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Exact expression for the effective acoustics of patchy-saturated rocks

Bouko Vogelaar',

ABSTRACT

Seismic effects of a partially gas-saturated subsurface
have been known for many years. For example, patches of
nonuniform saturation occur at the gas-oil and gas-water con-
tacts in hydrocarbon reservoirs. Open-pore boundary condi-
tions are applied to the quasi-static Biot equations of po-
roelasticity to derive an exact analytic expression of the ef-
fective bulk modulus for partially saturated media with
spherical gas patches larger than the typical pore size. The
pore fluid and the rock properties can have different values in
the central sphere and in the surrounding region. An analytic
solution prevents loss of accuracy from ill-conditioned equa-
tions as encountered in the numerical solution for certain in-
put. For a sandstone saturated with gas and water, we found
that the P-wave velocity and attenuation in conventional
models differ as much as 15% from the exact solution at seis-
mic frequencies. This makes the use of present exact theory
necessary to describe patchy saturation, although (more real-
istic) complex patch shapes and distributions were not con-
sidered. We found that, despite earlier corrections, the White
conventional model does not yield the correct low-frequency
asymptote for the attenuation.

INTRODUCTION

When a porous rock is saturated by a mixture of two fluids, patchy
saturation refers to the case in which the saturation scale is large
enough so that the wave-induced pore-pressure changes cannot
equilibrate during a seismic period (Mavko and Mukerji, 1998).
Patches of nonuniform saturation occur at the gas-oil and gas-water
contacts in hydrocarbon reservoirs. During production, the pressure
decrease might lead to nucleation and the diffusive formation of free
gas pockets. The contact between gas and water in reservoirs is not
necessarily sharp, and typically a transition zone exists between full
gas and full water saturation.

David Smeulders?, and Jerry Harris'

Seismic low-frequency effects of partially gas-saturated hydro-
carbon reservoirs have been known for many years (e.g., Castagna et
al., 2003; Chapman et al., 2006; Goloshubin et al., 2006, and refer-
ences therein). For example, high-resolution surveys make it feasi-
ble to detect pockets of unswept reserves and to monitor the progress
of enhanced recovery by gas and water injection (Helle et al., 2003),
and the inclusion of P-wave velocity dispersion in interpreting well
log data of partially saturated sediments can be used to identify free
gas and relate surface seismic data to synthetic seismograms (Lee
and Collett, 2009). The real-data observations of Saenger et al.
(2009) are consistent with a partially saturated hydrocarbon reser-
voir model in which poroelastic effects caused by wave-induced flu-
id flow and oscillations of different fluid phases can modify the om-
nipresent seismic background spectrum.

Laboratory observations have also demonstrated the effect of par-
tial saturation on acoustic velocities (e.g., Winkler and Nur, 1979;
Murphy, 1982; Paffenholz and Burkhardt, 1989; Knight et al., 1998)
and are supported by X-ray computer tomography images of the
patch distribution (e.g., Cadoret et al., 1995; Monsen and Johnstad,
2005; Lebedev et al., 2009; Toms-Stewart et al., 2009) and numeri-
cal simulations (e.g., Carcione et al., 2003; Masson and Pride, 2007,
Picotti et al., 2007; Wenzlau and Miiller, 2009).

Wave-induced fluid flow effects in the fluid are modeled by isolat-
ed spherical gas patches in the liquid saturating a homogeneous ma-
trix, as first proposed by White (1975). Since then, significant
progress has been made by considering various patch distributions
and flow regimes (White et al., 1975; Dutta and Odé, 1979a, 1979b;
Norris, 1993; Gelinsky et al., 1998; Johnson, 2001; Miiller and
Gurevich, 2004, 2005; Miiller et al., 2008; Gurevich et al., 2009; Pi-
cotti et al., 2010). More references for this topic are found in Toms et
al. (2006). When a gas pocket is subjected to the macroscopic pres-
sure field of a compressional seismic wave (i.e., on a length scale
much larger than the size of the inhomogeneity), the pocket will con-
tract and expand. These oscillations generate waves on the mesos-
cale (i.e., on the length scale of the inhomogeneity), which consume
energy from the seismic wave, causing intrinsic attenuation.

Patchy-saturation theories apply to a nonrigid porous medium ful-
ly saturated by a fluid that contains gas pockets (radius @) larger than
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the typical pore size; see Figure 1. The interaction among the indi-
vidual gas pockets is neglected by defining a liquid influence shell
(radius b) surrounding each pocket. The gas fraction is s, = (a/b)3.
The radius b is chosen so that the volume of the sphere %Wb3 equals
the volume of the unit cell of the cubic lattice.

