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ABSTRACT

We present an iterative approach for quasi-continuous
time-lapse seismic reservoir monitoring. This approach in-
volves recording sparse data sets frequently, rather than com-
plete data sets infrequently. In other words, it involves
acquiring a completely sampled baseline data set followed
by sparse monitor data sets at short calendar-time intervals.
We use the term “sparse” to describe a data set that is a small
fraction of what would normally be recorded in the field to
reconstruct a high-spatial-resolution image of the subsurface.
Each monitor data set could be as little as 2% of a single,
complete conventional data set. The series of recorded
time-lapse data sets is then used to estimate missing, unrec-
orded data in the sparse data sets. The approach was tested on
synthetic and field crosswell traveltime data sets. Results
show that this approach can be effective for quasi-continuous
reservoirmonitoring. Also, the accuracy of the estimated data
increases as more sparse data sets are added to the time-lapse
data series. Finally, a moving estimation window can be used
to reduce computational effort for estimating data.

INTRODUCTION

Time-lapse monitoring projects are designed to observe changes
in a reservoir over a period of time. This period often varies from a
few months to a few years (e.g., Mathisen et al., 1995; Landrø et al.,
1999; Arts et al., 2004). With increased interest in CO2 sequestra-
tion in geologic reservoirs (Benson et al., 2005), time-lapse seismic
monitoring will help to ensure safe storage. Monitoring stored CO2

in geologic reservoirs may be needed for the site license, reservoir
performance assessment, and leak detection. During the injection
phase, when the reservoir pressure may be changing, faults may

be reactivated, creating flow conduits or leaks that can lead to loss
on containment. Fault reactivation could be of concern in many
time-lapse projects (e.g., Wiprut and Zoback, 2000; Røste et al.,
2007). Early detection of leaks through such conduits is more likely
if a quasi-continuous monitoring program is in place. Also, hydro-
carbon reservoirs will benefit from an effective quasi-continuous
seismic monitoring strategy to ensure efficiency and timely man-
agement decisions.
Conventional time-lapse monitoring scenarios require significant

time to acquire and process a full 3D seismic data volume (e.g.,
Lumley, 2001; Clarke et al., 2005). This time will be exacerbated
by implementation of a quasi-continuous monitoring strategy that
uses conventional data volumes. In this article, we investigate a
data-estimation-based approach for quasi-continuous seismic mon-
itoring (Harris, 2004; Harris et al., 2007). The central reasoning be-
hind our approach is that we record a complete baseline survey data
set followed by a series of sparse monitor data sets and estimate
unrecorded or missing data from recorded data taken at earlier
and later times. Smaller data-acquisition intervals result in better
data-estimation constraints. The goal is quasi-continuous assess-
ment of the subsurface reservoir, not real-time assessment.
If implemented, our approach would design the acquisition of

smaller data sets more frequently. The recorded data volume might
be on the order of 2% of what would be required by conventional
strategies, depending on the frequency of the recording. Picking ar-
rivals on sparse data sets may be somewhat difficult because the
visual cue provided by long continuous arrivals is absent. A pos-
sible way around this difficulty is to use guide picks predicted using
previously reconstructed velocity models. Another possibility is to
use guide picks from the completely sampled baseline data set.
The proposed method can be made more efficient by the use of

permanently installed sources and receivers. Some of the benefits of
using permanently installed receivers are described in Landrø and
Skopinseva (2008). These benefits include the opportunity for an
improved time-lapse seismic signal. Several time-lapse monitoring
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projects currently use permanently installed receivers. These in-
clude time-lapse projects at the Valhall field (Barkved et al.,
2005), Clair field (Foster et al., 2008), and Chirag-Azeri fields
(Foster et al., 2008). Repeated costs associated with redeployment
of seismic data-acquisition equipment can be avoided.
Several techniques have been proposed for geophysical model

