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Summary 
 

We present a 3-D finite-element time-domain (FETD) 
algorithm for the simulation of electromagnetic (EM) 
diffusion phenomena. The algorithm simulates transient 
electric fields and time derivatives of the magnetic fields 
for a general anisotropic earth. In order to compute 
transient fields, the electric field wave equation is 
transformed into a system of ordinary differential equations 
(ODE) via a Galerkin method with Dirichlet boundary 
conditions. To ensure both numerical stability and an 
efficient time step size, the system of ODE is discretized in 
time using the implicit backward Euler scheme. The 
resultant FETD matrix-vector equation is solved using a 
sparse direct solver with a fill-in reducing algorithm. When 
advancing the solution in time, the algorithm adjusts the 
tine step by examining if or not a current step size can be 
doubled without affecting the accuracy of the solution. 
Instead of directly solving another FETD matrix-vector 
equation for transient magnetic fields, Faraday’s law is 
employed to compute time-derivatives of magnetic fields 
only at receiver positions. The accuracy and efficiency of 
the FETD algorithm are demonstrated using time-domain 
controlled source EM (TD-CSEM) simulations. 
 
Introduction 
 

Transient electromagnetic (TEM) methods are used in 
both near-surface and deep exploration geophysics. Since 
interpretation of TEM data in complex geological 
environments increasingly resort to forward/inverse 
modeling, the numerical simulation of TEM fields is of 
particular interest. Among the variety of numerical 
simulation techniques, finite-difference time-domain 
(FDTD) algorithms have become the most popular for 
TEM simulations (Wang and Hohmann, 1993; Commer 
and Newman, 2004). Their popularity is due to the fact that 
they are relatively simple to implement, efficient, and can 
provide accurate solutions to a wide range of TEM 
simulations.  
 

However, the FDTD method also has well known 
drawbacks. From a modeling point of view, its biggest 
weakness is that large complex geological structures (e.g. 
bathymetry), which do not conform to rectangular grids, 
need to be captured by stair-step approximations. The stair-
step approximation might seem to adequately model 
significantly-irregular topography using a series of very 
small grids in parallel computing environments. However, 
such a stair-step modeling approach can introduce errors 
into numerical modeling results especially when sources 

and receivers are placed on the complex surface described 
by the fine stair steps. Furthermore, the stair-step modeling 
approach can introduce unnecessarily small grid spacing in 
the computational domain, resulting in inefficiently small 
time steps when the Du Fort-Frankel method is used. 

 
We present herein a 3-D FETD algorithm as an 

alternative to FDTD for diffusive EM simulation in 
complex geological environments. In contrast to finite 
difference (FD) methods, finite element (FE) algorithms are 
based on a geometry-conforming unstructured mesh which 
allows precise representations of complex geological 
structures in computationally economic and elegant ways. 
The price paid is the development cost of the finite-element 
simulation code.  
 
Theory and Method 
 

In a given computational domain ,V  the full electric 
field wave equation is given as 
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where ( , )e r t  is the electric field at time t at position 

r V , , ,  and ( , )sε σ j r t are magnetic permeability, a 3x3 

dielectric permittivity tensor and a 3x3 electric conductivity 
tensor, and an electric current source term, respectively.  
First, a residual vector for eqn. (1) is defined as 
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The residual vector must be zero everywhere within V in 
order to satisfy eqn. (1). However, from a numerical point 
of view, it is practical to discretize the computational 
domain into a number of finite elements. Then, the residual 
vector for each element is forced to be zero in a weighted-
integral sense (Jin, 2002):  

( ) ( , ) 0n r p r
e

e e
i

V

t dV  , (3) 

where the superscript e denotes the eth tetrahedral element, 
( )n re

i with i varying from 1 to n is a set of weighting 

functions, and e
V is the volume of  the eth tetrahedral 

element.  
 

If the set of ( )n re
i functions used in eqn. (3) is also 

chosen as the set of basis functions for the electric field, the 
electric field is expanded as 
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where ( )e
ju t  is an amplitude of the electric field on the jth 

edge of the eth element and needs to be determined using 
the FETD method. In this study, edge-based Whitney 
functions (Whitney, 1957) are chosen as the basis functions 
as well as weight functions for eqns. (3) and (4). 
 

Substituting eqn. (4) into eqn. (3) and dropping the 
displacement current term yield the following system of 1st-
order ODEs: 
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and n is the number of the basis functions for the 
eth tetrahedron. 

