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Time-lapse inversion of crosswell radar data

Frederick D. Day-Lewis∗, Jerry M. Harris‡,
and Steven M. Gorelick∗∗

ABSTRACT

The combination of differential radar tomography
with conventional tracer and/or hydraulic tests facili-
tates high-resolution characterization of subsurface het-
erogeneity and enables the identification of preferential
flow paths. In dynamic imaging, each tomogram is typi-
cally inverted independently, under the assumption that
data sets are collected quickly relative to changes in the
imaged property (e.g., attenuation or velocity); however,
such “snapshot” tomograms may contain large errors if
the imaged property changes significantly during data
collection. Acquisition of less data over a shorter time
interval could ameliorate the problem, but the resulting
decrease in ray density and angular coverage could de-
grade model resolution. To address these problems, we
propose a new sequential approach for time-lapse tomo-
graphic inversion. The method uses space-time parame-
terization and regularization to combine data collected

at multiple times and to account for temporal variation.
The inverse algorithm minimizes the sum of weighted
squared residuals and a measure of solution complex-
ity based on an a priori space-time covariance function
and a spatiotemporally variable mean. We demonstrate
our approach using a synthetic 2-D time-lapse (x, z, t)
data set based loosely on a field experiment in which
difference-attenuation radar tomography was used to
monitor the migration of a saline tracer in fractured rock.
We quantitatively show the benefits of space-time inver-
sion by comparing results for snapshot and time-lapse
inversion schemes. Inversion over both space and time
results in superior estimation error, model resolution,
and data reproduction compared to conventional snap-
shot inversion. Finally, we suggest strategies to improve
time-lapse cross-hole inversions using ray-based inver-
sion constraints and a modified survey design in which
different sets of rays are collected in alternating time
steps.

INTRODUCTION

Accurate and reliable characterization of aquifer hetero-
geneity remains one of the foremost problems in hydrogeol-
ogy. Traditional hydrogeologic measurements are sparse and
sample poorly defined aquifer volumes limited to the vicin-
ity of boreholes. Near-surface geophysical exploration meth-
ods can provide additional information about hydrogeologic
properties between or away from boreholes (e.g., Rubin et al.,
1992; Copty et al., 1993; Hyndman et al., 1994, 2000; Hyndman
and Gorelick, 1996; Hyndman and Harris, 1996; Poeter et al.,
1997; Ezzedine et al., 1999; Hubbard et al., 1999, 2001); how-
ever, the relationship between geophysical properties and hy-
draulic conductivity is complex, nonunique (Marion et al.,
1992; Hyndman et al., 1994), and scale dependent (Hyndman
et al., 2000). One solution is to use “differential geophysics”
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to monitor changes concomitant with engineering stress tests,
contaminant migration, or natural physical processes (e.g.,
White, 1988; Brewster and Annan, 1994; Brewster et al., 1995;
Osiensky and Donaldson, 1995; Ramirez et al., 1996; Slater and
Sandberg, 2000; Slater et al., 2000; Hubbard et al., 2001). Mea-
surements are collected before, perhaps during, and after an
imposed change to the system. Inverted difference images re-
veal changes that vary over space and time and can be related
to hydrogeologic features, such as fractures containing high
solute concentrations. We believe the combination of dynamic
geophysical imaging with traditional hydrologic testing holds
great promise for improving aquifer characterization.

Of particular use in near-surface settings is ground-
penetrating radar (GPR), which may offer submeter reso-
lution. Radar velocity and attenuation are sensitive to con-
trasts in several properties of hydrologic relevance. Radar
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attenuation tomography yields images (tomograms) of vari-
ations in electrical conductivity, which is a function of pore-
fluid salinity. Velocity tomography maps variations in dielectric
permittivity, which is a function of water content and poros-
ity. In the landmark Stripa mine fractured rock study, Olsson
et al. (1992) used radar methods to identify and delineate frac-
ture zones; Olsson et al. (1991) collected radar amplitude data
during a saline tracer test and inverted for three difference-
attenuation tomograms. Radar tomography has also been used
in conjunction with tracer tests at the U.S. Geological Survey
Fractured Rock Hydrology Research Site near Mirror Lake,
New Hampshire (Lane et al., 1998, 2000). Lane et al. (1998)
developed a novel sequential-injection and scanning method
to collect time-lapse data during saline tracer tests. Eppstein
and Dougherty (1998a) monitored changes in soil moisture
during fluid injection in the vadose zone using cross-borehole
GPR.

Difference tomograms are typically generated based on a
single time-lapse data set. If multiple tomograms are com-
puted, they are inverted independently (e.g., Olsson et al.,
1991; Eppstein and Dougherty, 1998a; Lane et al., 1998, 2000;
Hubbard et al., 2001). These studies relied on the assumption
that data used to invert each tomogram were collected over
a sufficiently short period of time that changes in the imaged
property during data collection were negligible. If, however,
the tracer concentration or distribution changes quickly over
the data collection period, this assumption could result in poor
data reproduction and errors in tomograms.

We propose space-time inversion as a means to overcome
this limitation and account for, indeed, to take advantage of
space-time parameter correlation and precise data-acquisition
times. Using data collected at multiple times should im-
prove the signal-to-noise ratio and model resolution. Our
space-time tomographic inverse approach is applied to a syn-
thetic example, and we assess its advantages over independent
“snapshot” inversion methods in terms of estimation error,
model resolution, and data reproduction. The synthetic ex-
ample is based loosely on a field experiment at the U.S. Ge-
ological Survey Fractured Rock Hydrology Research Site, in
which difference-attenuation tomography was used to moni-
tor tracer migration during a series of saline tracer tests (Lane
et al., 2000).

