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D time-domain simulation of electromagnetic diffusion
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ABSTRACT

We present a finite-element time-domain �FETD� ap-
proach for the simulation of 3D electromagnetic �EM� diffu-
sion phenomena. The finite-element algorithm efficiently
simulates transient electric fields and the time derivatives of
magnetic fields in general anisotropic earth media excited by
multiple arbitrarily configured electric dipoles with various
signal waveforms. To compute transient electromagnetic
fields, the electric field diffusion equation is transformed into
a system of differential equations via Galerkin’s method with
homogeneous Dirichlet boundary conditions. To ensure nu-
merical stability and an efficient time step, the system of the
differential equations is discretized in time using an implicit
backward Euler scheme. The resultant FETD matrix-vector
equation is solved using a sparse direct solver along with a
fill-in reduced ordering technique. When advancing the solu-
tion in time, the FETD algorithm adjusts the time step by ex-
amining whether or not the current step size can be doubled
without unacceptably affecting the accuracy of the solution.
To simulate a step-off source waveform, the 3D FETD algo-
rithm also incorporates a 3D finite-element direct current
�FEDC� algorithm that solves Poisson’s equation using a sec-
ondary potential method for a general anisotropic earth mod-
el. Examples of controlled-source FETD simulations are
compared with analytic and/or 3D finite-difference time-do-
main solutions and are used to confirm the accuracy and effi-
ciency of the 3D FETD algorithm.

INTRODUCTION

Transient electromagnetic �TEM� methods have been extensively
sed in applied geophysics. Because interpretations of TEM data in
omplex geologic environments increasingly must resort to forward
nd inverse modeling, the forward numerical simulation of the TEM
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elds is of particular interest. Introduced by Yee �1966� and Taflove
1980� in engineering computational electromagnetics, finite-differ-
nce time-domain �FDTD� algorithms have become one of the stan-
ard tools used to simulate TEM methods. Their popularity is due to
he fact that FDTD methods are relatively straightforward to imple-

ent, highly efficient, and able to provide accurate solutions over a
ide range of TEM simulations.
Among the variety of FDTD algorithms, the most popular one is

robably a 3D FDTD algorithm coupled with a staggered-grid tech-
ique and the Du Fort-Frankel method �Wang and Hohmann, 1993�.
s geophysics research has resorted increasingly to larger and larger
odels, this particular FDTD algorithm has been translated into par-

llel versions �Commer and Newman, 2004�. The parallel version
rovides two additional algorithmic features: �1� computation of the
nitial electric field responses over arbitrary conductivity distribu-
ions via a 3D finite-difference Poisson solver, and �2� support for an
rbitrarily oriented, finite-long electric dipole source. In short, these
ew features make it possible to simulate the TEM response to more
ealistic earth models than previously.

Although the 3D FDTD algorithm has enjoyed considerable pop-
larity, it also has well-known drawbacks. Its practical weakness is
hat large, complex geologic structures �e.g., topography, bathyme-
ry, and heterogeneity�, which do not conform to rectangular grids,
eed to be captured by a stair-step approximation. The stair-step ap-
roximation might seem to adequately model significant irregularity
sing a series of very small grids in parallel-computing environ-
ents. However, such stair steps can introduce errors into numerical
odeling results, especially when sources and receivers are placed

n or very close to the complex surface described by the stair steps.
urthermore, the stair-step modeling approach can introduce unnec-
ssarily small grid spacing, resulting in an inefficiently small time-
tep size in the Du Fort-Frankel method.

We implement a finite-element time-domain �FETD� solver for
iffusive EM simulation in complex geologic environments. In con-
rast to FDTD methods, FETD methods are based on a geometry-
onforming unstructured mesh that allows precise representations of
rbitrarily irregular topography and complex geologic structures in a
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F116 Um et al.
omputationally elegant way. In addition, the unstructured mesh
asily enables more accurate modeling of subtle geometric changes
n a region �e.g., geologic CO2 storage in a monitoring environment
r a hydrocarbon reservoir in a production environment�, isolating
he true TEM perturbation caused by the target itself. Such an accu-
ate electromagnetic �EM� simulation is critical for imaging and in-
ersion problems, especially for improving the detection and moni-
oring of targets that generate small anomalous signals.

