − (tb − tc)2. (2)

Here, s is the slowness in the cell with the grid index of cor-
ner d, and ta, tb, and tc are traveltimes at corners a, b, and c
respectively.

Equation (2) can only be used for traveltime calculations at
precritical incidence, where direct-arrival wavefronts are con-
tinuous across an interface and the time difference between
the diagonal corners of a square cell is

√
2 hs at most. At

postcritical incidence, the argument inside the square root be-
comes negative. One option is to reset the negative number
inside the square root to zero (Vidale, 1988, 1990), but this
does not conform to physical wave phenomena and produces

FIG. 1. Direct-arrival transmission ray tracing and wavefronts
in a two-layer velocity model. The source is in the layer of
slower velocity. Thin, dashed curves represent wavefronts.
Note the absence of head-wave arrivals and, therefore, the
discontinuity in traveltimes across the interface at postcritical
incidence.

FIG. 2. In a square cell with dimension h and constant slowness
s, when traveltimes at three corners are known, the traveltime
at the fourth corner can be calculated. Edge ab may be oriented
horizontally or vertically.

jitters or instability in the traveltime table. Instead, at post-
critical incidence, as in direct-arrival ray tracing, we use the
critically refracted creeping ray along the velocity boundary
(which is also a direct arrival) to compute traveltime:

td = min(tb, tc)+ hs. (3)

Equation (3) is applicable for interfaces of 0◦ and 90◦ dip,
the dip of the interface being recognized by the minimum des-
ignation. (In a discrete velocity model, dipping interfaces are
represented by stairways, with sides of 0◦ and 90◦ dip.) If, in
addition to the slowness model, the dips of the interfaces are
also stored, then the traveltimes of critically refracted creeping
rays may be obtained accurately by using trigonometric rela-
tionships. When the term inside the square root in equation (2)
becomes negative at locations not in the neighborhood of an in-
terface, the traveltime at corner d is assigned the larger of those
at corners b or c. In doing so, we recognize that rays traveling
through slow-velocity sediments are likely to be more ener-
getic than those traveling through high-velocity zones such as
salt domes.

Computation order

At first, all gridpoints of the traveltime table are assigned
a value larger than any possible valid traveltime (this helps in
locating local traveltime minima at the two ends of a traveltime
computation front edge). The traveltime computation is initial-
ized by using straight raypaths in a square of constant velocity
surrounding the source. A square with side 3h is chosen here
for the initialization. Traveltime computations are then carried
out recursively in the order of expanding squares (Figure 3).

The filled squares in the figure indicate gridpoints for which
the traveltimes have been calculated. These traveltimes are
used to compute traveltimes to gridpoints at the next outer
ring (the hollow squares).

When calculating a new ring of traveltimes, computations
proceed sequentially on the four edges. (When the source is on
the surface of the earth, the top edge need not be computed.)
To initialize computation at an edge, the inner edge is first
examined in a loop from one end to the other to locate points

FIG. 3. Computation layout; S is the source point. Traveltime
computation proceeds sequentially on the four edges: top,
right, bottom, and left. Each edge is divided into two seg-
ments separated by the traveltime local minimum closest to
the source. Black circles joined by straight lines indicate the
two ends of a segment.
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of local minimum traveltime. The traveltime td to a point on
the outer ring directly outside a local minimum is computed as
(Vidale, 1988)

td = ta +
√

(hs)2 − 0.25(tb − tc)2. (4)

Here, ta is the local minimum traveltime in the inner edge, tb
and tc are the traveltimes at its inner edge neighbors, and s is
slowness at corner d. If the argument inside the square root of
equation (4) is negative, the traveltime at node d is computed
as

td = ta + hs. (5)

At the next stage, equations (2) and (3) are applied to com-
pute traveltimes sequentially on the four edges. Each edge is
divided into two segments separated by the traveltime local
minimum closest to the source (Figure 3). For example, in
Figure 3 the top edge is divided into segments AB and AC.
Point A is the local traveltime minimum closest to the source,
which may deviate away from the center of the edge when
velocity varies laterally. The traveltime calculation on each
segment is done in two loops. In each loop, corners a and b
of the square cell (Figure 2) are in the inner edge; corners
c and d are in the outer edge. The traveltime calculation is
done in upwind order, i.e., ta< tb. The first loop progresses
from B to A, computing traveltimes of incoming waves (trav-
eltimes increase inward). The second loop progresses from A
to B, computing traveltimes of outgoing waves (traveltimes in-
crease outward). For a point outside an inner-edge local trav-
eltime maximum, the traveltime computed by the incoming
loop (the first loop) is replaced by the traveltime computed
by the outgoing loop. The reason is that the direct arriving
wave is generally an outgoing wave; for example, looking ahead
to Figure 5 at offset 6 km, the direct arrival is propagating
down and away from the source, whereas the head wave is
propagating up and toward the source. Computations continue
to the edges of the model, completely filling the traveltime
table.