The time-lapse inversion combines data from multiple
times, thereby exploiting temporal correlation. The forward
model accounts for measurement collection time, and a nodal
parameterization allows for the physical properties to vary
smoothly in space and time. At each step of the inversion,
nodal parameters (i.e., difference attenuation in this study)
in a temporal window are updated using all measurements
collected inside the window. The window advances in time
as the inversion proceeds. The inversion algorithm minimizes
a combination of (1) the sum of weighted squared data
residuals and (2) a measure of solution complexity based on
an a priori space-time covariance function. Additionally, we
consider strategies to enhance model resolution including
(1) a modified survey design in which different source-receiver
geometries are used in alternating time steps, (2) use of
additional time-sets of data in each time-lapse inversion step,
and (3) application of ray-based inversion constraints to
restrict attenuation anomalies to regions of the tomograms
traversed by high difference-amplitude raypaths.

BACKGROUND

Radar wave propagation

In radar tomography (e.g., Olsson et al., 1991, 1992; Eppstein
and Dougherty, 1998a; Lane et al., 1998; Holliger et al., 2001;
Peterson, 2001) electromagnetic waves are transmitted from
transmitter-antenna locations in one borehole to receiver-
antenna locations in one or more boreholes where waveform
data are collected. Typical center frequencies vary from 20 to
200 MHz. Quantities such as traveltime, energy, or amplitude
are calculated for each waveform trace. Processed data are in-
verted to yield images of velocity, attenuation, or other quanti-
ties in the image planes. In GPR studies, it is typically assumed
that wave propagation dominates over conduction. Under this
assumption, radar velocity is a function of magnetic perme-
ability and dielectric constant, whereas radar attenuation is a
function of these properties as well as electrical conductivity
(Stratton, 1941, 275–277), which increases with salinity (Archie,
1942).

In problems where velocity contrasts are significant, ray
bending occurs according to Snell’s law, and the tomographic
inversion is nonlinear. This is typical in seismic applications,
where velocity variations can be large. In radar tomography,
the straight-ray assumption is often reasonable, as radar ve-
locity in the near subsurface tends not to be highly variable.
Furthermore, because radar velocity is only a weak function
of salinity, ray bending due to salinity changes can often be
ignored.

Difference-attenuation tomography

In attenuation tomography, the peak amplitude is measured
for a number of raypaths between transmitter positions in one
borehole and receiver positions in a second borehole. Inver-
sion of amplitude data generates tomograms of attenuation.
Assuming straight rays, amplitude decay is a function of dis-
tance from the transmitter, the attenuation of the medium, and
the antenna radiation patterns (e.g., Holliger et al., 2001):

A(r ) ∝ A0 exp(−α(r ))2T (ϕ)2R(ϕ)
r

, (1)

where A(r ) is the peak amplitude of the measured trace at
distance r from the transmitter, A0 is a normalization factor
combining the effects of antenna gain and efficiency, α is the
attenuation of the medium, 2T is the radiation pattern of the
transmitter antenna,2R is the radiation pattern of the receiver
antenna, and ϕ is the angle of the ray with respect to horizontal.
Thus, trace amplitude is an integrated measurement of atten-
uation along the raypath between the transmitter and receiver
locations. The problem (1) is linearized by taking logarithms,
and then discretized over the tomogram, which is typically pa-
rameterized as a pixelated grid. This results in a linear sys-
tem of equations relating measurements (amplitudes) to model
parameters (e.g., pixel attenuations):

−ln
Ai r

2T (ϕ)2R(ϕ)
= −ln A0 +

∑
j

α j `i j , (2)

where Ai is the amplitude of ray i , α j is the attenuation in
pixel j , and `i j is the distance traveled by the ray i in pixel j .
Inversion of equation (2) to estimate absolute attenuation, α,
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requires assumption of a model for the unknown antenna radia-
tion (Holliger et al., 2001; Peterson, 2001). Fortunately, reliance
on these models is reduced in the estimation of difference
attenuation, 1α, from difference-amplitude data.

There are two approaches to difference-attenuation to-
mography. The first involves inversion of two sets of am-
plitude data to yield two attenuation tomograms, which are
subsequently differenced. The second approach inverts ray
“difference-amplitude data” to directly produce difference-
attenuation tomograms. This is achieved by calculating the dif-
ference between two amplitude data sets: Ak, collected at time
k, and A0, a background data set collected before an imposed
change to the system (e.g., tracer injection). If we again as-
sume straight rays and further assume that antenna-radiation
patterns are constant in time, then

ln
A0

i

Ak
i

=
npixels∑

j=1

1αk
j r i j , (3)

where 1αk
j is the difference attenuation at time k in pixel j ,

1αk
j =αk

j −α0
j , npixels is the number of pixels, αk

j is the atten-
uation at time k in pixel j , and α0

j is the attenuation in pixel j
at the reference time, before the imposed change. Inversion of
difference-amplitude data [the left-hand side of equation (3)]
obviates the requirement to know the antenna-radiation pat-
terns. Moreover, examination of difference data yields valuable
insight into the spatial distribution of tracer during geophysical
monitoring. Such insight provides a basis for the development
of ray-based constraints on estimates of difference attenuation.
For these reasons, we work with difference-amplitude data in
this study.

