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xact expression for the effective acoustics of patchy-saturated rocks
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ABSTRACT

Seismic effects of a partially gas-saturated subsurface
have been known for many years. For example, patches of
nonuniform saturation occur at the gas-oil and gas-water con-
tacts in hydrocarbon reservoirs. Open-pore boundary condi-
tions are applied to the quasi-static Biot equations of po-
roelasticity to derive an exact analytic expression of the ef-
fective bulk modulus for partially saturated media with
spherical gas patches larger than the typical pore size. The
pore fluid and the rock properties can have different values in
the central sphere and in the surrounding region. An analytic
solution prevents loss of accuracy from ill-conditioned equa-
tions as encountered in the numerical solution for certain in-
put. For a sandstone saturated with gas and water, we found
that the P-wave velocity and attenuation in conventional
models differ as much as 15% from the exact solution at seis-
mic frequencies. This makes the use of present exact theory
necessary to describe patchy saturation, although �more real-
istic� complex patch shapes and distributions were not con-
sidered. We found that, despite earlier corrections, the White
conventional model does not yield the correct low-frequency
asymptote for the attenuation.

INTRODUCTION

When a porous rock is saturated by a mixture of two fluids, patchy
aturation refers to the case in which the saturation scale is large
nough so that the wave-induced pore-pressure changes cannot
quilibrate during a seismic period �Mavko and Mukerji, 1998�.
atches of nonuniform saturation occur at the gas-oil and gas-water
ontacts in hydrocarbon reservoirs. During production, the pressure
ecrease might lead to nucleation and the diffusive formation of free
as pockets. The contact between gas and water in reservoirs is not
ecessarily sharp, and typically a transition zone exists between full
as and full water saturation.
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Seismic low-frequency effects of partially gas-saturated hydro-
arbon reservoirs have been known for many years �e.g., Castagna et
l., 2003; Chapman et al., 2006; Goloshubin et al., 2006, and refer-
nces therein�. For example, high-resolution surveys make it feasi-
le to detect pockets of unswept reserves and to monitor the progress
f enhanced recovery by gas and water injection �Helle et al., 2003�,
nd the inclusion of P-wave velocity dispersion in interpreting well
og data of partially saturated sediments can be used to identify free
as and relate surface seismic data to synthetic seismograms �Lee
nd Collett, 2009�. The real-data observations of Saenger et al.
2009� are consistent with a partially saturated hydrocarbon reser-
oir model in which poroelastic effects caused by wave-induced flu-
d flow and oscillations of different fluid phases can modify the om-
ipresent seismic background spectrum.

Laboratory observations have also demonstrated the effect of par-
ial saturation on acoustic velocities �e.g., Winkler and Nur, 1979;

urphy, 1982; Paffenholz and Burkhardt, 1989; Knight et al., 1998�
nd are supported by X-ray computer tomography images of the
atch distribution �e.g., Cadoret et al., 1995; Monsen and Johnstad,
005; Lebedev et al., 2009; Toms-Stewart et al., 2009� and numeri-
al simulations �e.g., Carcione et al., 2003; Masson and Pride, 2007;
icotti et al., 2007; Wenzlau and Müller, 2009�.
Wave-induced fluid flow effects in the fluid are modeled by isolat-

d spherical gas patches in the liquid saturating a homogeneous ma-
rix, as first proposed by White �1975�. Since then, significant
rogress has been made by considering various patch distributions
nd flow regimes �White et al., 1975; Dutta and Odé, 1979a, 1979b;
orris, 1993; Gelinsky et al., 1998; Johnson, 2001; Müller and
urevich, 2004, 2005; Müller et al., 2008; Gurevich et al., 2009; Pi-

otti et al., 2010�. More references for this topic are found in Toms et
l. �2006�. When a gas pocket is subjected to the macroscopic pres-
ure field of a compressional seismic wave �i.e., on a length scale
uch larger than the size of the inhomogeneity�, the pocket will con-

ract and expand. These oscillations generate waves on the mesos-
ale �i.e., on the length scale of the inhomogeneity�, which consume
nergy from the seismic wave, causing intrinsic attenuation.

Patchy-saturation theories apply to a nonrigid porous medium ful-
y saturated by a fluid that contains gas pockets �radius a� larger than

d 24 March 2010; published online 6August 2010.
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N88 Vogelaar et al.
he typical pore size; see Figure 1. The interaction among the indi-
idual gas pockets is neglected by defining a liquid influence shell
radius b� surrounding each pocket. The gas fraction is sa� �a /b�3.
he radius b is chosen so that the volume of the sphere 4

3�b3 equals
he volume of the unit cell of the cubic lattice.

