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Introduction 

One of the climate change mitigation options aimed at controlling greenhouse gas contributions from 
anthropogenic activities is carbon dioxide capture and sequestration (Benson et al., 2005). Monitoring 
sequestered CO2 in geologic reservoirs is needed for licensing purposes, reservoir performance 
assessment, and leak detection. During the injection phase, when the reservoir pressure is forced to 
change, faults may be reactivated, creating fluid flow conduits. Early detection of leaks through such 
conduits is most probable if a continuous reservoir monitoring program is in place. 
 
We present a quasi-continuous monitoring strategy for monitoring sequestered CO2 in geologic 
reservoirs with surface seismic data. This paper is a further development of the work presented in 
Arogunmati and Harris (2009). Here, we implement the idea with surface seismic data. We will show 
how quasi-continuous reservoir monitoring with migrated seismic images differs from quasi-
continuous reservoir monitoring with velocity estimation through reflection tomography, highlighting 
the pros and cons of each. 
 
Figure 1 is an illustration of the approach presented by Arogunmati and Harris (2009). With a 
conventional time-lapse monitoring approach, large, dense datasets are acquired at each survey. With 
our approach, only a small subset of the conventional data size is acquired at each incremental survey. 
Shot-receiver pairs used in each incremental survey vary throughout one complete survey cycle such 
that the accumulated data acquired at the end of a cycle gives one dense, full survey. The unrecorded 
data at each incremental survey are estimated and later combined with the sparse recorded data to 
reconstruct the geophysical image of the subsurface. 

 
Figure 1 Illustration comparing the conventional time-lapse approach (top axis) with the proposed 
approach (middle and bottom axes). 

The strategy shown in Figure 1 is somewhat similar to the strategy used in compressed seismic data 
acquisition (Candès and Romberg, 2007; Candès and Wakin, 2008) in the sense that partial data are 
acquired and used in estimating unrecorded data. In a CO2 sequestration reservoir monitoring project, 
the object of interest is the injected CO2 which is expected to flow in a plume-like fashion. What is 
being monitored is this large-scale, low spatial frequency CO2 plume and not the finer scale, higher 
spatial frequency layering within the reservoir. 
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Theory 

We assume that a dataset could be dense (complete) or sparse (incomplete). The sparse dataset is a 
subset of the dense dataset. With our approach, each incremental dataset acquired is a sparse subset of 
the dense dataset that could have been acquired at that same time-step. In other words, the dense 
dataset is the sum of the sparse dataset and an unrecorded dataset. Mathematically, 
              (1) 
             (2) 
where S is the data sampling operator,  is the dense dataset,  is the sparse dataset, and  is the 
unrecorded dataset. Combining (1) and (2), 
               ;     (3) 
Each data vector contains data recorded at all incremental time-steps. The goal is to estimate the 
unrecorded data, . The fitting goal for estimating  is 

                (4) 
where the operator, A is the estimation operator. If we assume the estimated dense data is 
approximately the true dense data , equation (4) can be re-written as 

                             (5) 
Combining (2) and (5), 
                       (6) 
To obtain  from (6), the objective function minimized is 

                (7) 

In this paper, the prediction error filter (PEF) (Jain, 1989; Claerbout, 1998, 2008) is used as the 
estimation operator, A. 

Synthetic Example 

To test our approach, we created a baseline velocity model based on the geology of an oil field off the 
coast of Norway (Figure 2).  

 
             Figure 2 Baseline velocity model.  

This velocity model was perturbed to produce 20 velocity models representing states of the field after 
CO2 injection into the reservoir over a period of twenty months. The maximum change in reservoir 
velocity subsequent to injection was 3%. Using an elastic wave equation algorithm, we calculated 
synthetic surface seismic data using shots placed at the water surface and receivers placed at the water 
bottom. Shot and receiver spacing was made consistent with conventional surveys. Each dataset was 
then sub-sampled to 10% of its original size to conform to the acquisition strategy described in the 
introduction section. With this sub-sampling scenario, a complete survey cycle is achieved after ten 
months. Sample receiver gathers are shown in Figure 3. 
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Figure 3 Sample dense receiver gather (left); and 10%, sub-sampled receiver gather (right).  

We estimated unrecorded data at each incremental time-step using PEFs. Figure 4 shows pre-stack 
migration results for the true, dense synthetic data; sparse synthetic data; and combined sparse and 
estimated synthetic data from velocity model number 12 (representing month 12). Selected reflectors 
are picked on each image. Figure 5 shows the time-lapse image computed from the images shown in 
Figure 4.  

 
Figure 4 Pre-stack migrated image from true, dense data (left); sparse data (middle); and combined 
sparse and estimated data (right). Picked reflectors are marked in red.  

 
Figure 5 Time-lapse images from the true, dense data (left); sparse data (middle); and combined 
sparse and estimated data (right). 

A remarkable observation on Figure 4 is that the reflector picks in the images from the true, and 
combined sparse and estimated data are identical. The reflector picks on the image from the sparse 
data show some differences. Figure 5 shows a degradation of the time-lapse images from the sparse 
data, and the combined sparse and estimated data. The degradation is severe in the image from the 
sparse data. This is not surprising since only 10% data was used. To obtain more accurate time-lapse 
images from the combined sparse and estimated data, the data volume constituting the sparse data has 
to be increased. However, increased data size is not necessarily needed if we are only interested in the 
reflector depths.  
 
The changes in the reflector depths from one monitor image to another can be used in reflection 
tomography (Clapp, 2001) to reconstruct the velocity changes with time. These velocity changes can 
then be used to track the injected CO2. Figure 6 shows results from reflection tomography using the 
true, sparse, and combined sparse and estimated data. Even though 10% of the true data was used, the 
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reconstruction with the combined sparse and estimated data is similar to that obtained using 100% 
true data. However, the reconstruction from the sparse data alone is grossly inaccurate. The 
inaccuracies originate from the reconstruction errors noticeable in Figure 4. 
 

 
Figure 6 Reconstructed time-lapse velocity difference models from the true, dense data (left); sparse 
data (middle); and combined sparse and estimated data (right). 

Conclusions 

The quasi-continuous reservoir monitoring strategy presented in this paper is an effective approach for 
monitoring sequestered CO2 primarily because it provides an opportunity to detect leaks or other 
unexpected occurrences soon after they occur. This is particularly useful since an effective CO2 
monitoring program is essential for licensing purposes and monitoring reservoir performance. The 
strategy involves acquiring sparse incremental data at small time intervals and estimating the 
unrecorded data at each time interval for use in reconstructing geophysical models. The synthetic 
example presented here is used to show that data as little as 10% or less of the size of conventional 
datasets acquired at small time intervals can be used to detect changes in the reflectivity within the 
reservoir. It can also be used to detect gradual changes in the seismic velocity of reservoirs as CO2 is 
injected, using reflection tomography. The size of sparse data needed for good reconstruction varies 
depending on whether the project goal is to monitor the reservoir with migrated images or with 
reconstructed velocity models. Future work will involve studying the cost benefits of using the 
strategy presented in this paper.   
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