(11) 

The system of ODEs is considered local because it results 
from each individual tetrahedral element. Using 
connectivity information about finite elements and applying 
Dirichlet boundary conditions to the boundaries of the 
computational domain V, the local systems of diffusion 
equations from individual elements are assembled into a 
single global system of diffusion equations: 

( )
( ) 0

u
B Cu s

d t
t

dt
    (13) 

 
Using an implicit 2nd-order backward Euler scheme, eqn. 

(13) is discretized in time into  
2 2 1 2(3 2 ) (4 ) 2Du B C u B u u sn n n n nt t          , (14) 

where ( ) ( )u u unt n t   , and t  is the time step size. 
The most expensive part in the FE computation is 
advancing the solution in time. Our primary choice of the 
numerical solver for eqn. (14) is a direct solver. Matrix D  
is explicitly factorized into the product of lower and upper 
triangular matrices L and U. Because Matrix D is a function 
of ∆t in eqn. (14), the factorization is performed only when 
∆t is changed. Before the factorization starts, matrix D is 
re-ordered to minimize fill-in in the resulting triangular 
matrices. Finally, forward and backward substitution 
completes the solution process at a given time. When 
models are too large for the memory of a given computer, 
we use an iterative solver. In this case, the solution at the 
previous time step is used as the initial guess at the current 

time step. A preconditioner also needs to be re-constructed 
only when ∆t is changed. 
 

EM diffusion simulations require a very small ∆t in early 
time to resolve the broad frequency spectrum of the 
induced TEM fields. However, because the high frequency 
component of the TEM field is more rapidly attenuated in 
time, one can take increasingly larger time steps and thus 
advance the solution quickly without affecting the 
accuracy. Therefore, our FETD algorithm tries to double ∆t 
every m time steps, where m is an input parameter. If an 
earth model is conductive, a smaller m is chosen; if an earth 
model is rather resistive, a larger m needs to be chosen. 
When the FETD algorithm attempts to switch a time step 
size from ∆t to 2∆t, the electric fields are computed using 
both time steps. If the difference between the two solutions 
is smaller than a specified tolerance, 2∆t is accepted as a 
new time step. If the tolerance criterion is not satisfied, the 
FETD algorithm rejects 2∆t and continues using the current 
∆t. However, the byproduct matrices (e.g. the triangular 
matrices or preconditioner) for 2∆t are stored for future 
uses after another m time steps. For brevity, we call this 
approach the adaptive time step doubling method. 

 
In order to advance eqn. (14), the initial electric fields 

must be provided. When an earth model is excited using a 
step-on or Gaussian source waveform, the initial fields are 
set to zero. However, when a step-off source waveform is 
employed, the initial DC electric fields need to be 
calculated via the Poisson equation. Therefore, we also 
solve the Poisson equation using the FE method. The FE 
method is based on secondary potential approach since it 
provides more accurate solutions near sinks and sources (Li 
and Spitzer, 2002). Once the electric potentials are 
determined at every FE node in the computational domain, 
the electric fields along the edges of the elements can be 
directly calculated using the gradients of the potentials. 
 

After the transient electric fields are calculated in the 
computational domain using the FETD algorithm, the 
magnetic fields are determined exploiting the fact that most 
magnetic receivers do not measure amplitude of magnetic 
fields, but rather the time derivative of magnetic fields 
(Commer and Newman, 2004). The time derivatives can be 
easily determined via Faraday’s law by directly applying 
the curl operator to the basis function in eqn. (4). In this 
way, we compute the time derivatives of magnetic fields 
only at receiver positions and avoid having to solve another 
matrix-vector equation for the transient magnetic field 
diffusion. 

 
Time-Domain CSEM Simulation Examples 
 

To demonstrate the accuracy and performance of our 
FETD algorithm, a serial implementation named 
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FETDEM3D is written in MATLAB, from where several 
external routines are called. The MATLAB portion of 
FETDEM3D mainly includes FE pre-processing tasks, 
whereas the external routines are responsible for main FE 
computations. The FETD modeling was carried out on Sun 
V40z with 4 Opteron dual-core CPUs with 32 GB memory 
running Red Hat Linux. The results are compared with the 
1D analytical or the 3D FDTD solution of Commer and 
Newman (2004). Although our FETD algorithm can 
simultaneously handle multiple arbitrarily-configured 
electric dipoles with various source waveforms over 
anisotropic media, single step-off electric dipole responses 
over isotropic media are considered in this section for 
comparison and verification purposes. 
 