Compared with FDTD methods, the adoption of FETD methods
or EM wave and diffusion problems was rather slow to take hold in
ngineering EM and geophysical EM literature. One theoretical rea-
on for this is that node-based finite-element �FE� methods do not
orrectly represent the discontinuity of normal field components at
aterial interfaces. This problem was solved with the introduction

f edge-based elements that correctly represent the discontinuities
f EM fields at the interfaces �Nédélec, 1980, 1986; Bossavit, 1988�.
he FETD methods also are less popular because they generally re-
uire solving a matrix-vector equation at every time step regardless
f implicit or explicit time discretization �Gockenbach, 2002�.
herefore, for a given number of unknowns, this aspect makes
ETD methods computationally more expensive than explicit
DTD methods. However, the advent of powerful computers and ef-
cient numerical linear algebra libraries has alleviated the problem
nd made the FETD problems increasingly tractable.

Various FETD formulations for EM simulations have been devel-
ped using different forms of EM equations: coupled Maxwell’s
quations, scalar and vector potentials with a gauge condition, and
he electric field wave equation �Biro and Preis, 1989; Lee et al.,
997; Jin, 2002; Taflove and Hagness, 2005�. Although the equa-
ions equivalently describe EM phenomena, each has its own advan-
ages and disadvantages in the implementation of the FETD �Zhu
nd Cangellaris, 2006�. In this study, we choose an FETD formula-
ion of the electric field full-wave equation �Gedney and Navsari-
ala, 1995� as our starting point, and migrate to its diffusion version.
lthough it is beyond the scope of our paper to provide detailed

omparisons of the different formulations, the primary advantage of
he FETD formulation over others is the fact that we need to consider
nly the electric fields as our primary unknowns, thus minimizing
he total number of parameters to solve.

We propose an FETD-solution approach for an exploration-scale
iffusion problem. The development of its FETD formulation is
lose to that of wave and/or eddy current problems which have been
roadly investigated in engineering computational electromagnetics
Cangellaris et al., 1987; Gedney and Navsariwala, 1995; Lee et al.,
997; Rieben and White, 2006�. However, the implementation de-
ails of the formulation in the exploration-scale diffusion domain are
onsiderably different from those especially in terms of time step-
ing, boundary conditions, and mesh design.

Our FETD implementation is also distinguished from other ex-
loration-scale FETD solutions in some important aspects. First, we
ompute FETD solutions directly in the time domain, whereas other
ublished methods �e.g., Everett and Edwards, 1992; Börner et al.,
008� use the transform of finite-element frequency-domain solu-
ions. With a step-off source, our direct time-domain approach re-
uires that we calculate the initial electric fields; we do this using
oisson’s equation before time stepping. At least as far as we know,

he direct time-domain computation with the finite-element method
Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to S
n the diffusion domain has never appeared in the geophysics litera-
ure.

Second, in the direct time-domain computation, the primary com-
utational cost is time stepping, which requires the solution of a ma-
rix equation at every time step. To mitigate the computational cost,
e reuse sparse LU factorization of the matrix equation unless a

ime-step size is changed.As a result, the computational cost at most
ime steps reduces to that of back and forward substitution of a
parse matrix equation. Third, by exploiting the phenomena of EM
ttenuation, we adaptively double a time-step size to speed up solu-
ion processes over a large range of time. As demonstrated in this
tudy, this time-stepping approach helps to avoid impractical small
hanges of a time-step size that would result in expensive LU factor-
zations.

Finally, we combine our FETD with a secondary potential FE so-
ution, whereas Commer and Newman �2004� incorporate their
DTD with a total potential finite-difference solution. The adoption
f the secondary potential method considerably improves the accu-
acy of the initial electric fields required for step-off simulations.
he accurate computation of the initial electric fields is critically im-
ortant in step-off simulations because inaccurate initial electric
elds can result in errors such as static shift of TEM sounding
urves. This type of error is difficult to identify because the error
oes not change the overall shape of the sounding curves.

Our paper is organized as follows. First we review the develop-
ent of a system of differential equations that approximates the so-

ution of the full electric field wave equation and migrates to its dif-
usion version. Then, we discretize the system in temporal and spa-
ial domains, and transform it into the final 3D FETD formulation.

e describe herein two important aspects of the 3D FETD imple-
entation: boundary conditions and initial conditions. Then our nu-
erical solution strategies for the FETD formulation are presented

n detail. We validate the 3D FETD algorithm through detailed com-
arison with 1D analytic and 3D FDTD simulation results, and
resent a performance analysis of the FETD algorithm. Finally, us-
ng our 3D FETD algorithm, we present simulation results of the
ime-domain controlled-source electromagnetic �TD-CSEM� meth-
d for a simple field scenario of a water layer above a gently dipping
eafloor.