The external pressure field is assumed to be spatially homoge-
eous at the scale of the inhomogeneity, and the effective �macro-
copic� bulk modulus can be obtained by considering a representa-
ive volume comprising a single gas pocket and a liquid shell sur-
ounding the pocket. The effective bulk modulus K��� can then be
educed via its definition:

K�����
b

3u�b�
pe, �1�

here u�b� is the complex-valued radial solid displacement at the
uter boundary of the unit cell. Solving the Biot �1956a� equations
ields the solid displacement as a function of the applied pressure pe

nd hence the effective bulk modulus of the representative volume.
Once the effective bulk modulus is obtained, the velocity c
Re�k1� /� and attenuation �inverse quality factor� Q�1

2 Im�k1� /Re�k1� of the seismic wave are computed using the ef-
ective complex wavenumber

k1���������K����
4

3
�� �2�

ith shear modulus �. Subscript 1 describes the fast wave on the
acroscale, and � is the total density �1����s����1�sa��fb

sa�fa�, where �fa,b denotes the gas �subscript a� or liquid �subscript
� density.
In this paper, we derive the exact analytic solution to patchy satu-

ation in the quasi-static Biot �1956a� context for spherical gas pock-
ts. Although the governing equations were already given by
ohnson �2001�, no analytic solution was yet available. We obtain
he exact solution by solving the boundary value problem of an 8

a

b′ b

igure 1. Geometry of a cubic lattice of periodic spherical gas pock-
ts with radius a, separated by distance 2b�. Each gas pocket is sur-
ounded by a liquid shell with radius b, so that the volume of the cube
quals the volume of the sphere V �V .
b� b
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8 system analytically. Johnson �2001� solved this system numeri-
ally, and he introduced a generalized dynamic bulk modulus.

We compare our analytic quasi-static solution with the numerical
olution of Dutta and Odé �1979a� and the widely adopted analytic
uasi-static solution of White et al. �1975�, including the modifica-
ions by Dutta and Seriff �1979�. Following Johnson �2001�, we also
ompare our results with those using the generalized dynamic bulk
odulus approach. Dutta and Odé �1979a� computed the behavior

ver the full frequency domain, but they encountered numerical loss
f accuracy at high frequencies. An analytic solution implicitly pre-
ents errors from the numerical inversion of ill-conditioned equa-
ions, as also encountered by Dutta and Odé �1979a�.

QUASI-STATIC PATCHY THEORY

oncentric spheres geometry

Consider first the response of a homogeneous sample fully satu-
ated with a single fluid to a uniform compressive stress. We pre-
ume that the frequency is low enough that the Biot �1956a, 1956b�
heory is in its low-frequency limit �quasi-static case�. Thus the fast
ompressional and shear waves are nondispersive and nonattenuat-
ng, whereas the slow compressional wave is diffusive in character.
he requirement is ���B, where the Biot crossover frequency is
B��� / �k0�	�f�. The rock properties are porosity �, permeabili-

y k0, and tortuosity �	; the fluid properties are density �f and shear
iscosity � .

The starting equations are essentially those of the Biot �1956a�
heory at low frequencies by setting to zero all higher order inertial
erms and by taking the dynamic permeability equal to its steady-
tate value k0 �Norris, 1993; Johnson, 2001�. Adopting an exp�i�t�
ependence for all relevant quantities, the quasi-static Biot equa-
ions are

� · 
̂ �0, �3�

k0

��
� p̂� i��û� Û�, �4�

here u and U are the solid and fluid displacement, respectively. The
ccent circumflex over a field variable �displacement, stress, and
ressure� denotes small variations of that variable. The accent cir-
umflex over the dependencies of these field variables �such as
train� is omitted. Using the summation convention, the total stress
ij �solid plus fluid phases� and pore fluid pressure p in terms of the
olid and fluid strains eij� � · û and �ij� � · Û are, in the case of
sotropic materials �Johnson, 2001�,


 ij� ��P�Q�2��ekk� �Q�R�� kk�
 ij�2�eij, �5�

��p�Qekk�R� kk. �6�

xplicit expressions of the poroelastic coefficients are given in terms
f the bulk moduli of the pore fluid, the solid, and the matrix Kf,s,m,
espectively, as �Biot and Willis, 1957�

P�
�Km� �1���K�

��
�

4

3
�,

Q�
�K�

�
,

�
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Exact expression for patchy saturation N89
R�
�2Kf

��
, �7�

here ���� �K� /Ks and K��Kf�� ��� are auxiliary parame-
ers and � �1�Km /Ks is the so-called Biot-Willis coefficient. For
ater use, we define the Biot-Gassmann modulus

KBG�H�
4

3
� �8�

n terms of the static compressional-wave modulus H� P�2Q
R and the shear modulus �.
The spherically symmetrical solutions to equations 3 and 4 obey

he following equations �Johnson, 2001�:

�

�r
	�P�Q�� �u

�r
�

2u

r
�� �R�Q�� �U

�r
�

2U

r
�
�0,

�9�

nd

i���2

k0
�U�u��

�

�r
	Q� �u

�r
�

2u

r
��R� �U

�r
�

2U

r
�
,

�10�

here u and U are the radial displacements of the solid and the fluid,
espectively.