Experimental time-lapse data collection

In time-lapse cross-borehole seismic or resistivity surveys,
multiple receivers and/or sources are used. When a source
is triggered, many receivers simultaneously collect measure-
ments. Thus, a common-source gather is collected instanta-
neously, and a survey, comprising a number of gathers, can
be collected in a short span of time without having to relocate
sources or receivers for each measurement. This is not the case
with present borehole-radar systems. Most commercially avail-
able borehole-radar systems employ one transmitter antenna
and one receiver antenna, thus hindering rapid time-lapse data
collection. A radar antenna must be moved for each measure-
ment. Thus, each measurement in a gather, and each gather in a
survey, is collected at a different time. This results in an unfortu-
nate tradeoff between (1) obtaining sufficient raypath coverage
in each survey, and (2) minimizing the time interval over which
a survey is collected, so that temporal changes in the physical
properties of the subsurface are negligible. The quality of the
inversion will suffer if spatial coverage is poor or if data are
inconsistent due to neglected temporal changes. One strategy
is to reduce injection and pumping rates to minimize concen-
tration changes during data collection steps. However, tracer-
test design is commonly dictated by hydrogeologic rather than
geophysical considerations. At high flow velocities, advection
dominates and preferential flowpaths are best illuminated.
Furthermore, density-driven flow due to high-concentration
saline tracers will be minimized under higher flow rates,
facilitating tracer-test interpretation using standard models.

A second, more attractive strategy is to employ space-time
parameterization and inverse modeling to account for stag-
gered acquisition times and space-time correlation of tracer
concentration.

Tomographic inversion

Tomographic inversion typically involves the solution of
large (many thousands of data and estimated parameters) un-
derdetermined or mixed-determined systems of equations. In
mixed-determined systems, data are sufficient to resolve some,
but not all, parameters (e.g., pixel difference-attenuation val-
ues). Inversion requires the addition of prior information, usu-
ally in the form of minimum-length or smoothness criteria
(Menke, 1989). Large problems often require iterative row-
action solvers such as ART or SIRT (Censor, 1983; Peterson
et al., 1985) instead of optimal least-squares approaches that
employ matrix decomposition or inversion. Inverse solutions
may be contaminated by data errors and may exhibit arti-
facts due to poor model resolution. Numerous approaches
and strategies to problems of model parameterization and
inversion are found in the literature. Some recent advances
include the application of the extended Kalman filter to se-
quentially incorporate data for optimal estimation (Eppstein
and Dougherty, 1998b), methods to constrain tomograms to
include a small number of homogenous zones (Hyndman et
al., 1994; Hyndman and Harris, 1996; Eppstein and Dougherty,
1998b), inversion on staggered and adapted grids (Vesnaver
and Böhm, 1999, 2000), and the use of stochastic regulariza-
tion to cope with model ambiguity for large, underdetermined
problems (Maurer et al., 1998). Other strategies include the ap-
plication of ray-based constraints to limit anomalies to certain
regions of the tomogram (Singh and Singh, 1991), and parame-
terization linked to the underlying physics of wave propagation
(Michelena and Harris, 1991).

TIME-LAPSE INVERSION METHODOLOGY

Space-time parameterization

The forward model for calculating difference-amplitude data
requires parameterization of difference attenuation in the in-
terwell region. Commonly, the tomogram is discretized as a
regular grid of square pixels. We instead employ a space-time
nodal mesh and interpolate difference-attenuation between
nodes for ray-tracing and display purposes. The nodal parame-
terization allows difference attenuation to vary smoothly in
space and time, whereas pixels are assumed homogeneous.
Moreover, a mesh is better suited to space-time interpolation
than is a pixelated grid, and is easily adapted for problems
with deviated wells or multiple image planes. In the following
synthetic example, the image domain is discretized into a 3-D
(x, t) mesh of 8-node linear-brick elements. The 3-D space-
time mesh can be thought of as a time series of identical 2-D
spatial meshes. To construct the 2-D spatial mesh, we use a
constant vertical spacing between nz layers of nodes, with a set
number of nodes nr in each layer.

Difference attenuation at particular position and time,
1α(x, t), is interpolated as a weighted average of nodal
difference-attenuation values, with the weights specified by
Lagrange interpolation functions for cubic-quadrilateral finite
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elements (Istok, 1989, 109; and our Appendix A):

1α(x, t) =
ntimes∑
k=1

nnodes∑
j=1

wk
j (x, t)1αk

j , (4)

wherewk
j (x, t) is the Lagrange interpolation function at spatial

location (x, y) and time t for node j at mesh-time Tk, ntimes
is the number of time mesh times, nnodes is the number of
nodes in each 3-D mesh, and1αk

j is the difference attenuation
of node j in the Tk-time mesh.

Forward model

We model the difference amplitude at a receiver as the line
integral of difference attenuation along the raypath. To ac-
count for temporal variation during data acquisition, the for-
ward model for a data set depends on difference attenuation
(expressed in decibels/meter) in two temporally adjacent 2-D
(x, z) meshes:

dk
i = 20 log10

A0
i

Ak
i

=
∫

Ri

1α(r, tk
i ) dr

≈
nnodes∑

j=1

Gk,k
i j 1α

k
j +

nnodes∑
j=1

Gk,k+1
i j 1αk+1

j , (5)

where dk
i is the simulated difference-amplitude for ray i in the

k-time data set (expressed in decibels), r is the point in space
along the raypath Ri , tk

i is the collection time for ray i in the
k-time data set (in minutes since the start of injection), and Gk,`

i j

is the influence of node j in the T `-time mesh on ray i in the
k-time data set (in meters).