NUMERICAL SOLUTION APPROACH

In this section, we start from an FETD development of the full
lectric field wave equation �Gedney and Navsariwala, 1995�. In a
iven computational domain V, the electric field wave equation is
iven as

� �� 1

�
� �e�r,t�����

�2e�r,t�
�t2 ���

�e�r,t�
�t

��
�js�r,t�

�t
,

�1�

here e�r,t� is the electric field at time t at position r�V; �, �� , �� ,
nd j �r,t� are the magnetic permeability, the 3�3 dielectric permit-
s
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Finite-element time-domain simulation F117
ivity tensor, the 3�3 symmetrical electric conductivity tensor, and
he electric current source term, respectively.

To transform equation 1 into an FETD approximate equation, a re-
idual vector p is defined as

p�r,t�� � �� 1

�
� �e�r,t�����

�2e�r,t�
�t2 ���

�e�r,t�
�t

�
�js�r,t�

�t
. �2�

he V is discretized into a number of finite elements. The residual
ector for each element is forced to be zero in a weighted-integral
ense. Among several shapes of finite elements, a tetrahedral ele-
ent is chosen because the tetrahedral form can efficiently handle

omplex geometry. This process is expressed as the following equa-
ion:

���
Ve

ni
e�r� ·pe�r,t�dV�0, �3�

here the superscript e denotes the eth tetrahedral element, ni
e�r� is a

et of weighting functions with i varying from 1 to n, and Ve is the
olume of the eth tetrahedral element.

If the set of ni
e�r� functions used in equation 3 is also chosen as the

asis set, the electric field is expanded as

ee�r,t�� �
j�1

n

e j
e�r,t�� �

j�1

n

uj
e�t�n j

e�r�, �4�

here uj
e�t� is the unknown amplitude of the electric field on edge j

f the eth element that needs to be determined via FETD computa-
ions. In the application of Galerkin’s method to EM modeling,
dge-based functions �Whitney, 1957� are chosen as basis functions.
he functions guarantee both the tangential continuity and normal
iscontinuity of the expanded electric field across the element edges.
n equations 3 and 4, we set ne�r� to the first-order edge-based func-
ions. More details on the properties of the basis functions are pro-
ided by Jin �2002� and Taflove and Hagness �2005�, as well as by
he references cited in the Introduction.

Substituting equation 4 into equation 3 provides the following
ystem of second-order ordinary differential equations:

Aed2ue�t�
dt2 �Bedue�t�

dt
�Ceue�t��se�0, �5�

here the �i,j� element of matrices Ae, Be, and Ce, and the ith ele-
ent of vectors se and ue, are given by the following:

�i,j� element of Ae����
Ve

�� eni
e�r� ·n j

e�r�dV; �6�

�i,j� element of Be����
Ve

�� eni
e�r� ·n j

e�r�dV; �7�
Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to S
�i,j� element of Ce����
Ve

1

�
� �ni

e�r� · � �n j
e�r�dV;

�8�

i element of se����
Ve

ni
e�r� ·

�js�r,t�
�t

dV; �9�

ue� �u1
e, u2

e, . . . , un
e	 . �10�

iffusive EM domain

In equation 5, the first term is related to the EM displacement cur-
ent. Because the displacement current is much smaller than the con-
uction current in the low-frequency EM diffusion regime, this first
erm is negligible and can be dropped. By dropping the term, the fi-
ite velocity of the EM fields in the perfectly resistive medium �e.g.,
ir� is replaced by an infinite velocity �Goldman et al., 1985�. How-
ver, the change in the velocity of the airwave does not affect an EM
eophysical simulation result because of its relatively short source-
eceiver offset compared with the true wavelength of the airwave. In
his regime, equation 5 eventually reduces to a system of diffusion
quations. The system of equations is considered local because it re-
ults from integration over each individual tetrahedral element.
ased on connectivity information about tetrahedral elements in V,

he local systems of diffusion equations assembled for the individual
lements are assembled into a single global system as shown below:

B
du�t�

dt
�Cu�t��s�0. �11�

iscretization in time and space

Because equation 11 is a time-dependent system of ordinary dif-
erential equations, it can be discretized in time using a finite-differ-
nce �FD� method. To choose an effective FD method, we must con-
ider the physics of EM diffusion problems. Due primarily to the
ow-frequency EM sources we wish to simulate and the large con-
rast in electrical conductivity between the subsurface medium and
ir, equation 11 is very stiff in time �Haber et al., 2004�. Therefore, if
e choose an explicit time-discretization method, equation 11 will

equire a very small time step �t to satisfy stability conditions. For
his reason, an explicit time-discretization method would not be effi-
ient, especially when TEM responses need to be simulated over a
arge range of time �e.g., from 10�6 to 102 s� in conductive environ-

ents.
Thus, we choose implicit time discretization, the backward Euler

BE� method. As an implicit method, the BE method is uncondition-
lly stable regardless of the choice of �t. Furthermore, when a mesh
annot handle high-frequency contents of the transient source pulses
n early time, the BE method strongly suppresses high-frequency os-
illations �Hairer and Wanner, 1991�. The accuracy of the BE meth-
d is set to second order for somewhat complex source waveforms
e.g., a Gaussian and half-sine waveform� and first order for a simple
tep-off and step-on source waveform. The latter is due to the fact
hat there is no benefit of using a higher order scheme for a source
EG license or copyright; see Terms of Use at http://segdl.org/
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aveform that is only once differentiable �Haber et al., 2004�. Ap-
lying the BE method to equation 11 produces

Dun�2�B�4un�1�un��2�tsn�2

for the second-order BE method, �12a�

here u�t��u�n�t��un and D� �3B�2�tC�; and

Dun�1�Bun��tsn�1 for the first-order BE method,

�12b�

here D� �B��tC�.
For the solution of equations 12a and 12b to approximate true

lectric fields accurately, the spatial discretization of the computa-
ional domain is as important as the temporal discretization. As a
eneral rule for the spatial discretization, an element size is smallest
ear a source and gradually grows away from the source �Wang and
ohmann, 1993�. The growth rate is empirically determined but is
sually less than or equal to a factor of two from one edge to the next.
n addition, the mesh should be fine in conductive areas, but it can be
oarse in more resistive areas �Hördt and Müller, 2000�. Such a mesh
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igure 1. A cross-sectional �2D� view �y�0 m� of the 3D FETD
esh used for a 3D gas reservoir model shown in Figure 6. �a� The

entral portion of the cross section. �b� The entire view of the cross
ection. The air-earth interface that bisects the cross-sectional view
s colored blue. In �a�, the blue rectangular box represents a reservoir.
he red-colored line segment at the center of the mesh is a finite-long
lectric dipole source. The other small red-colored line segments on
he air-earth interface are receivers.
Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to S
esign is illustrated in Figure 1, and makes it possible to impose Di-
ichlet boundary conditions on external edges of a model, as dis-
ussed below. In short, the finite-element mesh must consider model
nhomogeneity as well as diffusion and attenuation characteristics of
ransient EM fields with time.

oundary conditions

To obtain a unique numerical solution for a given differential
quation, geophysically meaningful conditions need to be imposed
t the boundaries of the computational domain. Because element siz-
s can grow with increasing offset from a source position, we extend
he boundaries of an earth model sufficiently away from the source.
hen homogeneous Dirichlet boundary conditions are applied to the
ETD matrix-vector equation by setting the electric fields on the ex-

ernal edges to zeros and removing the edges from the matrix-vector
quation. As a result, the number of unknowns in equations 12a and
2b reduces from the number of total edges to that of internal edges.
e believe that the homogeneous Dirichlet boundary condition is

he most practical choice for EM diffusion simulations because its
mplementation does not require modifying the original form of the
overning equation, nor does it result in any extra computation at
ach time step. Our numerical experiments also suggest that in most
arth models, the number of elements required for such a mesh de-
ign does not significantly increase the total number of elements
hen a proper element growth rate is chosen.

nitial conditions

To advance the solution of equations 12a and 12b, we first need to
et up the initial electric field. When an earth model is excited using a
tep-on, half-sine, or Gaussian source waveform, the initial electric
eld is zero everywhere in the model. However, when a step-off
ource waveform is used, the initial electric field is not zero but a so-
ution of the direct current �DC� resistivity problem. In this case, the
nitial electric field can be decomposed into two parts �Commer and
ewman, 2004�:

einitial�esource�eDC, �13�

here einitial is the initial electric field vector, esource is the electric field
hrough a source, and eDC is the DC electric field in the model, re-
pectively.