Following Johnson �2001�, there are two kinds of solutions to the
bove equations: �1� Solutions for which the fluid motion is locked
n to the solid’s motion, u�r� /U�r��1, are linear combinations of r
nd r�2. These are low-frequency fast compressional-wave solu-
ions. �2� Solutions for which u�r� /U�r����P�Q� / �Q�R� are
inear combinations of spherical Bessel functions j1�k2r� and
1�k2r�, where k2� ���i� /D� is the wavenumber of the slow com-
ressional Biot wave. For these solutions, the fluid and solid move
ut-of-phase, and the relevant quantities obey a diffusion equation
ith the slow wave diffusivity given by

D�
k0

��2

PR�Q2

H
. �11�

he general solution for the radial direction is therefore written as
Johnson, 2001�

u�r��Ar�
B

r2 � �Q�R��Fj1�k2r��Gn1�k2r��,

U�r��Ar�
B

r2 � �P�Q��Fj1�k2r��Gn1�k2r��,

p�r���
3�Q�R�

�
A�

�PR�Q2�
�

k2�Fj0�k2r�

�Gn0�k2r��,


 �r��3KBGA�
4�

r3 B�
4��Q�R�

r
�Fj1�k2r�

�Gn1�k2r�� . �12�

The above equations are general and apply to both the gas sphere
nd the liquid shell. The quantities P, Q, R, K , and k ��� have dif-
BG 2

Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to S
erent values in the two regions because they are functions of the
ore fluid and the rock properties. The above equation set 12 was
olved numerically by Johnson �2001�, but we show here that the ex-
ct analytic solution is readily available.

xact analytic solution

The quasi-static solution to patchy saturation, equation 1, is found
y applying the Biot �1956a� theory to the geometry of Figure 1 us-
ng the appropriate boundary conditions. There are eight arbitrary
onstants in the above equation set 12: A, B, F, and G in each of the
wo regions. The requirement that the particular solution be finite at
�0 implies Ba�0 and Ga�0. The remaining six unknowns are
ound from the continuity of solid displacement u and fluid displace-
ent U, pressure p and total stress 
 at r�a, and the condition that

t r�b the external pressure pe is applied at a sealed pore boundary
Deresiewicz and Skalak, 1963; Dutta and Odé, 1979a; Johnson,
001�:

ua�a��ub�a�, �13�

Ua�a��Ub�a�, �14�

pa�a��pb�a�, �15�


 a�a��
 b�a�, �16�

ub�b��Ub�b�, �17�


 b�b���pe. �18�

nalogous boundary conditions are used by, e.g., Berryman and
higpen �1985�, Taylor and Knight �2003�, and Ciz and Gurevich

2005� in related problems. By solving this set, the field variables are
etermined uniquely everywhere. The sealed pore condition at the
uter boundary, equation 17, gives

Gb��Fb
j1�k2bb�
n1�k2bb�

. �19�

his means that all expressions �equation set 12� in the liquid region
an be rewritten using the auxiliary parameter

f�� j��k2ba��n��k2ba�
j1�k2bb�
n1�k2bb�

, �20�

here ��0,1 is the order of the spherical Bessel function. Subtrac-
ion of the solid and fluid continuity equations 13 and 14 at r�a
eads to

Faj1�k2aa��Fbf1
Hb

Ha
, �21�

o that the solid continuity equation 13 becomes

Aaa�Aba�
Bb

a2 �Fbf1N, �22�

ith
EG license or copyright; see Terms of Use at http://segdl.org/
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N90 Vogelaar et al.
N� �Rb�Qb�� �Ra�Qa�
Hb

Ha
. �23�

he continuity of total stress and pore pressure at the interface be-
ween the regions now yields that

3a

4�
AaKBGa�

3a

4�
AbKBGb�

Bb

a2 �Fbf1N, �24�

�3Aa�Ra�Qa��3Ab�Rb�Qb�

�Fb�PbRb�Qb
2�k2bf0�1�h�, �25�

here we introduced another auxiliary parameter

h�
�a

�b

Da

Db

k2a

k2b

j0�k2aa�
j1�k2aa�

f1

f0
, �26�

here the slow wave diffusivity D in each region is given by equa-
ion 11. Adding equations 22 and 24 yields the surprisingly simple
elationship