EXAMPLES

Figure 4 shows traveltime contours of the direct arrival
in a velocity model with a high-velocity quadrant superim-
posed on a velocity trend that increases linearly with depth.

FIG. 4. Traveltime contours of a direct arrival at 0.1 s interval
in a velocity model with a high-velocity quadrant.

Figure 5 shows the overlay of the snapshot wavefield computed
by finite-difference wave equation modeling and the corre-
sponding traveltime contour at 1.5 s. Notice that the travel-
time contour coincides closely with the wavefront of the direct
arrival, as opposed to the first-arrival critical refraction (head
wave).

Time migration

Both poststack and prestack time migration involve evalu-
ating the NMO equation in a 1-D velocity model. This NMO
equation is not accurate for long offset (Causse et al., 2000)
because it does not take into account ray bending at veloc-
ity interfaces. Our method can compute accurate traveltimes
for all offsets. Additionally, where there is no reflector dip
>90◦ and therefore no turning wave, the method can be simpli-
fied greatly. The self-explanatory Fortran code is given in the
Appendix.

Figure 6 shows traveltime contours in a 1-D model with large-
velocity variations (Causse et al., 2000). Thickness in meters
and interval velocity in meters per second of the layers, from
shallow to deep, are (250, 1500), (400, 2000), (600, 2400), (200,
2800), (500, 3200), and (550, 3600). Note that head-wave trav-
eltimes are not present. A traveltime map such as this, which
describes wave propagation accurately for all offsets, can be
used in NMO correction and prestack time migration (Kim
and Krebs, 1993) after converting depth to time.

FIG. 5. Overlay of wave-equation modeling snapshot wave-
form and corresponding traveltime contour at 1.5 s for the
same velocity model as Figure 4.

FIG. 6. Traveltime contours of a direct arrival at 0.1 s interval
in a 1-D model containing large velocity variations.
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Depth migration

We tested our traveltime computation method on the
Marmousi synthetic data set (Bourgeois et al., 1991). This data
set was generated by 2-D acoustic wave equation modeling us-
ing the finite-difference method. It has 240 shot gathers with 96
traces each. The model is constructed based on a profile of ac-
tual geology. Because the velocity model and structure are very
complicated, it has since become a popular test data set for ad-
vanced migration methods (Audebert et al., 1997; Bevc, 1997).
The imaging objective is an oil reservoir in an anticline struc-
ture below a series of growth faults that cause rapid lateral
velocity variations.

Figure 7 shows a direct-arrival traveltime map overlain on
the velocity model. Notice the critically refracted creeping ray
traveltimes near the upper surface at 8–9 km. Figure 8 shows the
stacked image after prestack Kirchhoff depth migration using
direct-arrival traveltimes. The growth faults in the upper part
of the section are imaged well; the imaging objective, which is
the anticline structure below 2.3 km in depth and between the
lateral distance 6 and 7 km, is imaged clearly. Figure 9 shows
the Kirchhoff migration image using first-arrival traveltimes.
The growth faults are not imaged well, and the target anticline
structure is largely absent because the first arrivals carry very
little energy (Geoltrain and Brac, 1993).

CONCLUSIONS

This finite-difference method of solving the eikonal equation
successfully computes the traveltimes of direct-arriving waves.
The computed traveltimes closely coincide with wavefronts
computed by finite-difference wave equation modeling. By
incorporating into the traveltime computation some insights
in direct-arrival ray tracing and physical wave phenomena—
namely, that direct-arrival wavefronts are discontinuous across
a velocity interface at postcritical incidence—traveltimes of
precritical, critical, and postcritical incidence rays are com-
puted correctly. Additionally, computing the square root of a
negative number is avoided so the method is guaranteed to be
stable. The computed traveltimes can be used in NMO correc-
tions and in Kirchhoff time and depth migrations.
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APPENDIX

FORTRAN PROGRAM TO COMPUTE TRAVELTIMES FOR NMO AND TIME MIGRATION

real s(nz),t(nz,nx),h #slowness, 2-D traveltime table, grid spacing
t(1,1)=0 # source location
do ix=2,nx # horizontal ray along surface

t(1,ix)=t(1,ix-1)+s(1)*h
enddo
do iz=2,nz # vertical ray below source

t(iz,1)=t(iz-1,1)+s(iz)*h
enddo
do iz=2,nz # now fill the remainder of the table
do ix=2,nx # computation layer one after another

tmp=2*s(iz)*s(iz)*h*h
tmp=tmp-(t(iz-1,ix)-t(iz,ix-1))* (t(iz-1,ix)-t(iz,ix-1))
if (tmp .ge. 0.) then # pre-critical

t(iz,ix)=t(iz-1,ix-1)+sqrt(tmp)
else # horizontal creeping ray

t(iz,ix)=t(iz,ix-1)+s(iz)*h
endif

enddo
enddo