Constructing the raypath matrix, G, for a 2-D pixelated grid
would require calculation of the lengths traveled by each ray in
each pixel. For the space-time nodal mesh, we must determine
the length of each ray attributed to each node, in both space and
time. The effect of node j in the T `-mesh on ray i collected in
the k-data set is calculated as the nodal interpolation function
integrated numerically along the ray path Ri :

Gk,`
i j =

∫
Ri

w`j
(
r, tk

i

)
dr

≈
nsteps∑
m=1

w`j
(
xs + (m− 1/2)1x, tk

i

)‖1x‖, (6)

where nsteps is the number of increments from the source lo-
cation xS to the receiver location xR, and 1x is the increment
vector (xR− xS)/nsteps.

Tomographic inverse method

To use all data to estimate all parameters simultaneously
would be computationally intractable for most time-lapse to-
mographic problems. Inversion for static phenomena can in-
volve thousands or tens of thousands of data and estimated
parameters. In dynamic imaging, the number of parameters
and unknowns grows according to the number of time-lapse
tomograms and data sets. To overcome this problem, we ap-
ply sequential inversion, using N time-sets of data to estimate
the N+ 1 time-sets of parameters of which they are func-
tions (Figure 1). For example, the forward model δk=Γk mk

for N= 2 is

[
dk−1

dk

]
=
[

Gk−1,k−1 Gk−1,k 0

0 Gk,k Gk,k+1

]∆αk−1

∆αk

∆αk+1

 . (7)

Each tomographic inversion step seeks to minimize Z, a com-
bination of the sum of weighted squared data residuals and a
measure of solution complexity based on an a priori covariance
model:

Z = (δk − Γkm̂k)T V−1(δk − Γkm̂k)

+ (m̂k −Xβ)kQ−1(m̂k −Xβ), k = 1, nsteps, (8)

where δk is the data vector containing N time-sets of data for
step k of the inversion; Γk is the data kernel for step k of the
inversion, corresponding to N time-sets of data and N+ 1 time-
meshes of nodes; m̂k is the vector of model parameter estimates
for N+ 1 time-meshes of nodes in step k of the inversion; V is a
diagonal matrix with elements equal to the error variances of
δ; Q is the prior covariance matrix for model parameters m̂k;
X is a matrix defining the form of the spatiotemporal mean
(e.g., a constant or linear trend), and β are the mean values
determined by the inversion. The index k is incremented as the
inversion proceeds. Each step in the inversion produces esti-
mates of difference-attenuation at N+ 1 times, and difference-
attenuation at each time is estimated in N+ 1 steps. The final
estimate is taken from the step in which those parameters are
best resolved. For example, in the case of N= 2, each k-set of
difference-attenuation values would be estimated three times:
using first the k− 2 and k− 1 data sets, then the k− 1 and k
sets, and finally the k and k+ 1 sets. The final estimate vec-
tor for time k would be the one based on the k− 1 and k data
sets because this estimation was based on the most informative
data for time k (Figure 1). Alternatively, the different estimates
could be averaged to produce increased temporal smoothness,
much as spatial smoothing filters are sometimes applied to to-
mograms as a postprocessing step (e.g., Hyndman et al., 1994).
However, any resulting aesthetic improvement would likely
increase the model response misfit to the data.

The mean, Xβ, can be defined to account for spatial and/or
temporal trends. Numerous forms are possible, including linear
or polynomial spatiotemporal trends or homogeneous zones.
The form, X, of the mean is defined a priori, but the mean val-
ues, β, are found by the inversion. Note that temporal changes
in the mean values are partly accounted for by the sequential
estimation, which allows the mean values to change through
time. The parameter vector m̂k that minimizes equation (8) is
found by solving(

ΓkT
V−1Γk +M

)
m̂k = ΓkT

V−1δk, (9)

where

M = Q−1 −Q−1X(XT Q−1X)−1XT Q−1. (10)

The minimization (9) is based on the estimation step in the
“geostatistical approach” used for hydrogeologic parameter
estimation with a spatially variable mean (e.g., Kitanidis and
Vomvoris, 1983; Kitanidis, 1995, 1996).

A number of spatiotemporal covariance models are found
in the literature (Kyriakidis, 1999). We model the space-time
covariance as the product of separable spatial and temporal
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spherical covariance functions (e.g., Rouhani and Myers, 1990):

Q(h, τ ) = Qoρx(h)ρt (τ ) = Qo

[
1−

(
3
2

h− 1
2

h3
)]

×
[

1−
(

3
2
τ − 1

2
τ 3
)]
, (11)

if h<ax and τ <at , or 0 otherwise, where Q(h, τ ) is the space-
time covariance, ρx(h) and ρt (τ ) are the spatial and temporal
correlation functions, respectively, Qo is the variance, h is the
spatial separation distance, τ is the temporal separation, ax is
the spatial correlation range, and at is the temporal correlation
range.

In some problems, attenuation changes may be confined to a
small region of the tomogram. For example, tracer transport in
fractured rock is typically focused in a few permeable fractures;
thus, only a small population of rays will traverse the anomaly.
However, if the inverse problem is severely underdetermined
(as is usually the case), the anomaly may artificially blur or
smear outside this region. In such cases, the use of ray-based
constraints can improve model resolution. For example, Lane
et al. (1998) used the iterative ray-projection technique algo-
rithm (Singh and Singh, 1991) to restrict difference-attenuation
anomalies to regions traversed by high difference-amplitude
raypaths. To facilitate calculation of the model and data res-
olution matrices for constrained inversion, we instead impose
zero-value, ray-based constraints using Lagrange multipliers.
The solution for the constrained problem, m̂k′ , is determined
by solving the linear system[

ΓkT
V−1Γk +M FT

F 0

][
m̂k′

λ

]
=
[
ΓkT

V−1δk

0

]
, (12)

where Fm̂k′ = 0 are the nodal constraints, and λ is the vector of
Lagrange multipliers.