AaHa�AbHb. �27�

he combination of equations 22, 25, and 27 yields

Bb��b3Abg, �28�

ith

g�sa�1�
Hb

Ha
�

3N2

PbRb�Qb
2

f1

f0

1

k2ba

1

1�h
� . �29�

he last boundary condition �equation 18� finally implies

3AbKBGb�
4�

b3 Bb��pe, �30�

o that with equation 28 this becomes

Ab��
pe

3KBGb�4�g
. �31�

he solid displacement at the outer boundary is u�b��Abb�1�g�,
nd with equation 1, the exact expression for the quasi-static bulk
odulus K��� is

K����

KBGb�
4

3
�g

1�g
. �32�

ll information about the presence of gas in the liquid phase is solely
aptured in parameter g. It is clear from equations 29 and 32 that, in
he case of complete liquid saturation, sa�0 and g�0, so that K���
educes to KBGb. For complete gas saturation, sa�1 or a�b, so that

f1�0 in equation 20. This means that g�1�Hb /Ha, and using
quation 8, K��� reduces to KBGa. Equation 32 is an exact analytic
xpression for partially saturated media, which reduces to the Biot-
assmann limit in the case of full saturation by a single fluid.
Expressions 29 and 32 comprise the combined effect of fast and

low compressional-wave contributions. In the lower �static� and
pper �no-flow� bounds of K���, there are no effects of pressure dif-
usion �i.e., slow wave effects�. These bounds are given in Appendi-
es A and B. The slow wave contributions associated with viscous
Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to S
issipation due to the relative fluid-solid movement occur only in the
ntermediate frequency regime through the wavenumbers k2a and

2b.

omparison of the exact solution with other solutions

The parameter set of Table 1 is chosen to show the effective bulk
odulus as a function of frequency in Figure 2. The gas fraction is

.1 and b�0.1 m. The results are shown for four calculations: �1�
he present exact analytic quasi-static solution �solid curve�; �2� the
nalytic quasi-static solution �dotted curve� of White �1975�, includ-
ng the corrections by Dutta and Seriff �1979�; �3� the exact numeri-
al solution �dots� in the full-Biot context by Dutta and Odé �1979a�;
nd �4� the generalized analytic quasi-static calculations �dashed
urve� of Johnson �2001�. The low- and high-frequency limiting
oduli, Biot-Gassmann-Wood modulus KBGW and Biot-Gassmann-
ill modulus KBGH, respectively, are given by dashed-dotted lines.
As long as the frequency is low enough, the exact analytic and nu-
erical full-frequency solutions are identical. The computation of

he effective bulk modulus of the representative volume makes sense
nly if the frequency is low enough so that the wavelengths of the
ast compressional and shear waves are large compared to the di-
ensions of the pockets and their mutual distance �Johnson, 2001�.
his means that the mesoscopic condition ���r should hold where

r �cS /b, in which cS is the speed of the shear wave in the region of
he liquid. When the wavelength of the shear wave becomes of the
ame order as the patch size b, resonance occurs in the full-frequen-
y solution. The frequency at which the medium becomes extremely
ompliant is �r /2� �1.4 kHz. On increasing the frequency, the
edium oscillates out-of-phase with respect to the applied pressure

pe �antiresonance�, and fluctuating values of the bulk modulus occur
n the full-frequency solution.

Resonances and antiresonances occur in coupled systems when
ne �or more� of the systems is finite in size �Morse and Ingard,
968�. At the antiresonance frequency, no incident energy of the ex-
ernal �macroscopic� wavefield is radiated from the medium, so that
he medium behaves as though it were rigid and very high values of
he bulk modulus are reached. Similar resonance phenomena �scat-
ering� are seen for the full-frequency solutions in analogous prob-
ems �e.g., Shapiro and Müller, 1999; Jocker et al., 2004; and Voge-
aar and Smeulders, 2007�.

The analytic structure of K��� allows investigation of the real and
maginary parts or the absolute value and phase. Both approaches
xhibit their own distinct characteristic transition frequency, which

able 1. Constituent properties of the partially saturated
andstone rock with a relatively weak frame (Johnson,
001).

Matrix Grains Water Gas

ensity � �kg /m3� 2.65·103 1.0·103 1.0

ulk modulus K �Pa� 2.637·109 35.0·109 2.25·109 1.0·105

iscosity � �Pa·s� 1.0·10�3 1.0·10�5

orosity � �-� 0.284

ermeability k0 �m2� 1.0·10�13

hear modulus � �Pa� 1.740·109
EG license or copyright; see Terms of Use at http://segdl.org/
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Exact expression for patchy saturation N91
s commonly referred to as the relaxation frequency because it char-
cterizes the transition from the relaxed �drained� to the unrelaxed
undrained� response as the frequency increases.