The first example is a simple marine TD-CSEM model. 
The model consists of a 0.7 Ohm-m resistive homogeneous 
seafloor and a 400 m deep, 0.3 Ohm-m resistive seawater 
column. To ensure numerical stability, the resistivity of the 
air is set to 10,000 Ohm-m. A 250 m long, x-oriented 
electric dipole is placed 50 m above the seafloor. Its ramp-
off time is set to 1e-2 (seconds). Three EM receivers are 
placed on the seafloor at x= 2, 4 and 6 km source-receiver 
offsets. The model is discretized into 108,540 tetrahedral 
elements, generating 125,883 unknowns. The FETD 
solutions are plotted in Figure 1, showing excellent 
agreement with the analytical solutions. 

 
Figure 2 summarizes the performance of the adaptive 

time step doubling method for the seafloor model above. 
Without the method, it took 16.2 hours with 50,000 time 
steps to complete the simulation. In contrast, when the 
doubling method was employed, the simulation was 
completed in 36 minutes with 1,393 time-steps. The time 
step doubling procedures were performed 8 times. 

 
The next example is a 3-D resistive gas reservoir model 

shown in Figure 3a. The inline TD-CSEM responses over 
the gas reservoir are simulated using both 3-D FDTD and 
FETD algorithms. A 250 m long electric dipole whose 
ramp-off time is set to 1E-4 seconds is placed at the center 
of the model. The 3-D FDTD solutions for the model were 
imported from Um (2005). The FETD algorithm discretizes 
the model into 114,116 tetrahedral elements, generating 
131,741 unknowns. It took 53 minutes to complete the 
FETD simulation with a total of 1,559 time steps when the 
adaptive time step doubling method is employed. The 
solutions from both the FETD and FDTD methods are 
plotted together in Figures 3b and 3c. The curves for each 
receiver position agree well with each other at most times 
except at very early times where slight differences in the 
electric fields are observed because the employed FD grid 
does not handle high frequency EM signals very well. 

 

The final example is a gently dipping (4 degrees) two-
dimensional (2D) seafloor with and without a 3-D 
hydrocarbon reservoir illustrated in Figure 4a. In order to 
elucidate the effects of the slope on the marine TD-CSEM 
method, a flat seafloor model with and without the same 
hydrocarbon reservoir is also simulated. The flat seafloor 
model has a uniform 400 m thick seawater column. The 
dipping and flat seafloor models are discretized into 
165,528 tetrahedral elements with 191,780 unknowns and 
127,046 tetrahedral elements with 146,871 unknowns, 
respectively. The simulations were completed in 65 and 41 
minutes, respectively. The inline electric field responses at 
4 km source-receiver offset are plotted in Figures 4b and 
4c. The differences observed in Figure 4 can be thought of 
as the combination of the following factors: 1) the airwave 
effect varies as the thickness of the seawater column above 
the receiver changes due to the bathymetry; 2) the receiver 
coordinate is tilted towards the slope; 3) the receiver on the 
slope measures stronger galvanic effects than that on the 
flat seafloor because of its shorter distance from the 
hydrocarbon reservoir. In short, a gently-dipping simple 
seafloor structure can cause significant effects on the TD-
CSEM measurements and, as demonstrated above, seafloor 
bathymetry needs to be modeled with special care.  

 
Conclusions 
 

We have presented an efficient 3-D FETD algorithm to 
simulate diffusive electromagnetic phenomena. The 
algorithm is especially useful for modeling complex 
topography and reservoir geometry. The FETD algorithm 
uses an implicit backward Euler scheme to retain numerical 
stability with a larger time step size that helps accelerate 
FETD solution processes especially in late time. The 
inherent high-computational efforts associated with solving 
the resultant FETD matrix-vector equation at every time 
step are mitigated by re-factorizing the FETD matrix only 
when a time step size is changed. By adaptively doubling 
the time step at intervals, the FETD algorithm trades off the 
computational cost of re-factorizing the FETD matrix for 
the faster advance in FETD solutions. The adaptive time 
step doubling method plays an important role in speeding 
up the FETD computation especially in a marine TD-
CSEM simulation where an EM diffusion process occurs 
slowly until very late time due to the high electrical 
conductivities.  
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Figure 1. In-line TD-CSEM responses at 2, 4 and 6 km source-receiver offsets over the homogeneous seafloor model. 
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Figure 2. Comparison of computational efficiency with and without the time step doubling method. 
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Figure 3. (a) The 3-D gas reservoir model. (b) Ex fields from FETD and FDTD. (c) dBydt fields from FETD and FDTD. 
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Figure 4. (a) The 2D seafloor model with and without the 3D reservoir. (b) Ex fields.  (c) Ez fields. The size of the 3D 

reservoir is 6 (km)-by-6 (km)-by 0.1 (km) in the x-, y- and z- directions, respectively. Its axis base point is (1 km, -3 m, 1500 m). 
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