construction from time-lapse sparse data. These include dynamic
imaging techniques, for example, DynaSIRT (Santos and Harris,
2008), ensemble Kalman filter dynamic inversion (Quan and Harris,
2008), and temporal regularization joint inversion (Ajo-Franklin
et al., 2005). DynaSIRT is a dynamic iterative reconstruction tech-
nique that uses weighted data from previous surveys together with
the data from the time of interest to iteratively construct a geophy-
sical model. On the other hand, dynamic inversion with ensemble
Kalman filters updates the geophysical model using current sparse
data. The joint inversion approach presented by Ajo-Franklin et al.
(2005) relies on regularization in slow time to account for the data
sparsity.
We believe quasi-continuous monitoring would benefit from a

stochastic estimation approach, where statistics calculated from a
training data set are used to estimate missing data. In our case,
the training statistics could come from a completely sampled base-
line data set. In particular, we investigate an autoregression techni-
que involving the use of prediction error filters (PEFs) in estimating
unrecorded traveltime data in a quasi-continuous time-lapse seismic
monitoring scenario. Claerbout (2008) suggests a two-step ap-
proach for estimating missing data with PEFs. In the first stage,
the PEF is estimated from the partially recorded data set (or training
data); in the second stage, the missing data are estimated using the
PEF and the partially recorded data. In our approach, the initial
training data set is the full baseline data volume.
Li and Nowack (2004) show with examples that the spatial re-

solution of seismic tomography reconstruction from traveltime data
can be improved if traveltimes extrapolated using PEFs to regions of
low seismic ray coverage are included in the tomographic recon-
struction. Our approach uses interpolation and extrapolation to im-
prove the coverage because the proposed survey produces sparse
coverage by design. We also use available data from previous sur-
veys and later surveys in the missing data-estimation process. With
the level of sparsity proposed with our approach, use of the baseline
survey may prove to be inadequate for training statistics; therefore,
we update the training statistics through use of the most recent
completely sampled data. In other words, we implement a spatio-
temporal data-estimation scheme. The method is explained in the
following section, followed by synthetic and field examples that
illustrate the efficiency of the proposed approach, then, finally,
conclusions.

METHOD

Our data-estimation problem deals with quasi-continuous time-
lapse seismic data that vary in space and calendar (or slow) time. We
assume that a data set could be recorded fully or sparsely. We will
represent the spatial domain with number subscripts and the slow
time with number superscripts. In addition, the estimation problem
also involves references to completely sampled data sets, which we
will represent with the subscript c; partially sampled or sparse data
sets, which we will represent with the subscript s; and unrecorded
data sets, which we will represent with the subscript u. Using this
nomenclature, the first complete survey d1c is

d1c ¼ ½ d11 d12 d13 : : : d1N �T; (1)

where N is the number of list order samples. A complete data set
is the sum of a sparse (recorded) data set and the unrecorded data
set, i.e.,

dkc¼ dks þ dku; (2)

where dks is the sparsely recorded data at time k and dku is the un-
recorded data at time k. Rewriting equation 2 with an identity matrix
gives

dkc¼ Sdkc þ ðI − SÞdkc; (3)

where we observe that

dks ¼ Sdkc; (4)

dku ¼ ðI − SÞdkc; (5)

and S can be interpreted to be a data selection operator that selects
which data are recorded from the otherwise complete data set.
If an “accumulated” data volume akc of k time-lapse surveys is

given as

akc ¼ ½ d1c d2c d3c : : : dkc �T; (6)

then also

akc ¼ aks þ aku; (7)

where aks is the accumulated sparse data volume up to time k and aku
is the accumulated unrecorded data volume up to time k. To esti-
mate the unrecorded data, we apply an autoregressive algorithm to
aks . The autoregressive data-estimation algorithm requires an as-
sumption of ergodicity — namely that the statistics of the seismic
data points in space are equivalent to the statistics of one repeatedly
measured data point. Though not always valid in practice, this as-
sumption is fundamental to estimation using autoregression. Be-
cause the extent to which this assumption is valid is likely to be
small, we have chosen to use the nonstationary (slow time) formu-
lation of the autoregressive data-estimation method.
The goal of our estimation problem is to obtain an estimate of

the accumulated, completely sampled data volume ~akc using the ac-
cumulated recorded sparse data volume aks up to and including
time k., i.e.,