The deviations of the models by White �1975� and Johnson �2001�
rom our exact analytic solution occur around the transition frequen-
y �c �Db /b2 �Pride et al., 2004�. Using equation 11, we obtain
c /2� �5 Hz. At this transition frequency, the Biot slow wave dif-

usion length equals the characteristic length of the inhomogeneity
Gurevich and Lopatnikov, 1995�. This equation indicates that the
esoscopic loss mechanism moves toward lower frequencies with

ncreasing viscosity and decreasing permeability. This behavior is
pposed to the Biot �1956a, 1956b� relaxation mechanism �global
ow�. Note that the peak frequency in the Johnson model is identical

o our exact frequency value, whereas the one in the White model is
t lower frequencies. The difference depends on the rock and fluid
roperties and increases with the increasing gas fraction.

Johnson �2001� and Pride et al. �2004� connect the high- and low-
requency asymptotes of their functions by a simple frequency func-
ion. The exact expression of K��� allows one to define the exact
ransition frequency �where Im
K� is maximum or Re
K� has its in-
ection point� by setting d Im
K� /d� �0 or d2Re
K� /d�2�0.An-
ther choice is where the phase value of K is maximum or where the
bsolute value of K has its inflection point. Due to the complex na-
ure of the spherical Bessel functions, it is not straightforward to re-
rieve a simple exact expression for �c. We do note, however, that for
wide range of rock and fluid properties and fractional volumes,
fbk0 /2�� b��b�a�2 gives a good approximation of the frequency
here the imaginary part of K is maximum. Similar relations are,

.g., given by Pride et al. �2002� and Carcione et al. �2003�. The exact
ransition frequency provides the exact maximum level of attenua-
ion. For a reservoir rock with alternating gas and water saturation,
uintal et al. �2009� recently found that the maximum level of atten-
ation can be approximated by only five parameters �Km, Ks, �, Kfb,
nd ��.

VELOCITY AND ATTENUATION EXAMPLES

To illustrate the usefulness of our exact expression, we show the
ccuracy of velocity and attenuation predicted by the other three
atchy models �corrected White, full Dutta-Odé, and generalized
ohnson�. We use the constituent properties of Table 1 with b

0.1 m. In Figure 3, the gas fraction is 0.1, and in Figure 4 the gas
raction is 0.5.

Figure 3a shows the introduced error in P-wave velocity as a func-
ion of frequency. The absolute error is the difference between our
xact velocity and the velocity calculated by each model. For a gas
raction of 10%, the underestimation in the velocity is 20 m /s at
00 Hz for the corrected White model and 15 m /s for the Johnson
odel. At lower frequencies, both models overestimate the velocity

e.g., 10 m /s at 20 Hz for the White model�. The full-frequency
utta-Odé model is identical to our quasi-static result below
00 Hz.

Figure 3b shows the introduced error in the P-wave attenuation.
ere, the error is relative; i.e., it is the difference between the exact

nd approximate attenuation relative to the exact attenuation value.
he most striking result of present analysis is that, despite the static-
elocity corrections by Dutta and Seriff �1979�, the White model
oes not yield the correct low-frequency value for the attenuation.
or a gas fraction of 0.1, the attenuation is overestimated by about
% for low frequencies ��10 Hz�. For higher frequencies, the rela-
Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to S
ive error in attenuation ranges from �7% at 60 Hz to �12% at 4
Hz for the White model. For the generalized Johnson model, the in-
roduced errors in attenuation are between �4% at 40 Hz and �8%
t 250 Hz.

The errors in velocity and attenuation from the White and general-
zed Johnson solutions depend on the gas fraction. In Figure 4a, the
as fraction is 0.5, and the maximum error in velocity is �18 m/s for
he White model and �11 m/s for the generalized Johnson model.
he Dutta-Odé model is accurate below 100 Hz. The attenuation
redicted by the White model, Figure 4b, is almost 20% too high at
ow frequencies ��100 Hz�.

For very low or very high gas fractions, the calculations show that
he error in predicted velocity by the White and the generalized
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igure 2. Effective bulk modulus as a function of frequency. �a� Real
art of K /KBGW. �b� Imaginary part of K /KBGW. The solid curve is the
resent exact analytic solution in the quasi-static context �equation
2�. The dotted curve is the analytic solution by White �1975�, as
orrected by Dutta and Seriff �1979�. The dashed curve is the gener-
lized analytic solution by Johnson �2001�. The dots are the exact
umerical solutions in the full Biot context by Dutta and Odé
1979a�. The lower and upper horizontal dashed-dotted lines are the
imiting moduli KBGW and KBGH, equations A-6 and B-2. The input
alues are from Table 1; s �0.1 and b�0.1 m.
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ohnson models is less than 4 m /s. However, for, say, sa�0.001,
he attenuation predicted by the White model is 20% too high at

kHz and 15% too low at 700 Hz for the generalized Johnson mod-
l. For sa�0.9, the predicted attenuation is more than 40% too high
or the White model below 1 kHz �i.e., in the entire seismic range�
nd more than 15% too high for the generalized Johnson model from
0 to 1000 Hz. Indeed, for high gas fractions �sa � 0.52�, the gas-
lled spheres in the cubical lattice interact, and we might consider
ater-filled spheres surrounded by gas. The White calculations then
redict the attenuation also to be more than 40% too high below
00 Hz.