The external pressure field is assumed to be spatially homoge-
neous at the scale of the inhomogeneity, and the effective (macro-
scopic) bulk modulus can be obtained by considering a representa-
tive volume comprising a single gas pocket and a liquid shell sur-
rounding the pocket. The effective bulk modulus K(w) can then be
deduced via its definition:

b

K(w)= — 3u—(b)1?e, (1)

where u(b) is the complex-valued radial solid displacement at the
outer boundary of the unit cell. Solving the Biot (1956a) equations
yields the solid displacement as a function of the applied pressure p,
and hence the effective bulk modulus of the representative volume.

Once the effective bulk modulus is obtained, the velocity ¢
=Re(k))/® and attenuation (inverse quality factor) Q<!
=2 Im(k,)/Re(k,) of the seismic wave are computed using the ef-
fective complex wavenumber

ki(w) = w\/p / (K<w> " gu) 2)

with shear modulus w. Subscript 1 describes the fast wave on the
macroscale, and p is the total density (1 — @)p, + d((1 — 5.)pg
+ s.pra), Where py, , denotes the gas (subscript a) or liquid (subscript
b) density.

In this paper, we derive the exact analytic solution to patchy satu-
ration in the quasi-static Biot (1956a) context for spherical gas pock-
ets. Although the governing equations were already given by
Johnson (2001), no analytic solution was yet available. We obtain
the exact solution by solving the boundary value problem of an 8
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Figure 1. Geometry of a cubic lattice of periodic spherical gas pock-
ets with radius a, separated by distance 2b’. Each gas pocket is sur-
rounded by a liquid shell with radius b, so that the volume of the cube
equals the volume of the sphere V,,, = V.

X 8 system analytically. Johnson (2001) solved this system numeri-
cally, and he introduced a generalized dynamic bulk modulus.

We compare our analytic quasi-static solution with the numerical
solution of Dutta and Odé (1979a) and the widely adopted analytic
quasi-static solution of White et al. (1975), including the modifica-
tions by Dutta and Seriff (1979). Following Johnson (2001), we also
compare our results with those using the generalized dynamic bulk
modulus approach. Dutta and Odé (1979a) computed the behavior
over the full frequency domain, but they encountered numerical loss
of accuracy at high frequencies. An analytic solution implicitly pre-
vents errors from the numerical inversion of ill-conditioned equa-
tions, as also encountered by Dutta and Odé (1979a).

QUASI-STATIC PATCHY THEORY

Concentric spheres geometry

Consider first the response of a homogeneous sample fully satu-
rated with a single fluid to a uniform compressive stress. We pre-
sume that the frequency is low enough that the Biot (1956a, 1956b)
theory is in its low-frequency limit (quasi-static case). Thus the fast
compressional and shear waves are nondispersive and nonattenuat-
ing, whereas the slow compressional wave is diffusive in character.
The requirement is w << wg, where the Biot crossover frequency is
wp = ¢ 7/ (koap;). The rock properties are porosity ¢, permeabili-
ty ko, and tortuosity a..; the fluid properties are density p; and shear
viscosity 7.

The starting equations are essentially those of the Biot (1956a)
theory at low frequencies by setting to zero all higher order inertial
terms and by taking the dynamic permeability equal to its steady-
state value k, (Norris, 1993; Johnson, 2001). Adopting an exp(iwt)
dependence for all relevant quantities, the quasi-static Biot equa-
tions are

V-7=0, (3)

ﬁv,a: i@ —U), (4)

n¢
where u and U are the solid and fluid displacement, respectively. The
accent circumflex over a field variable (displacement, stress, and
pressure) denotes small variations of that variable. The accent cir-
cumflex over the dependencies of these field variables (such as
strain) is omitted. Using the summation convention, the total stress
7;; (solid plus fluid phases) and pore fluid pressure p in terms of the
solid and fluid strains ¢;; = V-tiand ;= V .U are, in the case of
isotropic materials (Johnson, 2001),

7 =[P+ Q—2wey + (Q + R)€yld;; + 2uey, (5)

—¢p = Qe + Rey. (6)

Explicitexpressions of the poroelastic coefficients are given in terms
of the bulk moduli of the pore fluid, the solid, and the matrix K,
respectively, as (Biot and Willis, 1957)

¢Km + (] — (ﬁ)K’ 4
= Tk
¢’ 3

P

_ oK
0="7
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Pk,
= & ,
where ¢’ = ¢ + K'/ K, and K' = Ki(« — ¢) are auxiliary parame-
ters and o = 1 — K,/ K, is the so-called Biot-Willis coefficient. For
later use, we define the Biot-Gassmann modulus

R (7)

4
KBG:H_ gl.L (8)

in terms of the static compressional-wave modulus H = P + 2Q
+ R and the shear modulus .