It is generally more efficient to solve the linear systems (9)
or (12) using LU decomposition and then backsolving rather
than to attempt full matrix inversion to calculate the estimates
directly. However, to compute model resolution matrices re-
quires that we define the approximate inverses for the con-
strained and unconstrained problems (Γk† and Γk†′ , respec-
tively) such that m̂k=Γk†δk and m̂k′ =Γk†′δk:

Γk† = (ΓkT
V−1Γk +M

)−1ΓkT
V−1, (13)

0k†′ = {I− (ΓkT
V−1Γk +M

)−1FT
[
F
(
ΓkT

V−1Γk

+M
)−1FT

]−1F
}
Γk†. (14)

The sequential approach described here facilitates the calcu-
lation of resolution matrices and is computationally efficient.

FIG.1. Data stencil used to estimate nodal parameters at differ-
ent times for N= 2. Data sets k− 1 and k are used to estimate
each k set of parameters.

Our technique does not require repeated matrix inversions or
covariance updating, because we use the same approximate in-
verse for multiple time steps under the assumption of a static
covariance model. For example, if the same data configuration
was used for every time step, then the same forward and inverse
models are used in every time step. The sequential inversion
would therefore require a single LU decomposition for one
approximate inverse and then backsolving for different right-
hand sides at each step.

Model resolution

The model resolution matrix, R, is useful for quantifying
the nonuniqueness of inversion results in underdetermined
problems (Menke, 1989). R can be thought of as the lens or
filter through which the inversion sees the earth, taking into
account the forward model, the source-receiver acquisition ge-
ometry, the weights on the data, and any a priori information
we choose to apply. Row i of R describes the resolution of
model parameter i (difference attenuation at node i ). If pa-
rameter i is resolved uniquely, Rii is one, and all other ele-
ments of row i are zero. If Rii is zero, parameter i can not
be resolved by the data. A nonzero off-diagonal element Ri j

indicates that the estimation of parameter i is affected by pa-
rameter j . For a purely overdetermined problem, all model
parameters can be resolved, and R is an identity matrix. R can
be used to forward model, or predict, the result of an inver-
sion, m̂, for a given data configuration and hypothetical model
m; i.e., m̂=R m. Thus, the resolution matrix can be used to
evaluate the effect of different sampling schemes (in space and
time), parameterizations, constraints, and regularization meth-
ods on the inversion results. Typically, R is computed for the
case of the natural, generalized inverse using singular-value de-
composition of the data kernel. However, R can be computed
for alternative inverse models if Γ† is available (Vasco et al.,
1997). In this case, R is equal to Γ†Γ. The resolution matrix
for a step of the unconstrained and zero-constrained inverse
solutions are, respectively.

Rk = (ΓkT
V−1Γk +M

)−1ΓkT
V−1Γk (15)

and

Rk′ = {I− (ΓkT
V−1Γk

+M)−1FT
[
F
(
ΓkT

V−1Γk +M
)−1FT

]−1F}Rk. (16)

Using equation (15) or (16), we can compute the resolution
matrices for single steps of the sequential inversion. Rk or Rk′ ,
describe the averaging between parameters in the N+ 1 time
meshes being estimated. For example, for N= 2, two data sets
are used to estimate difference attenuation at time k, and those
estimates may also depend on difference attenuation at times
k− 1 and k+ 1. We can also calculate the resolution matrix for
sequential inversion, Rk

seq, such that

∆α̂k = Rk
seq

∆αk−1

∆αk

∆αk+1

 . (17)

The matrix Rk
seq is not square, but nnodes by 2(N+ 1) nnodes.

A row i of Rk
seq describes the influence of parameters in the

k− N+ 1 to k+ N− 1 time sets on the estimate of parameter i
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in the k-time mesh. Rk
seq is constructed from the rows of Rk

corresponding to the averaging kernels for α̂k. The constrained
sequential-estimation resolution matrix is constructed in the
same manner from the rows of Rk′ . It is also possible to derive
data resolution matrices for sequential inversion to examine
data reproduction for various source-receiver geometries and
parameterizations.

EXAMPLES

We demonstrate sequential time-lapse inversion for syn-
thetic examples in which radar tomography is used to monitor
a sodium-chloride (NaCl) tracer test. The examples are based
loosely on a field experiment conducted at the U.S. Geologi-
cal Survey Fractured Rock Research Site in New Hampshire
(Lane et al., 1998, 2000). Solute transport simulation yields
tracer concentrations in the image plane, which are converted
into difference-attenuation values. Following a comparison of
time-lapse inversion to conventional snapshot inversion, we ex-
plore strategies to enhance model resolution by (1) employing
different source-receiver geometries in alternating time steps,
(2) using different numbers of data sets for sequential esti-
mation, and (3) imposing ray-based inversion constraints to
restrict attenuation changes to regions traversed by raypaths
that show strong attenuation.