~akc¼ aks þ ~aku; (8)

where ~aku is the estimate of the accumulated unrecorded data at time
k. We use the nonstationary form (Margrave, 1998) of the autore-
gression model (Jain, 1989) to compute ~aku.
Autoregression models have been applied in many data

prediction and data-estimation problems (e.g. Takanami and
Kitagawa, 1991). A summary of the autoregressive model is given
in Appendix A. We use a PEF, also reviewed in Appendix A.
Claerbout (1998) suggests a two-stage process for estimating miss-
ing data using the PEF. In the first stage, the optimal PEF for the
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available data is estimated. In the second stage, the estimated PEF is
then used to estimate the missing data.

Implementation

Estimating the optimal PEF could be done, using the incomplete
sparse data with the missing data masked (Claerbout, 1998, 2008)
or by using a training data set (Curry, 2008). The estimation pro-
cedure for time-lapse monitoring assumes there exists a completely
sampled baseline data set. Following the two-step approach sug-
gested by Claerbout (2008), we use this complete baseline data
set for training statistics and to make the initial estimate of the
PEF. We then use an iterative strategy to obtain an estimate of
the unrecorded data at each time k. The strategy begins with esti-
mating the initial nonstationary PEF using the training data set. We
use the completely sampled baseline data set as the initial estimate
of the PEF to be used for each time instance.
In the second iteration, the resulting estimated accumulated com-

plete data set from the first iteration is then used to reestimate the
nonstationary PEF. This PEF is an improvement over the first es-
timate of the PEF obtained because new sparse measurements are
used. The updated PEF is then used to reestimate the accumulated
unrecorded data set. This process is repeated until convergence is
reached. In other words, we continue the iterations until changes in
the estimated PEF or estimated data are negligible.
The entire iterative process is repeated each time new sparse data

sets are added to the accumulated volume. By repeating the process
each time new data are available, previously estimated unrecorded
data sets are reestimated. In effect, each additional sparse data set
provides more data to further constrain the estimates of unrecorded
data at previous times. The improvement in the previous estimates
becomes negligible as the number of later sparse data sets increases.

SYNTHETIC CROSSWELL
TRAVELTIME EXAMPLE

We use a synthetic baseline velocity model and changing models
generated through flow simulation to simulate a quasi-continuous
time-lapse monitoring scenario for a CO2 storage site. Beginning
with a baseline velocity model (Figure 1), we create 70 additional
synthetic models representing the seismic velocity between two
wells at two-week intervals over a period of 140 weeks, beginning,
say, January 1, 1993. A CO2 leak occurs after approximately

40 weeks into the CO2 injection phase. We use a source and receiver
configuration that mirrors a field configuration of a West Texas CO2

enhanced oil recovery (EOR) pilot site (Figure 2), with 200 sources
and 191 receivers. Source and receiver intervals are both 1.55 m.
The depth interval of interest is about 300 m.