The spherically symmetrical solutions to equations 3 and 4 obey
the following equations (Johnson, 2001):

W p (8_u 2_> X (%f 2_U) o
ar( +0) 8r+r TR+ 8r+r o
)

and

] 2 d u 2 ou 22U
ko or or r or r

(10)

where u and U are the radial displacements of the solid and the fluid,
respectively.

Following Johnson (2001), there are two kinds of solutions to the
above equations: (1) Solutions for which the fluid motion is locked
on to the solid’s motion, u(r)/ U(r) = 1, are linear combinations of r
and r~2. These are low-frequency fast compressional-wave solu-
tions. (2) Solutions for which u(r)/U(r) = —(P + Q)/(Q + R) are
linear combinations of spherical Bessel functions j(k,r) and
n,(kyr), where k,( = \ —iw/D) is the wavenumber of the slow com-
pressional Biot wave. For these solutions, the fluid and solid move
out-of-phase, and the relevant quantities obey a diffusion equation
with the slow wave diffusivity given by

ky PR — Q*
D:n—;z—HQ. (11)

The general solution for the radial direction is therefore written as
(Johnson, 2001)

) = Ar+ 5+ (Q + RIE) (ko) + Gy (o)),
Ulr) = Ar-+ % = (P + QTF (ko) + Gy (ko]

_3Q+R),  (PR-0Q)
¢ ¢
+ Gny(kyr)],

p(r) = ko[ Fjio(kyr)

4 4
() = 3K — 4B - M[Fjl(kzr)

The above equations are general and apply to both the gas sphere
and the liquid shell. The quantities P, Q, R, Ky, and k,( w) have dif-

ferent values in the two regions because they are functions of the
pore fluid and the rock properties. The above equation set 12 was
solved numerically by Johnson (2001), but we show here that the ex-
act analytic solution is readily available.

Exact analytic solution

The quasi-static solution to patchy saturation, equation 1, is found
by applying the Biot (1956a) theory to the geometry of Figure 1 us-
ing the appropriate boundary conditions. There are eight arbitrary
constants in the above equation set 12: A, B, F, and G in each of the
two regions. The requirement that the particular solution be finite at
r =0 implies B, = 0 and G, = 0. The remaining six unknowns are
found from the continuity of solid displacement u and fluid displace-
ment U, pressure p and total stress 7 at r = a, and the condition that
at r = b the external pressure p, is applied at a sealed pore boundary
(Deresiewicz and Skalak, 1963; Dutta and Odé, 1979a; Johnson,
2001):

ug(a) = uy(a), (13)
Uua) = Uyla), (14)
pala) = pyla), (15)
T4la) = 7y(a), (16)
up(b) = U,(b), (17)
7(b) = = pe. (18)

Analogous boundary conditions are used by, e.g., Berryman and
Thigpen (1985), Taylor and Knight (2003), and Ciz and Gurevich
(2005) in related problems. By solving this set, the field variables are
determined uniquely everywhere. The sealed pore condition at the
outer boundary, equation 17, gives

j1(kyyb
G, = _bel( 2b ). (19)
ny(ky,b)

This means that all expressions (equation set 12) in the liquid region
can be rewritten using the auxiliary parameter

i1 (kb
fe=Jdkya) — ”e(bﬂ)%, (20)

where € = 0,1 is the order of the spherical Bessel function. Subtrac-
tion of the solid and fluid continuity equations 13 and 14 at r =a
leads to

. H,
Faji(kyua) = Fof 17—, (1)
Ha
so that the solid continuity equation 13 becomes
By
Aaa=Aba+—2+be1N, (22)
a

with
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N= R+ )= (R, + Q) (23)

The continuity of total stress and pore pressure at the interface be-
tween the regions now yields that

3a 3a B,
—AKpca = T ApKpcr — — — Fu/iN, (24)
4u 4u a

- 3Aa(Ra + Qa) + 3Ab(Rb + Qb)
= Fy(PyR, — Okoufo(1 — h), (25)

where we introduced another auxiliary parameter

D, k>, jolk
p—a Da Ko J.O( 244) ]1 (26)
N5 Dy ko Ji(kua) fo

where the slow wave diffusivity D in each region is given by equa-
tion 11. Adding equations 22 and 24 yields the surprisingly simple
relationship

AH,=A,H,. (27)
The combination of equations 22, 25, and 27 yields
B,= —b'A, (28)
with
g:Sa<1_’i+3_N22 fL ;) 09)
H, PR,—Q, fo kypa 1 —h