Calculation of synthetic tracer concentrations

We model a doublet tracer test, with continuous injection in
well W1 and continuous extraction from well W4 (Figure 2).
The NaCl tracer is injected at a concentration of 50 g/liter in
a 1.5-m interval in W1, under a flow rate of 3.0× 10−5 m3/s.
Tracer injection occurs for 10 minutes, after which freshwa-
ter is injected at the same rate. The extraction is from a 1.5-m
long interval in W4, with a pumping rate of 6.0× 10−5 m3/s.
Injection and extraction are both at a depth of 25 m below the
overburden-bedrock interface, within a 3-m thick fracture zone
with a hydraulic conductivity of 5.0× 10−4 m/s. The hydraulic
conductivity of the surrounding bedrock is 1.0× 10−7 m/s. An
effective porosity of 0.001 is assumed, representative of frac-
tured crystalline rock at the site (Shapiro, 1996). We assume
longitudinal and transverse dispersivities of 0.50 m and 0.2 m,
respectively. Assuming conservative transport, the governing
equations are those of 3-D steady-state groundwater flow (18),
Darcy’s Law (19), and transient advective-dispersive solute
transport (20):

∂

∂xi

(
Ki j

∂h

∂xj

)
+ Qs(x) = 0 (18)

νi = −Ki j

θ

∂h

∂xj
(19)

∂

∂xi

(
Di j

∂C

∂xj

)
− νi

∂C

∂xi
+ Qs(x)

θ
(Cs − C)− ∂C

∂t
= 0,

(20)

where h is hydraulic head, Ki j are elements of the hydraulic
conductivity tensor, Qs(x) is the flow rate per unit volume of
sources or sinks at spatial location x, xi is the spatial Cartesian
coordinate in direction i , C is concentration, Di j are elements of
the dispersion tensor, which is a function of longitudinal and
transverse dispersivitities, νi are the components of average

linear pore velocity determined from equations (18) and (19),
t is time, Cs is the concentration of the source or sink, and θ is
the effective porosity.

Synthetic tracer concentrations were generated using
the RKGFE finite-element ground-water flow and solute-
transport model (Gandhi et al., 2002). The boundary condi-
tions for flow are zero-drawdown (constant head) at the top
of the mesh, corresponding to an interface with high-K over-
burden material, and zero-gradient (no-flow) boundaries on all
other sides. Boundary conditions for transport are zero-flux on
all sides, and the initial condition is zero-concentration every-
where. Simulated tracer concentration histories are shown for
several locations in Figure 3.

Calculation of synthetic difference-amplitude data

Difference-amplitude data are generated for cross-hole sur-
veys in the W2–W3 plane. Lane et al. (2000) developed a for-
mula to relate changes in radar attenuation to changes in NaCl
concentration by combining an effective-medium model of at-
tenuation as a function of fluid conductivity with tabulated

FIG. 2. (a) Doublet tracer-test design, plan view with tracer
plume concentrations at 100 minutes in the Z=−25 m plane,
and (b) cross-sectional view between wells W1 and W4. Syn-
thetic cross-hole data are generated for the W2–W3 plane.
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values of conductivity for NaCl solutions of different concen-
tration. Using their approach, we find a regression equation
to predict difference attenuation from concentration for an ef-
fective porosity of 0.001. Third-order polynomial regression
yields

1α = 0.226C − 1.5× 10−3C2 + 7× 10−6C3, (21)

where difference-attenuation is in decibels/meter, concentra-
tion is in grams/liter, and the regression is constrained to pre-
dict zero difference attenuation for a concentration of 0 g/liter.
Using equation (21), nodal concentration values are converted
to difference attenuation. Radar difference-amplitude data are
then calculated using equation (5).

Setup of inversion examples

In all inversion examples, each time-set of data is collected
over a 10-minute window and includes difference-amplitude
measurements for 328 raypaths. Common-source gathers
are collected from four evenly spaced points in each well
(Figure 4). Measurements are made at receiver locations in
spatial increments of 0.5 m and time increments divided evenly
over the 10-minute window. The inversion parameters are
nodal difference-attenuation values on a time series of 2-D
(x, z) meshes. The composite 3-D (x, z, t) mesh has a 10-minute
temporal spacing, and 0.6-m x- and z-spacing, for a total of 825
nodes in each 2-D mesh. The same inversion parameters are
used for all configurations (Table 1). The mean is assumed to
be spatially uniform, but takes a different value in each time
mesh. Ideally, different data variances, model-parameter cor-
relation ranges, and model-parameter variances should be used
in different time steps. In practice, these parameters would be
unknown and selected based on initial results.

In generating synthetic difference-amplitude data, we as-
sume normally distributed measurement errors with a mean
of zero and standard deviation of 0.02 dB, which is approx-
imately 5% of the mean difference-amplitude for the data
set analyzed. Error management is important for difference
tomography in general and attenuation tomography specif-

FIG. 3. Tracer concentration histories at several points in the
image plane.

ically (Holliger et al., 2001), but it is not a major focus of
this study. Rather, our goal is to present and demonstrate a
space-time parameterization and inversion method. Methods
for handling data error include (1) pre-inversion data process-
ing, (2) data weighting schemes, and (3) use of appropriate
regularization to produce smooth or damped tomograms less
affected by data errors. The interested reader is referred to
Peterson (2001) for a recent review of pre-inversion data pro-
cessing and correction for radar tomography, and to Holliger et
al. (2001) for insight into the limitations of ray-based amplitude
tomography. It should be noted that the approach presented
here is compatible with pre-inversion data correction and that
it could be extended to include alternative measures of misfit
(e.g., the L1 norm) less prone than least-squares to data error
(e.g., Claerbout and Muir, 1973).

Inversion results for the five examples are compared in
Figure 5, which include images of the true difference attenua-
tion, the estimated difference attenuation, and the estimation
error, defined as the true minus the predicted difference at-
tenuation. For display, results are interpolated to a finer mesh
with a 0.3-m discretization according to the same interpolation
scheme used to build the forward model. Note that this is con-
sistent with our parameterization and forward model; it does
not artificially refine or smooth the results. Table 2 reports the
mean squared error (MSE) between synthetic and estimated
model parameters, and the MSE between synthetic and pre-
dicted difference-amplitude data for each example. These error
measures are computed for the tomograms shown in Figure 5.