Conventional time-lapse monitoring

To represent conventional time-lapse monitoring, we use only
two velocity models, with a time interval of 140 weeks between
the baseline and monitor surveys. In other words, we use only
the baseline and the seventieth time-lapse velocity model and record
two full monitoring surveys. To simulate this, we compute first-
arrival traveltimes for a crosswell geometry using the finite-
difference method described in Hole and Zelt (1995). Figure 3
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Figure 2. Crosswell data-acquisition configuration for the West
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Figure 3. (a) Synthetic baseline traveltime data set. (b) Monitor tra-
veltime data set for data set 70. (c) The difference between (a) and
(b). The data shown in (a) and (b) have been reduced by a constant
velocity of 5800 m∕s.
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shows the two computed baseline and time-lapse traveltime data
sets. The traveltime data sets are displayed on a grid with the x-
and y-axes represented by the shot and receiver depths, respectively.
To reconstruct the velocity models, we use the regularized tomog-

raphy algorithm described in Zelt and Barton (1998). Each data set is
inverted independently, and the difference between the recon-
structed velocity model from the baseline data set and the recon-
structed velocity model from the monitor data set gives the
time-lapse velocity change. The true and reconstructed velocity-
difference models are shown in Figure 4. The rms error shown in
Figure 4 is the image error between 800 and 900 m depth, the
location of the target reservoir where CO2 was injected. Although
the time-lapse velocity difference is well resolved, the leak is first
detected long after it started, in week 140. In a real CO2 seques-
tration project, such late detection could be problematic.

Quasi-continuous time-lapse monitoring

For each of the 70 time-lapse velocity models synthesized, we
compute first-arrival traveltimes for a crosswell-seismic geometry.
We use the same source and receiver configuration as the conven-
tional example described in the previous section, which mirrors the
configuration used in the West Texas field. We then subsample the
synthetic data sets following the quasi-continuous monitoring strat-
egy described. This is accomplished by discarding large portions of
each data set.
Four groups of subsampled (sparse) data sets are created: 1%,

2%, 5%, and 10% of the original data volume. For comparison,
we ensure that the accumulated data volumes of the subsampled
data sets at the end of the two-year period are equal. This two-year
period represents one complete recording cycle. For the 1% case,
we sample 1% of each of the 70 synthetic data sets, discarding 99%
of each data set; for the 2% case, we sample 2% of every other data
set, discarding 98% of the data from alternating data sets and 100%
of the others; for the 5% case, we sample 5% of every fifth data set,
discarding 95% from every fifth data set and 100% of the others;
and for the 10% case, we sample 10% of every tenth data set, dis-
carding 90% from every tenth data set, and 100% of the others. Both
random and regular sampling scenarios are tested. For the random
sampling case, we tested data selection scenarios where all possible
source and receiver locations for one complete conventional survey

were used in each data-recording cycle and scenarios where there
were repeated measurements at certain source and receiver loca-
tions. In the former case, all data points were used in each data-re-
cording cycle; in the latter case, some data points were omitted in
each data-recording cycle. The results presented in this paper are
from the random-sampling-test scenario, where there was no re-
peated measurement in a recording cycle. It should be noted that
similar conclusions can be made from the results obtained using
regular sampling data sets.
Figure 5 shows selected true velocity-difference models along-

side models reconstructed from complete synthetic traveltime data
sets. These reconstructions are very good, as one would expect from
complete time-lapse data sets. Clearly, the crosswell geometry is
effective for identifying the leak if the survey is taken, but it does
so at the expense of significantly larger data acquisition effort.
Reconstructions from the sparse subsampled data sets produce geo-
logically unreasonable models, showing significant artifacts. This is
because the inverse or imaging problem is severely underdeter-
mined with small sparse data sets, e.g., 5%. A first-order fix for
a severely underdetermined problem is to reduce the number of
model parameters estimated in the inverse problem. The conse-
quence of this action is to reduce spatial resolution, e.g., increase
the smallest model feature reconstructed.
Next, we construct time-lapse data volumes for use in quasi-