The last boundary condition (equation 18) finally implies
4u
3A,Kpah — EBb = ~Pe (30)
so that with equation 28 this becomes

P | — (31)
3Kgpgy +4ug

The solid displacement at the outer boundary is u(b) = A,b(1 — g),
and with equation 1, the exact expression for the quasi-static bulk
modulus K(w) is

4
Kpgp + M8
K(w) = ——. (32)
l—g

Allinformation about the presence of gas in the liquid phase is solely
captured in parameter g. It is clear from equations 29 and 32 that, in
the case of complete liquid saturation, s, = 0 and g = 0, so that K( )
reduces to Kpg,,. For complete gas saturation, s, = 1 ora = b, so that
f1 =0 in equation 20. This means that g = 1 — H,/H,, and using
equation 8, K(w) reduces to Kpg,. Equation 32 is an exact analytic
expression for partially saturated media, which reduces to the Biot-
Gassmann limit in the case of full saturation by a single fluid.
Expressions 29 and 32 comprise the combined effect of fast and
slow compressional-wave contributions. In the lower (static) and
upper (no-flow) bounds of K(w), there are no effects of pressure dif-
fusion (i.e., slow wave effects). These bounds are given in Appendi-
ces A and B. The slow wave contributions associated with viscous

dissipation due to the relative fluid-solid movement occur only in the
intermediate frequency regime through the wavenumbers k,, and
kz},.

Comparison of the exact solution with other solutions

The parameter set of Table 1 is chosen to show the effective bulk
modulus as a function of frequency in Figure 2. The gas fraction is
0.1 and » = 0.1 m. The results are shown for four calculations: (1)
The present exact analytic quasi-static solution (solid curve); (2) the
analytic quasi-static solution (dotted curve) of White (1975), includ-
ing the corrections by Dutta and Seriff (1979); (3) the exact numeri-
cal solution (dots) in the full-Biot context by Dutta and Odé (1979a);
and (4) the generalized analytic quasi-static calculations (dashed
curve) of Johnson (2001). The low- and high-frequency limiting
moduli, Biot-Gassmann-Wood modulus Kygw and Biot-Gassmann-
Hill modulus Kpgy, respectively, are given by dashed-dotted lines.

As long as the frequency is low enough, the exact analytic and nu-
merical full-frequency solutions are identical. The computation of
the effective bulk modulus of the representative volume makes sense
only if the frequency is low enough so that the wavelengths of the
fast compressional and shear waves are large compared to the di-
mensions of the pockets and their mutual distance (Johnson, 2001).
This means that the mesoscopic condition w < w, should hold where
w,~ ¢s/ b, in which cg is the speed of the shear wave in the region of
the liquid. When the wavelength of the shear wave becomes of the
same order as the patch size b, resonance occurs in the full-frequen-
cy solution. The frequency at which the medium becomes extremely
compliant is ®,/27 = 1.4 kHz. On increasing the frequency, the
medium oscillates out-of-phase with respect to the applied pressure
p. (antiresonance), and fluctuating values of the bulk modulus occur
in the full-frequency solution.

Resonances and antiresonances occur in coupled systems when
one (or more) of the systems is finite in size (Morse and Ingard,
1968). At the antiresonance frequency, no incident energy of the ex-
ternal (macroscopic) wavefield is radiated from the medium, so that
the medium behaves as though it were rigid and very high values of
the bulk modulus are reached. Similar resonance phenomena (scat-
tering) are seen for the full-frequency solutions in analogous prob-
lems (e.g., Shapiro and Miiller, 1999; Jocker et al., 2004; and Voge-
laar and Smeulders, 2007).

The analytic structure of K(w) allows investigation of the real and
imaginary parts or the absolute value and phase. Both approaches
exhibit their own distinct characteristic transition frequency, which

Table 1. Constituent properties of the partially saturated
sandstone rock with a relatively weak frame (Johnson,
2001).

Matrix  Grains  Water Gas

Density p [kg/m®] 2.65-10° 1.0-10° 1.0
Bulk modulus K [Pa] 2.637-10° 35.0-10° 2.25-10° 1.0-10°
Viscosity 7 [Pa-s] 1.0-107% 1.0-107°
Porosity ¢ [-] 0.284

Permeability ko [m?] 1.0-10~ "

Shear modulus w [Pa] 1.740-10°
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is commonly referred to as the relaxation frequency because it char-
acterizes the transition from the relaxed (drained) to the unrelaxed
(undrained) response as the frequency increases.