Comparison of time-lapse and snapshot inversion

The first two inversion examples compare our time-lapse
inversion to conventional snapshot tomography. In example 1,
snapshot inversion is used to generate each tomogram from a
single difference-amplitude data set, neglecting measurement
time. The source-receiver geometry for example 1 is shown
in Figure 4a. Snapshot tomograms will best approximate
difference attenuation in the middle of the time-step in which
data are collected. Thus, inversion of data collected between
50 and 60 minutes yields estimates of difference attenuation
at 55 minutes.

Artifacts are apparent in the inverted 55-minute snapshot
tomogram (Figure 5a). The magnitude of estimation error
varies over the tomogram and is not symmetric, because of
the nonuniform error in assumed data-collection time. Data
collected early in the scan reflect an anomaly of one size and
magnitude, whereas data collected later in the scan see the
anomaly at a different size and magnitude. Inconsistencies be-
tween data collected at different times result in tomograms with
nonsymmetric streaks and negative values, where the inversion
attempts to compensate for neglected temporal variation by

Table 1. Parameter values used for inversion of synthetic
data.

Inversion parameter Assumed value

Standard measurement error 0.02 dB
Temporal range 40 minutes
Spatial range 5 m
Model variance 0.01 dB2/m2
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generating spurious spatial variation. Consequently, snapshot
inversion could lead to misinterpretation of the path of tracer
migration, as well as the timing of the peak concentration in
the image plane.

In inversion example 2, we use time-lapse inversion with
the same source-receiver geometry (Figure 4b), discretization,

FIG. 4. Source-receiver geometries for (a) example 1, (b) examples 2 and 5, (c) example 3, and (d) example 4. In (c) and (d), different
data are collected in different time steps and used jointly for inversion. Borehole W2 is located along the left side of each ray plot,
and borehole W3 is located along the right.

and inversion parameters used in example 1. The time-
lapse inversion uses two time-sets of data to estimate each
time-set of nodal difference-attenuation values. Each step of
the inversion involves estimation of difference attenuation
at 2475 nodes based on 656 difference-amplitude data. Al-
though the number of estimated parameters is triple that of
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example 1, the quality of the inversion is dramatically improved
(Figure 5b). The MSE of estimation decreases by 90% from
1.4× 10−4 to 1.5× 10−5 dB2/m2, and error is more uniform
across the tomogram. Streak artifacts present in the snap-
shot tomograms of example 1 do not appear in tomograms
generated using sequential time-lapse inversion. Time-lapse
inversion also improves the match to the data. The mean-
squared data residual is also reduced by an order of magnitude
(Table 2).

FIG. 5. Inversion results for examples 1 to 5. Column 1 shows the true difference-attenuation in the W1–W2 plane at time 55 minutes
(a) and 50 minutes (b–e) in decibels/meter. Column 2 shows inverted tomograms. Column 3 shows the estimation error, the difference
between images in columns 1 and 2.

Resolution enhancement through time-lapse inversion

The time-lapse inversion framework facilitates a number of
experimental and mathematical strategies to improve model
resolution and thereby enable more robust interpretation of
tomograms. In this section, we explore resolution enhance-
ment through (1) survey-design modification to include dif-
ferent raypaths in alternating time steps, (2) consideration
of three data sets to estimate each time-set of difference
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attenuation, and (3) application of ray-based constraints to fo-
cus difference-attenuation anomalies.

Insight into the nonsymmetric streak artifacts apparent in
the snapshot tomograms of example 1 can be gained by exam-
ining the resolution matrices for the inversion, which reveal
the dependence of difference-attenuation estimates on true
difference attenuation at times k and k+ 1. The diagonals of
these matrices (Figures 6a, b) show that some estimates are
controlled by difference-attenuation values at the earlier time,
others are controlled by values at the later time. Hence, res-
olution varies spatially within the tomogram, and the streak
artifacts in Figure 5a result from averaging across time as well
as space.

The diagonal of the resolution matrix, Rk
seq, for time-lapse

inversion example 2 is shown in Figure 6c. The image is nearly
symmetric, in contrast to Figure 6a. Consideration of staggered
measurement time and the use of space-time parameterization
suppress the streak artifacts observed in snapshot tomograms.
The resolution matrices for Examples 1 and 2 provide the
basis for evaluating the benefits of resolution-enhancement
strategies.

Effect of alternating raypath geometry: Example 3.—In
example 3, two different source-receiver geometries are used
in alternating time steps (Figure 4c) in an effort to capital-
ize on space-time correlation of difference attenuation. This
scenario includes the same number of rays as the two previ-
ous, and employs the same inversion parameters. Collection
of different rays in alternating time steps improves model
resolution over much of the image plane (Figure 6d). The
inverted tomograms are similar to results from example 2,
in which one raypath geometry was repeated. The MSE of
overall prediction error is the same as for example 2, but
the MSE between observed and predicted data improves
from 9.3× 10−5 to 3.1× 10−5 dB2 (Table 2). Model resolu-
tion and data reproduction are improved by use of alter-
nating source-receiver geometries, without loss of estimation
accuracy.

Effect of inversion using additional time-sets of data:
Example 4.—In this scenario, we evaluate the effect of incorpo-
rating an additional time-set of data (N= 3) in each estimation
step. We sequentially estimate four time sets of difference-
attenuation parameters from three time-sets of data, using a
single, repeated source-receiver geometry (Figure 4d). Con-
sideration of the additional data appears to improve model
resolution in parts of the image plane (Figure 6e), but the

Table 2. Computed mean absolute deviations for parameter
estimates (estimated versus true) and data residuals (simulated
versus observed).