White �1975� also considers the case in which the central sphere is
aturated with a very compressible gas. For Kfa→0, equation 29 be-
omes

g*�sa�1�
Hb

Km�
4

3
�

�
3�Rb�Qb�2

PbRb�Qb
2

f1

f0

1

k2ba�, �33�
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igure 3. Deviation in the effective P-wave acoustic bulk properties
f patchy saturation models for a gas fraction of 10%. �a� Error in
hase velocity. �b� Error in attenuation. Legend and input are as in
igure 2.
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.e., independent of the physical properties of the gas. Then the static
imit for the velocity is again identical to White’s static limit, and

BGW goes to Km. The error in White’s low-frequency attenuation,
owever, remains and is, in fact, exactly the same as before. In the
ormulation of White �1975�, the effective bulk modulus in this spe-
ific case still depends on the properties of the gas through his no-
ow modulus. It is our belief that there is no need to alter the White
odel because we present here the exact solution to patchy satura-

ion.
Finally, we stress that different patch shapes and distributions in

pace might show a very different dependency of the bulk modulus,
elocity, and attenuation on frequency. The relaxation frequency de-
reases from regular �periodic� to irregular �e.g., fractal, random�
atch distributions �Müller et al., 2008, and references therein�,
hereas the relaxation frequency increases from simple �e.g., spher-

cal� to complex �e.g., fractal� patch shapes �Picotti et al., 2010, and
eferences therein�. In either case, the peak attenuation decreases
nd the crossover region from the low to the high frequency asymp-
ote becomes broader.
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igure 4. Deviation in the effective P-wave acoustic bulk properties
f patchy saturation models for a gas fraction of 50%. �a� Error in
hase velocity. �b� Error in attenuation. Legend is as in Figure 2.
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Because we consider only spherical concentric patches in a regu-
ar periodic distribution, our simplified model probably is not the
est for questions related to the interpretation of patchy-saturated
ocks in general. In this respect, the generalized Johnson function
ight be a better candidate, but for spherical patches our analytic re-

ults facilitate rapid comparison with other existing models.

CONCLUSIONS

We derived an exact analytic expression of the effective bulk
odulus for partially saturated media with spherical gas patches.
atchy theories apply to a porous medium fully saturated by a fluid

hat contains gas pockets larger than the typical pore size. The deri-
ation is based on the quasi-static Biot equations of poroelasticity
pplied to open-pore boundary conditions.

Our exact analytic solution is identical to the numerical solution
s long as the frequency is low enough so that the wavelength of the
ast compressional and shear waves are large compared to the di-
ensions of the pockets and their mutual distance. Unlike the nu-
erical solution, the quasi-static analytic solution does not result in
loss of accuracy from the inversion of ill-conditioned equations for
ertain input or from the subtraction of large arguments in the spheri-
al Bessel and Neumann functions. Our expression provides the ex-
reme cases of complete liquid or complete gas saturation, as well as
he case in which the compressibility of the gas can be neglected. In
ddition, the expressions for the static and no-flow frequency limit
re deduced directly from the quasi-static expression of the effective
ulk modulus.

The analytic expression is particularly convenient for computa-
ions because it is concise and exact. Such computations allow cal-
ulations of the dispersion of the P-wave phase velocity and the level
f intrinsic attenuation, and wave-induced fluid flow at the gas-water
ontact area �relative fluid to solid displacement�. We found that the
hase velocity and attenuation calculated from the generalized ana-
ytic expression of the Johnson model differ as much as 15% from
he exact Johnson numerical solution at seismic frequencies. The er-
ors in the White model are as high as 20% in the seismic range, and
espite the static-velocity corrections, the model does not yield the
orrect low-frequency level for the P-wave attenuation.