continuous monitoring by concatenating data sets from different
surveys in slow time. This produces a 3D traveltime volume. We
then use the iterative PEF approach described in the previous sec-
tion to estimate the missing, e.g., discarded, data. As the starting
guess for the iterative process, we use the initial data set (baseline)
and assume the traveltimes change slowly over the period to the first
slow-time survey. We then estimate a PEF from the resulting time-
lapse data volume and use this PEF to estimate the missing data.
This process is repeated until convergence or until a tolerance mea-
sure is met. An example of complete and estimated data differences
is shown in Figure 6. Although it is obvious in Figure 6 that the PEF
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approach is effective in estimating missing data, this observation is
quantitatively verified, as shown in Figure 7 where the rms errors
are shown over a complete data-estimation cycle as new sparse data
are incorporated. In Figure 7, N is the number of sparse time-lapse
data sets (surveys) used in the estimation process. One key obser-
vation is that the errors are similar, regardless of the sparsity of data
sets. This implies that the same level of model accuracy can be ob-
tained with a smaller data size using the approach presented in this
paper (i.e., by acquiring less data more frequently). In addition, by
sampling more frequently, we increase the slow-time temporal
resolution.
The error plots in Figure 8 illustrate that the accuracy of the re-

constructed slowness models improves as the number of iterations
increases. This shows a convergence toward the true model shown
in Figure 7. Finally, we see a decrease in rms error as data volume
increases, i.e., as more data are acquired, the accuracy of the esti-
mated data increases. The improvement, however, decreases as
more and more data are accumulated.
In Figures 7 and 8, it is obvious that after some time, adding new

data sets does not improve the estimation error for previously es-
timated data sets. For these data sets, acceptable convergence
has been reached. This implies that a smaller, moving estimation
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window can be used instead of using and reestimating all data vo-
lumes at all times. If a moving estimation window is used, the first
indication of abnormalities may warrant expanding the time win-
dow backward in time for confirmation. Also, a converged data
set can be used instead of the baseline data set to train the initial
PEF for the iterative process because we expect it to be more similar
to the most recent data set than the baseline data set is.
To examine the benefits of calculating a new PEF when new

sparse data sets are added, we reconstruct the synthetic velocity
models using previously estimated PEFs and then compare them
to the results obtained when a new PEF is recalculated. In
Figure 9, we show rms slowness errors obtained after the second
and third iterations when the estimated traveltime data used in the
reconstruction process are from 1% sparse data. The rms errors are
lowest when the PEF used is calculated from a time-lapse data
volume that includes all available data sets. In addition, the
rms errors of the slowness model reconstructed from the data es-
timated using the PEF calculated from the first 10 data sets are
worse than those using the PEF calculated from the first 20 data
sets, and so on. The errors are seen to decrease with data com-
pleteness, implying convergence. This shows that as the reservoir
properties evolve and more data are acquired, the estimated PEF
gets closer to the true PEF.
In Figure 10, we compare a series of reconstructed velocity mod-

els using the estimated data sets with different degrees of sparsity.
The selected velocity models represent the period around the time
the leak began, i.e., velocity model 21. Because the slow-time sam-
pling rate of the reconstructed velocity models from data estimated
using 2% sparse data is higher than the sampling rates of the 5% and
10% sparse data, the leak is detected much earlier in the 2% case
than in the 5% or 10% cases. In addition, because the data sparsity
of the 1% case is very high, the leak is not detected early. This
shows that using the appropriate data sparsity is as important as
obtaining the right slow-time resolution. Although this PEF ap-
proach to data estimation is effective, the fact that the error shrinks
as more data sets are acquired gives it the property of delayed ac-
curacy. Because the data are estimated from future and past data,
accuracy increases as more data are acquired.

RESERVOIR MONITORING AT THE
MCELROY FIELD

A conventional time-lapse monitoring project was conducted in
the McElroy field in West Texas with crosswell acquisition geome-
try. The baseline data set was acquired in 1993, and a monitor data
set was acquired in 1995 (Harris et al., 1995; Lazarotos and Marion,
1997). Selected shot gathers are shown in Figure 11. The project
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Figure 10. Selected reconstructed velocity-difference models from
the data estimated from (a) 10% sparse data sets, (b) 5% sparse data
sets, (c) 2% sparse data sets, and (d) 1% sparse data sets. These
models are sampled around the beginning of the leak. Because
the data space is sampled more frequently in time, the leak is de-
tected earlier with estimated data using 2% sparse data than with the
estimated data using 5% or 10% sparse data. Because of the sparsity
of the 1% data, the reconstructed velocity models’ data do not cap-
ture the leaked CO2.