The deviations of the models by White (1975) and Johnson (2001)
from our exact analytic solution occur around the transition frequen-
cy w.~D,/b* (Pride et al., 2004). Using equation 11, we obtain
w./27 =5 Hz. At this transition frequency, the Biot slow wave dif-
fusion length equals the characteristic length of the inhomogeneity
(Gurevich and Lopatnikov, 1995). This equation indicates that the
mesoscopic loss mechanism moves toward lower frequencies with
increasing viscosity and decreasing permeability. This behavior is
opposed to the Biot (1956a, 1956b) relaxation mechanism (global
flow). Note that the peak frequency in the Johnson model is identical
to our exact frequency value, whereas the one in the White model is
at lower frequencies. The difference depends on the rock and fluid
properties and increases with the increasing gas fraction.

Johnson (2001) and Pride et al. (2004) connect the high- and low-
frequency asymptotes of their functions by a simple frequency func-
tion. The exact expression of K(w) allows one to define the exact
transition frequency (where Im{ K} is maximum or Re{K} has its in-
flection point) by setting d In{K}/dw = 0 or d>Re{K}/dw?* = 0. An-
other choice is where the phase value of K is maximum or where the
absolute value of K has its inflection point. Due to the complex na-
ture of the spherical Bessel functions, it is not straightforward to re-
trieve a simple exact expression for w.. We do note, however, that for
a wide range of rock and fluid properties and fractional volumes,
Kepko/ 27 1,¢p(b — a)? gives a good approximation of the frequency
where the imaginary part of K is maximum. Similar relations are,
e.g., given by Pride et al. (2002) and Carcione et al. (2003). The exact
transition frequency provides the exact maximum level of attenua-
tion. For a reservoir rock with alternating gas and water saturation,
Quintal et al. (2009) recently found that the maximum level of atten-
uation can be approximated by only five parameters (K, K, u, K,

and ¢).

VELOCITY AND ATTENUATION EXAMPLES

To illustrate the usefulness of our exact expression, we show the
accuracy of velocity and attenuation predicted by the other three
patchy models (corrected White, full Dutta-Odé, and generalized
Johnson). We use the constituent properties of Table 1 with b
= 0.1 m. In Figure 3, the gas fraction is 0.1, and in Figure 4 the gas
fractionis 0.5.

Figure 3a shows the introduced error in P-wave velocity as a func-
tion of frequency. The absolute error is the difference between our
exact velocity and the velocity calculated by each model. For a gas
fraction of 10%, the underestimation in the velocity is 20 m/s at
100 Hz for the corrected White model and 15 m/s for the Johnson
model. At lower frequencies, both models overestimate the velocity
(e.g., 10 m/s at 20 Hz for the White model). The full-frequency
Dutta-Odé model is identical to our quasi-static result below
100 Hz.

Figure 3b shows the introduced error in the P-wave attenuation.
Here, the error is relative; i.e., it is the difference between the exact
and approximate attenuation relative to the exact attenuation value.
The most striking result of present analysis is that, despite the static-
velocity corrections by Dutta and Seriff (1979), the White model
does not yield the correct low-frequency value for the attenuation.
For a gas fraction of 0.1, the attenuation is overestimated by about
3% for low frequencies (<10 Hz). For higher frequencies, the rela-

tive error in attenuation ranges from —7% at 60 Hz to +12% at 4
kHz for the White model. For the generalized Johnson model, the in-
troduced errors in attenuation are between —4% at 40 Hz and +8%
at 250 Hz.

The errors in velocity and attenuation from the White and general-
ized Johnson solutions depend on the gas fraction. In Figure 4a, the
gas fraction is 0.5, and the maximum error in velocity is — 18 m/s for
the White model and +11 m/s for the generalized Johnson model.
The Dutta-Odé model is accurate below 100 Hz. The attenuation
predicted by the White model, Figure 4b, is almost 20% too high at
low frequencies (<100 Hz).

For very low or very high gas fractions, the calculations show that
the error in predicted velocity by the White and the generalized
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Figure 2. Effective bulk modulus as a function of frequency. (a) Real
partof K/ Kpgw- (b) Imaginary part of K/ Kpgw. The solid curve is the
present exact analytic solution in the quasi-static context (equation
32). The dotted curve is the analytic solution by White (1975), as
corrected by Dutta and Seriff (1979). The dashed curve is the gener-
alized analytic solution by Johnson (2001). The dots are the exact
numerical solutions in the full Biot context by Dutta and Odé
(1979a). The lower and upper horizontal dashed-dotted lines are the
limiting moduli Kpgw and Kpgy, equations A-6 and B-2. The input
values are from Table 1;5, = 0.1 and b = 0.1 m.
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Johnson models is less than 4 m/s. However, for, say, s, = 0.001,
the attenuation predicted by the White model is 20% too high at
5 kHz and 15% too low at 700 Hz for the generalized Johnson mod-
el. For s, = 0.9, the predicted attenuation is more than 40% too high
for the White model below 1 kHz (i.e., in the entire seismic range)
and more than 15% too high for the generalized Johnson model from
30 to 1000 Hz. Indeed, for high gas fractions (s, > 0.52), the gas-
filled spheres in the cubical lattice interact, and we might consider
water-filled spheres surrounded by gas. The White calculations then
predict the attenuation also to be more than 40% too high below
100 Hz.