Finally, our analytic expression allows one to find the exact value
f the transition frequency at which mesoscopic loss �pressure equil-
bration of the pore fluids through diffusion� is maximum. Because
he production and injection phases of a hydrocarbon reservoir per-
urb the fluid fractions, knowledge of the exact transition frequency
nd level of attenuation is of particular interest for such seismic ap-
lications as reservoir characterization and time-lapse modeling in
racking fluid movements.
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APPENDIX A

STATIC LIMIT

The static limit of the bulk modulus can be deduced directly from
quation 32. For �→0, we have to use the asymptotic forms of the
pherical Bessel functions with small arguments: limz→0 j0�z��1,
imz→0 j1�z��z /3, limz→0 n0�z���1 /z, and limz→0 n1�z��

1 /z2 �Abramowitz and Stegun, 1965�. The static limit of the auxil-
ary parameter in equation 26 is

lim
�→0

h��
�a

�b

Da

Db

sb

sa
, �A-1�

here sb�1�sa. We find for equation 29 that

lim
�→0

g�sa�1�
Hb

Ha
�

k0

�2

sb

Hb

N2

saDb�b�sbDa�a
�,

�A-2�

�
sa�Qb�Rb��Ha�Hb�

sa�Qb�Rb�Ha�sb�Qa�Ra�Hb
. �A-3�

he zero values of g and h are real-valued. Substituting this result in
quation 1, we have that

lim
→0

K����KBGW

�
KBGb�KBGa�Km��saKm�KBGb�KBGa�

�KBGa�Km��sa�KBGb�KBGa�
.

�A-4�

e used

KBG�
�Q�R�2

R
�Km. �A-5�

Following Johnson �2001�, the zero-frequency modulus is called
he Biot-Gassmann-Wood modulus KBGW.

A more accessible form of the modulus KBGW is found if we use
he expression for the Biot-Gassmann modulus:

KBGW�KBG�KW��Km��2	� ��

Ks
�

�

KW

�1

,

�A-6�

here the fluid modulus Kf is replaced in this case by the harmonic
verage KW of the two fluid moduli in regions a and b �Wood’s for-
ula�:

1

KW
�

sa

Kfa
�

sb

Kfb
. �A-7�

his was discussed earlier by Dutta and Odé �1979b� and Norris
1993� explicitly for layered and spherical patches. Johnson �2001�
tates that equation A-6 is an exact result, independent of the spatial
istribution of the fluids. Using the input of Table 1 with sa�0.1,
BGW is equal to 2.64 GPa. It is the lower bound of the effective bulk
odulus in Figure 2 and is well approximated by K in this case.
m
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The static limit of the bulk modulus can also be derived from the
tatic limit of the Biot �1956a, 1956b� theory. The Biot equations of
otion then reduce to �Dutta and Odé, 1979b�

�

�r
�� ·u��0, �A-8�

�

�r
�� ·w��0. �A-9�

ote that we work here with relative displacement w���U�u�.
he solutions for spherically symmetrical displacements are

u�r��Ar�Br�2, �A-10�

w�r��Fr�Gr�2. �A-11�

ence, we have for the pore pressure and total stress from equations
and 6 that

p��
Q�R

�
� �u

�r
�

2u

r
��

R

�2� �w

�r
�

2w

r
�,

�A-12�


 �H
�u

�r
� �H�2��

2u

r
�

Q�R

�
� �w

� r
�

2w

r
�,

�A-13�

nd therefore,

p��
3�Q�R�

�
A�

3R

�2 F, �A-14�


 �r��3KBGA�
3�Q�R�

�
F�

4�

r3 B . �A-15�

e note that the pressure is no longer a function of r as a result of the
isplacement functions u and w specified in equations A-10 and
-11. Again, Q, R, and KBG are elastic constants, and A, B, F, and G

re unknown variables in both regions. A finite solution at r�0 im-
lies Ba�0 and Ga�0. The remaining six unknowns are deter-
ined by using the boundary conditions 13–18.

From the continuity of pressure and total stress at the interface,
quations 15 and 16, we have that

�
3�Qa�Ra�

�
Aa�

3Ra

�2 Fa��
3�Qb�Rb�

�
Ab�

3Rb

�2 Fb,

�A-16�

3KBGaAa�
3�Qa�Ra�

�
Fa�3KBGbAb�

3�Qb�Rb�
�

Fb

�
4�

r3 Bb. �A-17�

e note that
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�Q�R��
R

�1�
Km

Ks
��, �A-18�

o that this value is identical in both regions because it does not de-
end on the fluid properties. Multiplication of the left- and right-
and sides of equation A-16 by �Q�R�� /R and subsequent addi-
ion to equation A-17 yields that

KmAa�KmAb�
4

3

�

a3Bb, �A-19�

here we have used equation A-5. This expression combined with
he continuity of solid displacement, Aaa�Aba�Bb /a2, gives

Aa�Ab, �A-20�

Bb�0. �A-21�

he no-flow condition at the outer boundary, equation 17, and the
ontinuity of relative displacement at r�a, equation 14, combine to

Gb��Fbb3, �A-22�

saFa��sbFb. �A-23�

he condition of the external stress at the outer boundary, equation
8, now yields

3KBGbAa�
3sa

sb

Qb�Rb

�
Fa��pe. �A-24�

y combining with the rewritten equation A-17,

3�KBGa�KBGb�Aa�
3

�
	Qa�Ra� �Qb�Rb�

sa

sb

Fa�0,

�A-25�

e find that

Fa�
1

3

sb�KBGa�KBGb��
sa�Qb�Rb�KBGa�sb�Qa�Ra�KBGb

pe,

�A-26�

Aa��
1

3

sa�Qb�Rb��sb�Qa�Ra�
sa�Qb�Rb�KBGa�sb�Qa�Ra�KBGb

pe.

