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c. amplitude and pulse−width
     calculation for attenuation
    tomography

b. original plan involved using
     iterative applications of a
     linearized solver to compute
     multi−valued traveltime maps.

       a. used for cheap updates
           of traveltimes in iterative
           tomography.

1. Development of an efficient
    FD linearized eikonal solver
    without aperture limitations.

2. Experimentation with higher

    fast−marching framework.
    order FD stencils within the 

3. Extensions to solve the
    ray−>cartesian coordinate
    mapping problem
    a. Take−Off angle
    b. Arc length integration
    c. Geometric spreading 
        estimates
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Motivations ... And ... Contributions
Interest in the linearized eikonal
equation and a general class
of advection−like PDE’s
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And after dropping higher order terms and dividing by 2 ....

Deriving The Linearized Eikonal Equation

Substituting the perturbed and original fields ...

We begin with the Eikonal Equation

Expansion

We then perturb both the slowness and traveltime fields
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The Linearized Eikonal Equation

5



Corresponds to conserving or integrating some quantity
over the characteristic curves defined by the time field

Conservation of
Take−Off angle

Arc−Length Integration

A Useful Class Of PDE’s

Linearized Eikonal Equation
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A global method for ordering the
evaluation of the finite−difference
operators − ideally the macro scheme
insures causality.

A local method for calculating
derivatives and updating traveltimes:
Shoulde produce accurate, smooth
local extrapolations.

The Two Sides Of FD Traveltime Methods

Macro Scheme

Micro Scheme
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Expanding in order of minimum
time: mimics wavefront and
guarantees causal application
of FD operators.

(Qin et.al. 92’)
(Cao + Greenhalgh 94’)

(Popovici + Sethian 97’)
(Sethian 96’)

Marching Schemes: Choices
Static Or Quasi−Static Marching Schemes

Down’n’Out

(Dellinger + Symes 97’)
(Kim + Cook 98’)

Depth Stepping

(Reshef + Kosloff 86’)
(El Mageed 96’)

Expanding Box
(Vidale ’88)

Dynamic Marching        Expanding Wavefronts
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Narrow
Band

(computational grid)

Narrow Band

Untouched

Already Visited

Minimum Time

Next Stencil
Evaluation

Fast Marching : Macro Algorithm

The causality (upwind ordering) 
of the finite−difference operators
is preserved by updating minimum
time nodes within the narrow−
band.
(Qin et.al. 92, Sethian ’96)
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A Simple Expression
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τ
i,j

1st

2nd

3rd

4th

Order

Upwind Difference Approximations

Substitution of appropriate stencils into the linearized eikonal
equation and solution for      yields an explicit update formula.
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A Useful Explicit Form
Upwind difference operators of arbitrary order can be expressed as...

Compressing the summations as P’s and equalizing cell dimensions ...

equation for arbitrary order upwind difference systems
Yielding an explicit extrapolation formula for the linearized eikonal
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A general FD
formula for arbitrary
order upwind
stencils

A PDE For Take−Off Angle Calculation

Dot product form

constant (Zhang 93’)
take−off angle is 
characteristic, 
Along any given
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Amplitudes in 
terms of source
radiation pattern,
velocity, and
geometric
spreading

Amplitude Transport
       Equation

And Amplitudes ?

Unfortunately, difficulties with J due to
inaccuracies in take−off angle derivatives
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3a.  At each evaluation, choose an appropriate
upwind stencil

3. Evaluate Finite−Difference Operators in the order
    determined by the sorted traveltimes

T1Initial Data : Traveltime Table, 

2. Initialize values near source

1. Sort traveltime data in increasing order 
    (or use previously determined ordering)

Method In A Nutshell
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1st−4th Order Stencils

Dynamic Gradient Evaluation

1. Search For Nearby
    Points in the narrow
    band.

4.Evaluate new
   Perturbed Time

Xdim,Zdim, Scale
Background Slowness
Background Traveltimes
Slowness Anomaly Field

Sort Background Times

Randomization
Best−of−three Medians
Explicit QuickSort

2. Select Highest−Order
    Applicable Stencil

3. Evaluate Background 
    Gradient

Loop Over Grid Locations In Order Of Increasing Time

Gradient Fields
Traveltime Perturbations

Output Results

Load Data

Maximum Stencil Order

LinEik Solver
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1. Coded in modular C++ with polymorphic storage
    constructs (template based).

2. Optimized Quicksort exploits

             c. Stack Formulated (no recursion)
             d. Low−level randomization phase

             b. Explicit swaps
            a. Best−Of−3 Median Picks

3. Written in general form to allow quick adaptation
     to any PDE expressable as ....

Implementation Details
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Analytic Solution: A Single Perturbed Layer
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Linearized Times = Blue
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3. The FD stencil does not have
a sqrt operation

If the sorting operation is included, both linear and
non−linear fast−marching algorithms are O(n lg n).
However, a linearized solver has several small wins
from a performance standpoint ....

Performance Aspects

2. Quick Sort has a low constant 

1. Might not require a traveltime sort ....
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1. All schemes initially exhibited only 1st order
    convergence.
Solution:  Careful treatment of near−source problem
                   via local tracing and LUMR.

Possible culprits:  initial traveltimes only 2nd order
                                   accurate i.e. 0th order spreading

estimates.

2. Both 3rd and 4th order schemes proved to be
    unstable. Cause?

3. Instabilities in calculating geometric spreading
    and amplitudes.

Numerical Difficulties
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Dealing With Near−Source Numerics

TTime field is non−differentiable at source:  introduces
first−order error into higher−order schemes unless 

(Kim + Cook, 98’) (Belfi + Symes, 98’)

L.U.M.R.
(Locally Uniform Mesh

    Refinement)

static dynamic

Solutions:

The Problem:

Adaptive Grid
    Strategies

(Folklore)

Ray Trace
Near−Source

Region

explicitly dealt with.
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2.  As part of the above methods, we have extended
     traditional Fast−Marching techniques to 2nd
     and higher orders of accuracy. 

1.  We have developed an efficient finite−difference
     scheme for solving a useful class of PDE’s including
                     a.  Linearized Eikonal Equation

                    b.  Take−Off Angle PDE
                    c. Arc Length Calculation

Conclusions
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Future Work

1.  Perfection of amplitude calculation

2.  Stabilize higher−order FD schemes

3.  Develop a scheme for calculating
     pulse broadening in attenuating
     media

4.  Continue the quest for multivalued
     FD Traveltimes
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