White (1975) also considers the case in which the central sphere is
saturated with a very compressible gas. For K, — 0, equation 29 be-
comes

H, N 3(Ry + Q) f1 1

*
g = S(l 1 - 2 ) (33)
4 PyR, — Q;, fokya
Ko+ —-p
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Figure 3. Deviation in the effective P-wave acoustic bulk properties
of patchy saturation models for a gas fraction of 10%. (a) Error in
phase velocity. (b) Error in attenuation. Legend and input are as in
Figure 2.

i.e., independent of the physical properties of the gas. Then the static
limit for the velocity is again identical to White’s static limit, and
Kggw goes to K. The error in White’s low-frequency attenuation,
however, remains and is, in fact, exactly the same as before. In the
formulation of White (1975), the effective bulk modulus in this spe-
cific case still depends on the properties of the gas through his no-
flow modulus. It is our belief that there is no need to alter the White
model because we present here the exact solution to patchy satura-
tion.

Finally, we stress that different patch shapes and distributions in
space might show a very different dependency of the bulk modulus,
velocity, and attenuation on frequency. The relaxation frequency de-
creases from regular (periodic) to irregular (e.g., fractal, random)
patch distributions (Miiller et al., 2008, and references therein),
whereas the relaxation frequency increases from simple (e.g., spher-
ical) to complex (e.g., fractal) patch shapes (Picotti et al., 2010, and
references therein). In either case, the peak attenuation decreases
and the crossover region from the low to the high frequency asymp-
tote becomes broader.
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Figure 4. Deviation in the effective P-wave acoustic bulk properties
of patchy saturation models for a gas fraction of 50%. (a) Error in
phase velocity. (b) Error in attenuation. Legend is as in Figure 2.
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Because we consider only spherical concentric patches in a regu-
lar periodic distribution, our simplified model probably is not the
best for questions related to the interpretation of patchy-saturated
rocks in general. In this respect, the generalized Johnson function
might be a better candidate, but for spherical patches our analytic re-
sults facilitate rapid comparison with other existing models.

CONCLUSIONS

We derived an exact analytic expression of the effective bulk
modulus for partially saturated media with spherical gas patches.
Patchy theories apply to a porous medium fully saturated by a fluid
that contains gas pockets larger than the typical pore size. The deri-
vation is based on the quasi-static Biot equations of poroelasticity
applied to open-pore boundary conditions.

Our exact analytic solution is identical to the numerical solution
as long as the frequency is low enough so that the wavelength of the
fast compressional and shear waves are large compared to the di-
mensions of the pockets and their mutual distance. Unlike the nu-
merical solution, the quasi-static analytic solution does not result in
aloss of accuracy from the inversion of ill-conditioned equations for
certain input or from the subtraction of large arguments in the spheri-
cal Bessel and Neumann functions. Our expression provides the ex-
treme cases of complete liquid or complete gas saturation, as well as
the case in which the compressibility of the gas can be neglected. In
addition, the expressions for the static and no-flow frequency limit
are deduced directly from the quasi-static expression of the effective
bulk modulus.

The analytic expression is particularly convenient for computa-
tions because it is concise and exact. Such computations allow cal-
culations of the dispersion of the P-wave phase velocity and the level
of intrinsic attenuation, and wave-induced fluid flow at the gas-water
contact area (relative fluid to solid displacement). We found that the
phase velocity and attenuation calculated from the generalized ana-
Iytic expression of the Johnson model differ as much as 15% from
the exact Johnson numerical solution at seismic frequencies. The er-
rors in the White model are as high as 20% in the seismic range, and
despite the static-velocity corrections, the model does not yield the
correct low-frequency level for the P-wave attenuation.