�A-27�

sing ub�b��Abb in equation 1, we have that the effective bulk
odulus in the static limit is given by

KBGW��
b

3ub�b�
pe��

1

3Ab
pe

�
sa�KBGb�Km�KBGa�sb�KBGa�Km�KBGb

sa�KBGb�Km��sb�KBGa�Km�
.

�A-28�

sing sa�sb�1, this can be rewritten easily as equation A-4.
Equation A-21 means that in the zero-frequency limit, the total

tress is constant throughout both regions and equal to the applied
EG license or copyright; see Terms of Use at http://segdl.org/



e
t
A

a

e
e

T
s

w
f
m

a
p

s
�
O
t
t

w

T

A
T
A

b

S
b

s
e

p
B

T
c
b
t

A

B

B

—

B

C

C

Exact expression for patchy saturation N95
xternal radial stress. The pore pressure also is constant and a frac-
ion of the external radial stress. From equations A-14, A-5, and
-26, we find that this fraction is

lim
�→0

p

pe
�

1

�

�KBGa�Km��KBGb�Km�
�KBGa�Km�KBGb�Kmsa�KBGb�KBGa�

,

�A-29�

s also found by Dutta and Odé �1979b�.

APPENDIX B

NO-FLOW LIMIT

The high-frequency limit can also be deduced directly from
quation 32. For �→	, the frequency-dependent term in g vanish-
s, so that

lim
�→	

g�sa�1�
Hb

Ha
� . �B-1�

he no-flow limit of g is real-valued. With equation 1, it is easy to
how that

lim
�→	

K����KBGH�

KBGbHa�
4

3
�sa�KBGa�KBGb�

Ha�sa�KBGa�KBGb�
,

�B-2�

here KBGH is the Biot-Gassmann-Hill modulus. With a uniform
rame �i.e., constant �, Km, and Ks�, the effective bulk modulus of the
edium is in exact agreement with Hill’s �1963� theorem:

1

KBGH�
4

3
�

�
sa

KBGa�
4

3
�

�
1�sa

KBGb�
4

3
�

�
sa

Ha
�

sb

Hb
,

�B-3�

s Norris �1993� argued. In our example, KBGH�7.39 GPa is the up-
er bound of the effective bulk modulus in Figure 2.

We also consider the high-frequency limit of K��� under the as-
umption that the frequency is never so high as to violate
� ��B,�r�. This case is discussed by White �1975� and Dutta and
dé �1979b�.As the frequency of the external stress becomes higher,

he fluid has little time to flow. In case of the no-flow limit, the equa-
ions of motion become

�

�r
�� ·u��0, �B-4�

w�0, �B-5�

ith the solution

u�r��Ar�Br�2. �B-6�

herefore �cf. equations A-12 andA-13�,

p��
3�Q�R�

�
A, �B-7�
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 �r��3KGA�
4�

r3 B . �B-8�

gain, Ba�0, and the pore pressure is no longer a function of r.
hree boundary conditions 13, 16, and 18 provide expressions for
a, Ab, and Bb.

The continuity of total stress and solid displacement at the inner
oundary yields that

Aa�Ab�
Bb

a3 , �B-9�

Bb��Aba3KBGa�KBGb

Ha
. �B-10�

ubstitution of the above in the total stress condition at the outer
oundary yields that

Ab��
pe

3KBGb�4�sa�KBGa�KBGb�/Ha
, �B-11�

o that the effective bulk modulus in the high-frequency limit is giv-
n by equation B-2.

We realize that although the pore pressure is constant within each
hase, it is discontinuous at the inner boundary. Equations A-5, B-7,
-9, and B-11 then give

lim
�→	

pa

pe
�

�KBGa�Km�Hb

��KBGbHa�
4

3
�sa�KBGa�KBGb�� ,

�B-12�

lim
�→	

pb

pe
�

�KBGb�Km�Ha

��KBGbHa�
4

3
�sa�KBGa�KBGb�� .

�B-13�

his discontinuity at the inner boundary is due to the different physi-
al properties of the fluids in each region. However, the total radial
ulk stress is continuous, and because there is no relative fluid-flow,
he inner boundary acts as if it were sealed.
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