Mean squared estimation Mean squared data
Example error (dB2/m2) residual (dB2)

1 1.4 × 10−3 1.3 × 10−3

2 1.5 × 10−4 9.3 × 10−5

3 1.5 × 10−4 3.1 × 10−5

4 2.2 × 10−4 3.1 × 10−4

5 6.0 × 10−6 3.7 × 10−5

FIG. 6. Diagonal elements of resolutions matrices for
(a) snapshot inversion, (b) time-lapse inversion using a sin-
gle source-receiver geometry, (c) time-lapse inversion us-
ing two source-receiver geometries in alternating time steps,
and (d) time-lapse inversion using three source-receiver
geometries, and (e) time-lapse inversion using two source-
receiver geometries and ray-based constraints.
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estimation error and data reproduction are degraded com-
pared to examples 2 and 3 (Table 2). The size, shape, and mag-
nitude of the anomaly are changing too quickly to use three
data sets to advantage for the problem considered. This find-
ing supports the application of time-lapse inversion using only
a limited number of time-sets of data. Use of data from multi-
ple times may improve or degrade inversion results depending
on the assumed space-time covariance model, the spatiotem-
poral mean, the true rate of change of parameter values, and
the magnitude of data error. However, the inversion results
for example 4 are still far superior to results from snapshot
inversion.

Effect of imposing ray-based constraints: Example 5.—As
in the third example, two different source-receiver geome-
tries are used in alternating time steps (N= 2) (Figure 4c).
In addition, linear constraints restrict changes in attenua-
tion to only those regions of the tomogram traversed by
raypaths corresponding to large difference-amplitude data.
In this example, we determine the low difference-amplitude
rays as those that correspond to the 40th percentile of the
difference-amplitude measurements. Nodes with more than
5% of their ray density attributed to low difference-amplitude
rays were constrained to zero-difference attenuation in the
inversion.

Application of ray-based constraints greatly reduces esti-
mation error (Figure 5e) and improves model resolution in the
vicinity of the difference-attenuation anomaly (Figure 6f) at
the expense of resolving parameters at the zero-constrained
nodes. Compared to results from example 3, which considered
the same source-receiver geometry, the constrained inversion
results in lower estimation error. As expected, the constrained
inversion produces a larger data misfit (Table 2). Despite the
addition of constraints, data reproduction remains superior to
snapshot inversion, owing to the use of space-time parameter-
ization and consideration of attenuation change during data
acquisition.

In establishing constraints, selection of cutoffs should be
guided by the results of initial, unconstrained inversions and by
plots of the raypaths corresponding to high and low difference-
amplitude data. If the target anomaly changes significantly in
size, location or shape, care must be exercised in applying
constraints. Plots of high and low difference-amplitude rays
should be examined for each time-lapse data set.

CONCLUSIONS

The combination of time-lapse geophysical monitoring
and conventional hydrogeologic tests provides more detailed
aquifer characterization than heretofore possible. Geophysical
monitoring of fluid flow or solute transport may provide valu-
able calibration data for hydrogeologic models. However, in
cases where the target feature varies more quickly than the data
collection process, accurate tomographic inversion must ac-
count for temporal variations in the imaged physical properties.
Toward this end, we presented a sequential-inversion approach
to time-lapse radar tomography based on a forward model that
accounts for precise data collection times and a parameter-
ization that allows for temporal regularization. A synthetic
example demonstrated the benefit of sequential time-lapse

inversion over the conventional snapshot approach. Snap-
shot tomograms contained large errors and streak artifacts
that would complicate interpretation. Time-lapse inversion re-
sulted in reduced estimation error, improved model resolution,
and superior data reproduction.

We presented formulas to compute the model resolution
matrices for the unconstrained and constrained versions of
our sequential time-lapse inversion method to provide tools
to evaluate the benefit of alternative data configurations,
regularization, and constraints on inversion results. Through
synthetic examples, we explored simple strategies to further
improve model resolution by exploiting temporal correla-
tion. This is achieved by collecting data for different ray-
paths in alternating time steps and by inverting data jointly
in space and time. The use of ray-based constraints en-
hances model resolution by limiting attenuation changes to re-
gions of the tomogram traversed by high difference-amplitude
rays.

Space-time parameterization and sequential-inversion were
demonstrated for linear, difference-attenuation tomography.
The approach could also be applied to other linear, tomo-
graphic problems and could be extended to solve nonlinear
problems in an iterative manner. Analysis of time-lapse data
using other inverse methods, such as SIRT or RAYPT, may
also benefit from the use of space-time parameterization and
regularization.
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APPENDIX

SPACE-TIME INTERPOLATION FUNCTIONS

The value of the interpolation function, wk
j , for node j in

time-mesh k is equal to one at that node, zero in elements
not containing the node, and zero at all other nodes. Calcu-
lation of the interpolation function values is performed in a
local coordinate system. An element can have arbitrary di-
mensions in the global (x, t) coordinate system, but is mapped
to a 2× 2× 2 cube with local coordinate system (ε, η, ζ ), in
which ε, η and ζ each range from −1 to 1 across the element

(Figure A-1). In the local system, the interpolation function at a
point is

wk
j (ε, η, ς) = 1

8
(1+ εε j )(1+ ηη j )(1+ ςςk), (A-1)

where wk
j (ε, η, ς) is the interpolation function of node j in the

k mesh at local space-time location (ε, η, ζ ), and ε j , η j , ζ
k are

the local coordinates of node j in the k-time mesh.
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FIG. A-1. Interpolation in parametric cubic quadrilateral elements.
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