Finally, our analytic expression allows one to find the exact value
of the transition frequency at which mesoscopic loss (pressure equil-
ibration of the pore fluids through diffusion) is maximum. Because
the production and injection phases of a hydrocarbon reservoir per-
turb the fluid fractions, knowledge of the exact transition frequency
and level of attenuation is of particular interest for such seismic ap-
plications as reservoir characterization and time-lapse modeling in
tracking fluid movements.
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APPENDIX A

STATIC LIMIT

The static limit of the bulk modulus can be deduced directly from
equation 32. For w — 0, we have to use the asymptotic forms of the
spherical Bessel functions with small arguments: lim._, jo(z) = 1,
lim,_o ji(z) =2/3, lim_gne(z) = —1/z, and lim,_,n(z) =
— 1/2% (Abramowitz and Stegun, 1965). The static limit of the auxil-
iary parameter in equation 26 is

NaDa sy

limh= — s (A-1)
@0 75Dy 5,
where s, = 1 — s,. We find for equation 29 that
) H, ko s N?
limg=s,|1——F——FS————"""|,
»—0 H, ¢ H, Sanﬂb + szaﬂa
(A-2)
s +R,)(H,— H
Oy »)(H, ») (A-3)

" 5u(Qy + RyH, + 5,(Q, + R)H,

The zero values of g and / are real-valued. Substituting this result in
equation 1, we have that

lim K((U) = KBGW

w—0
_ KBGb(KBGa — Km) + saKm(KBGb — KBGa)
(KBGa - Km) + sa(KBGb - KBGa)
(A-4)
We used
(Q+R)
KBG - R = Km (A-S)

Following Johnson (2001), the zero-frequency modulus is called
the Biot-Gassmann-Wood modulus Kygyw.

A more accessible form of the modulus Kggyw is found if we use
the expression for the Biot-Gassmann modulus:

a=-¢ ¢ |
Kpow=Kpo(Kw) =Kpn + &*| ——+—| ,
BGW BG( W) m |: Ks KW]

(A-6)

where the fluid modulus K is replaced in this case by the harmonic
average Ky of the two fluid moduli in regions a and b (Wood’s for-
mula):

eyt (A-7)

This was discussed earlier by Dutta and Odé (1979b) and Norris
(1993) explicitly for layered and spherical patches. Johnson (2001)
states that equation A-6 is an exact result, independent of the spatial
distribution of the fluids. Using the input of Table 1 with s, = 0.1,
Kpewisequal to 2.64 GPa. Itis the lower bound of the effective bulk
modulus in Figure 2 and is well approximated by K, in this case.
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The static limit of the bulk modulus can also be derived from the
static limit of the Biot (1956a, 1956b) theory. The Biot equations of
motion then reduce to (Dutta and Odé, 1979b)

i(V -u) =0, (A-8)
Jar

air(v.w) =0. (A-9)

Note that we work here with relative displacement w = ¢(U — u).
The solutions for spherically symmetrical displacements are

u(r) =Ar + Br™2, (A-10)

w(r) = Fr+ Gr™2. (A-11)

Hence, we have for the pore pressure and total stress from equations
5 and 6 that

Q+R<au 2u> R(&w 2w)
p=——| = =,

[0 ar r _E ; r
(A-12)

ou 2u  Q+R[dw 2w
T=H_ 4 (H =2 S T
r r

o) ar r
(A-13)
and therefore,
3(Q0 +R) 3R
p= —TA—EF, (A-14)
7(r) = 3KpgA + LJR)F - 4—’53. (A-15)
r

We note that the pressure is no longer a function of r as a result of the
displacement functions u and w specified in equations A-10 and
A-11. Again, Q, R, and K are elastic constants, and A, B, F, and G
are unknown variables in both regions. A finite solution at » = 0 im-
plies B, =0 and G, = 0. The remaining six unknowns are deter-
mined by using the boundary conditions 13-18.

From the continuity of pressure and total stress at the interface,
equations 15 and 16, we have that

3(Qa + Ra) 3Ra 3(Qb + Rb) 3Rb
- Qa7 T2 a:_—h__th’
¢ ¢ ¢ ¢
(A-16)
3 + R 3 + R
3KpgeAa + Q. a)Fa = 3KpgpAp + ©, b)Fb
¢ ¢
4u
- 7Bb. (A-17)
We note that

Q4R _ K

=a, A-18
R ra (A-18)

so that this value is identical in both regions because it does not de-
pend on the fluid properties. Multiplication of the left- and right-
hand sides of equation A-16 by (Q + R)¢/R and subsequent addi-
tion to equation A-17 yields that

4
KnAy = Knp = 5 5By (A-19)

where we have used equation A-5. This expression combined with
the continuity of solid displacement, A,a = A,a + B,/a?, gives

A=A, (A-20)

B, =0. (A-21)

The no-flow condition at the outer boundary, equation 17, and the
continuity of relative displacement at » = a, equation 14, combine to