M22 Arogunmati and Harris

Downloaded 10 Aug 2012 to 171.64.173.234. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



was executed as a pilot study to monitor changes in the reservoir in
response to CO2 injection into the reservoir. We use data collected
between wells JTM-A and JTM-C. In the 1993 survey, JTM-C was
the source well and JTM-A was the receiver well. The reverse was
the case in the 1995 survey. The wells are separated by about 180 m.
A total of 201 sources and 191 receivers were deployed in the

first survey; 200 sources and 192 receivers were deployed in the
second survey. Source and receiver intervals were both 1.55 m,
and the depth range of the measurements was 678–987 m. The
recorded data were rich in frequency bandwidth. The frequency
content of the recorded data in the 1993 survey was roughly
350–1500 Hz, sampled at intervals of 0.25 ms, whereas the fre-
quency content of the 1995 data was roughly 350–2000 Hz sampled
at intervals of 0.2 ms.
The field data example used here is not an ideal data set on which

to test our proposed method. An ideal data set will consist of multi-
ple time-lapse data sets. The choice of the field data example used is
based on availability. Also, the time-lapse change in the velocity
model is simple. A more complicated time-lapse change in the ve-
locity model would have been preferred.

Conventional time-lapse monitoring

To reconstruct a 2D P-wave velocity model between the two
wells, we first pick first-arrival traveltimes. The picks are shown
in Figure 12, where the axes of the grids in Figure 12 represent shot
and receiver depths. The picking accuracy is about 0.2 ms, one sam-
ple point. As expected, we observe the largest traveltime differences
at the depths corresponding to the reservoir, caused by a decrease in
reservoir seismic velocity from CO2. Figure 13 shows the difference
between the 1993 model and the 1995 model. The reduction in re-
servoir velocity can be seen in the velocity-difference model.

Time-lapse monitoring with sparse data

After successfully applying the proposed time-lapse monitoring
approach to synthetic data, we apply it to the McElroy field data. In
this case, we use 5% of the 1995 monitor data set. We selected ir-
regularly spaced traveltimes to obtain the 5% data used. Results are
shown in Figure 14. Without data estimation, the reservoir velocity
change resulting from the injection of CO2 is grossly underesti-
mated, as shown in Figure 14b. Using the complete baseline data
set and the sparse monitor data set, we estimate the discarded data.
The velocity model reconstructed using the estimated data is very
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Figure 11. Common-source gathers from the 1993 and 1995 sur-
veys in the McElroy field. The thick, blue curves are direct-arrival
traveltimes picked on the gathers.
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good, as shown in Figure 14c. This result shows the efficiency of the
proposed approach for crosswell traveltime field data. An ideal field
implementation of our approach will utilize more than two surveys
for optimal results.

SUMMARY

To examine the effectiveness of our quasi-continuous monitoring,
we created synthetic time-lapse traveltime data sets representative
of the field data sets recorded in the McElroy field. The field data
were recorded to monitor a reservoir flooded with CO2 for second-
ary recovery. We created 70 synthetic time-lapse velocity models
representing various modeled states of the field every two weeks
from the date of first data acquisition, and we also created their cor-
responding traveltime data sets. The synthetic models showed CO2

being injected into the reservoir and leaking into a shallower reser-
voir 10 months after injection began.
We kept the total size of the monitoring data volume at the end of