G,= —F,b°, (A-22)

SaFa: _Sbe. (A-23)

The condition of the external stress at the outer boundary, equation
18, now yields

3s Qb + Rb
3KBGbAa - = Fa = " PDe-
Sb ¢

By combining with the rewritten equation A-17,

(A-24)

3 S,
3(KBG(1 - KBGb)Aa + g Qa + Ra + (Qb + Rb)s_ Fa = O,
b
(A-25)
we find that

F o= 1 sp(Kpga — Kpgp) @
“ 35,0y + RyKpga + 55(Q, + R)Kpayp

Pes
(A-26)
_ 1 5.0y + R,) +5,(Q, + R,)

a -5 Pe-
35,(0p + Ry Kpgy + 55(Q, + R)Kpay
(A-27)

Using u,(b) = A,b in equation 1, we have that the effective bulk
modulus in the static limit is given by

b
3u, (b)) T 34,

_ $4(Kpgp — Kn)KgGa + $6(Kpca — Km)Kpop
$4(Kpgp — Kin) + 55(Kpga — Kin)

Kpow = — Pe

(A-28)

Using s, + s, = 1, this can be rewritten easily as equation A-4.
Equation A-21 means that in the zero-frequency limit, the total
stress is constant throughout both regions and equal to the applied
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external radial stress. The pore pressure also is constant and a frac-
tion of the external radial stress. From equations A-14, A-5, and
A-26, we find that this fraction is

lim P _ l (Kpga — Kin) (Kpgp — Kin)
0—0 Pe a (KBGa - Km)KBGb + Kmsa(KBGb - KBGa) '
(A-29)

as also found by Dutta and Odé (1979b).
APPENDIX B

NO-FLOW LIMIT

The high-frequency limit can also be deduced directly from
equation 32. For w — %, the frequency-dependent term in g vanish-
es, so that

) H,
i‘f:cg”a(l ‘;)- B-1)

a

The no-flow limit of g is real-valued. With equation 1, it is easy to
show that

4
KpgpH, + gﬂsu(KBGa — Kgep)

lim K(w)=K =
w—o (0)=Kzon H, — s,(Kgc, — Kpcp)

(B-2)

where Kggy is the Biot-Gassmann-Hill modulus. With a uniform
frame (i.e., constant u, K, and K), the effective bulk modulus of the
medium is in exact agreement with Hill’s (1963) theorem:

1 _ Sa N 1 -3, _ Sa N S_b,
4 4 4 H, H,
Kgou+ 1 Kpge+ 1 Kpgp+ Z1
3 3 3
(B-3)

as Norris (1993) argued. In our example, Kpgy = 7.39 GPais the up-
per bound of the effective bulk modulus in Figure 2.

We also consider the high-frequency limit of K(w) under the as-
sumption that the frequency is never so high as to violate
o< (wg,w,). This case is discussed by White (1975) and Dutta and
Odé (1979b). As the frequency of the external stress becomes higher,
the fluid has little time to flow. In case of the no-flow limit, the equa-
tions of motion become

d
—(V-u) =0, (B-4)
ar
w=0, (B-5)
with the solution
u(r) =Ar+ Br™ 2. (B-6)
Therefore (cf. equations A-12 and A-13),
3(Q+R
- - %A, (B-7)

4
7(r) = 3KGA — r—’;B. (B-8)

Again, B, = 0, and the pore pressure is no longer a function of r.
Three boundary conditions 13, 16, and 18 provide expressions for
A, A, and B,,.

The continuity of total stress and solid displacement at the inner
boundary yields that

B
A=A, + =2, (B-9)
a

+Ksca — Kpap

Bb: —Aba (B_lo)

a

Substitution of the above in the total stress condition at the outer
boundary yields that

Pe
3Kpgp + 4us,(Kp, — Kpep)/H,

A, = , (B-11)
so that the effective bulk modulus in the high-frequency limit is giv-
en by equation B-2.

We realize that although the pore pressure is constant within each
phase, it is discontinuous at the inner boundary. Equations A-5, B-7,
B-9, and B-11 then give

Pa (Kpga — Kn)H,,

lim — = s
w—® Pea 4
a<KBGbHa + glusa(KBGa - KBGb))
(B-12)
li Py (Kpgy — Km)H,
im =2 = )
w—® Pa 4
a(KBGbHa + g#sa(KBGa - KBGb))
(B-13)

This discontinuity at the inner boundary is due to the different physi-
cal properties of the fluids in each region. However, the total radial
bulk stress is continuous, and because there is no relative fluid-flow,
the inner boundary acts as if it were sealed.
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