the surveys constant while varying the size of the sparse data ac-
quired at each time and the length of the time interval between data
sets. We used 1%, 2%, 5%, and 10% of the individual complete data
sets as our sparse data sets. The data intervals in these data sets were
2, 4, 10, and 20 weeks, respectively. After the unrecorded data sets
were estimated, traveltime tomography was used to reconstruct the
velocity models. The errors in the reconstructed models were then
analyzed.
The synthetic example showed that only a small number of itera-

tions are needed to produce reliable reconstructed velocity models;
in our case, only three iterations were needed. As more sparse data
sets are acquired, estimates of previously acquired sparse data sets
improve in accuracy. The accuracy improves because newer sparse
data sets add information to the older data sets.
Because the reconstructed time-lapse models converge after

some time, a moving estimation window can be used to reduce com-
putational effort. Furthermore, because total data volume increases
with time, once a reconstructed velocity model has stabilized, its
data need not be reestimated when new data are available. In the
synthetic data example, the CO2 leak is detected two weeks after
it occurred. However, this time delay is much smaller than the con-
ventional time-lapse data acquisition interval.
We also applied the proposed approach to field data. Here, we

used the baseline and monitor data from the McElroy Field. We

discarded 95% of the monitor data set and then estimated the dis-
carded data from the baseline data and the sparse monitor data. The
results show the efficacy of our approach with crosswell traveltime
data. With only the baseline and the sparse monitor data set, the
reconstructed reservoir velocity change is underestimated. With
the baseline and estimated monitor data sets, the reconstructed re-
servoir velocity change is very close to the true model.
This paper shows an application of our approach to time-lapse

monitoring using 2D crosswell acquisition geometry. In addition,
we only considered seismic traveltimes. The conclusions are there-
fore in reference to crosswell traveltime applications. However, the
idea can be extended to 3D surface seismic geometry for time-lapse
monitoring, especially if only seismic traveltimes are used. Also,
CO2 sequestration monitoring projects would benefit more from
using 3D surface seismic data because of the volumetric coverage
provided by 3D geometry.

APPENDIX A

THE ITERATIVE DATA ESTIMATION
FORMULATION

A random sequence dn with zero mean is an autoregressive pro-
cess of order pwhen the most recent p outputs and the current input
can be used to recursively generate the next output (Jain, 1989).
This can be stated as

dn ¼
Xp

j¼1

gjdn−j þ εn; (A-1)

E½εn� ¼ 0; Ef½εn�2g ¼ β2; E½εnεm� ¼ β2δn−m;

E½εndm� ¼ 0; m < n; (A-2)

where εn is a zero-mean stationary input sequence independent of
previous outputs and gj are the elements of a PEF. Based on only the
past p samples, the quantity

d̂n ≜
Xp

j¼1

gjdn−j (A-3)

is the optimal linear predictor of dn (Jain, 1989), which implies

dn ¼ d̂n þ εn. (A-4)

Using boldface uppercase letters to represent matrices and
boldface lowercase letters to represent vectors, equation A-1 can be
written as

ε ¼ Dg (A-5)

or

ε ¼ Gd; (A-6)

respectively (Claerbout, 1998, 2008). The matrix G contains row-
shifted copies of the PEF coefficients vector g, and the matrix D
contains row-shifted copies of the data vector d.
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Although data prediction deals primarily with estimating yet-to-
be measured data samples from previously measured data samples,
data estimation deals with computing missing data samples from an
incomplete set of data samples. To estimate missing data using the
autoregressive model, equations A-5 and A-6 are satisfied by mini-
mizing the prediction error ε.
Claerbout (1998) suggests a two-stage process for estimating

missing data using the PEF. In the first stage, the optimal PEF
for the available data is estimated. In the second stage, the estimated
PEF is then used to estimate the missing data. Estimating the opti-
mal PEF for an incomplete data set could be done by using a miss-
ing-data mask in the estimation process (Claerbout, 1998, 2008) or
by using a training data set (Curry, 2008). The PEF is obtained by
minimizing the residual rd:

rd ¼ DKgþ d ≈ 0; (A-7)

where K is masking operator that ensures that the constrained filter
coefficient remains unchanged. These include the zero-lag coeffi-
cient of the filter g, which has a value of one. K is similar to
the identity matrix but has a value of zero at positions corresponding
to the constrained filter coefficient. Equation A-7 assumes stationar-
ity in the data. Margrave (1998) presents an approach for estimating
PEFs for nonstationary data. Here, we solve for a nonstationary PEF
of the form

fns ¼ ½ g0 j g1 j g2 j : : : j gn �T; (A-8)

with

gk ¼ ½1 − g1;k − g2;k − g3;k : : : − gp;k�T;

by minimizing the residual,

0 ≈ rd ¼ D0Kg0 þ D1Kg1þ · · · þDnKgn þ d

¼ DnsKnsfns þ d; (A-9)

where fns is a nonstationary PEF with the vertical lines separating
distinct PEFs; g0; g1; g2; : : : ; gn are distinct stationary PEFs; and
Dk contains the subset of D to be convolved with gk. The values
Dns and Kns are nonstationary representations of D and K, respec-
tively. The objective functions for the least-squares minimization of
equation A-9 is

Φ ¼ krdk2 þ α2krrk2
¼ kDnsKnsfns þ dk2 þ α2kRKnsfnsk2; (A-10)

where rr ¼ RKnsfns, α2krrk2 is a regularization term, R is a rough-
ening operator, and α is a scaling constant. The regularization term
is used to ensure that we obtain a smoothly varying nonstation-
ary PEF.
Minimizing equation A-10 with respect to fns and rearranging the

terms give

fns ¼ −ðKT
nsDT

nsDnsKns þ α2KT
nsRTRKnsÞ−1KT

nsDT
nsd.
(A-11)

After computing the PEF, fns, the residual of the nonstationary con-
volution operation is used to estimate the missing data:

0 ≈ rf ¼ G0Sd0 þG0Hd0þG1Sd1 þG1Hd1þ · · ·

¼ FnsSdþ FnsHd; (A-12)

where Gk is a matrix representing convolution with gk, dk is the
subset of d convolved with gk, Fns is a matrix representing convo-
lution with fns, S can be interpreted to be a data selection operator
that selects which data are recorded from the otherwise complete
data set, and H is the difference between the identity operator
and S. The value H selects unknown data; S selects known data.
The objective functions for the least-squares minimization of equa-
tion A-12 are

Φ ¼ krfk2 ¼ kFnsSdþ FnsHdk2. (A-13)

Minimizing equation A-13 with respect to the data d and rearran-
ging the terms give,

d ¼ −ðHTFT
nsFnsHÞ−1HTFT

nsr0 r0 ¼ FnsSd; (A-14)

where r0 is a constant vector that holds the output of the nonsta-
tionary PEF convolved with the known data Sd.
We used an iterative process to estimate unrecorded time-lapse

data from recorded time-lapse data. This iterative process can be
summarized as follows:

fki ¼

8>><
>>:

−ðKkTA1T
c A1

cKk þ α2KkTRkTRkKkÞ−1KkTA1T
c a1c i ¼ 1

−ðKkT ~AkT
c;i−1

~Ak
c;i−1Kk þ α2KkTRkTRkKkÞ−1KkT ~AkT

c;i−1 ~akc;i−1 i > 1

;

~akc;i ¼ aks − ðHkTFkT
i Fk

iH
kÞ−1HkTFkT

i Fk
i a

k
s ∀i; (A-15)

where the subscript i represents iteration number, fki is the nonsta-
tionary filter computed in the ith iteration, Kk is the constrained
filter coefficient masking operator at time k, Rk is the regularization
operator at time k, akc is the completely sampled accumulated data at
time k, Ak

c is the matrix representing convolution with akc, and aks is
the sparsely sampled accumulated data at time k.
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