The electric field esource is determined by applying Ohm’s law to
he tetrahedral elements containing the source. The electric field eDC

s determined by calculating electric potentials at the nodes of the fi-
ite elements; the calculation reduces to a 3D Poisson problem, as is
ommon in 3D resistivity modeling �Dey and Morrison, 1978; Low-
y et al., 1989; and Li and Spitzer, 2002�. We solve the 3D Poisson’s
quation for general anisotropic media using a secondary potential
pproach �Li and Spitzer, 2005�. Compared with the total potential
pproach, the secondary potential approach considerably improves
he solution accuracy in the vicinity of a source by removing the sin-
ularity. As a result, the secondary potential approach effectively
revents numerical static shift errors in step-off sounding curves.

To maintain consistency in the development procedures of the
revious FE formulation, the finite-element DC �FEDC� formula-
ion is summarized below using a weighted residual method instead
f a variational principle. The DC resistivity problem is described
ith the Poisson’s equation
EG license or copyright; see Terms of Use at http://segdl.org/
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� · ��� ���r����� · js�r�, �14�

here ��r� is a potential at position r. The potential is decomposed
nto a primary potential �p�r� and secondary potential �s�r�:

��r���p�r���s�r� . �15�

he primary potential is caused by the current source in a homoge-
eous whole space with the primary conductivity tensor � p� , and it
an be calculated analytically at the FE nodes. The secondary poten-
ial satisfies the following equation:

� · �� s� ��s�r����� · js�r�, �16�

here � s� ��� �� p� .
As done before, a scalar residual for the eth tetrahedron is defined

s

pe�r�� � · �� s� ��s�r��� � · js�r� . �17�

he residual for each tetrahedral element is minimized in a weighted
verage sense

���
Ve

��r�pe�r�dv�0, �18�

here ��r� is a weighting function.
By substituting equation 17 into equation 18, using Green’s theo-

em and finally enforcing Dirichlet boundary conditions, one can
asily obtain

���
Ve

� ���r�
�x


� s11
e

��s
e

�x
�� s12

e
��s

e

�y
�� s13

e
��s

e

�z
�

�
���r�

�y

� s21

e
��s

e

�x
�� s22

e
��s

e

�y
�� s23

e
��s

e

�z
�

�
���r�

�z

� s31

e
��s

e

�x
�� s32

e
��s

e

�y
�� s33

e
��s

e

�z
��dv

����
Ve

��r�� · js�r�dv, �19�

here � sij
e denotes the element in row i and column j of the conduc-

ivity tensor � s
e� . The unknown potential at a point inside the eth ele-

ent is interpolated using the set of four Lagrange polynomials

j
e�r�,

�e�r�� �
j�1

4

� j
enj

e�r�, �20�

here �e is the potential at the jth node of the eth element.
j

Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to S
The Lagrange polynomials are also used as the weighting func-
ion ��r�. Substituting equation 20 into equation 19 and replacing
�r� by ni

e�r� yields

�
m11

e m12
e m13

e m14
e

m21
e m22

e m23
e m24

e

m31
e m32

e m33
e m34

e

m41
e m42

e m43
e m44

e
�

�s1
e

�s2
e

�s3
e

�s4
e
��

q1
e

q2
e

q3
e

q4
e
, �21a�

here

mij
e ����

Ve

� �ni
e�r�
�x


� s11
e

�nj
e�r�
�x

�� s12
e

�nj
e�r�
�y

�� s13
e

�nj
e�r�
�z

��
�ni

e�r�
�y


� s21
e

�nj
e�r�
�x

�� s22
e

�nj
e�r�
�y

�� s23
e

�nj
e�r�
�z

��
�ni

e�r�
�z


� s31
e

�nj
e�r�
�x

�� s32
e

�nj
e�r�
�y

�� s33
e

�nj
e�r�
�z

��dv, �21b�

nd

qi
e����

Ve

ni
e�r�� · js�r�dv .

gain, equation 21a is considered local because it comes from each
etrahedral element. Using the node connectivity information, these
ocal matrix equations for the individual elements are assembled
nto a single global matrix equation for the secondary potential.
nce the secondary potentials at all nodes are calculated, one can

asily determine the electric field vectors along the edges of each tet-
ahedral element. These electric fields provide the initial values for
quations 12a and 12b when a step-off source waveform is used.
nce the electric fields are calculated, the magnetic fields can be eas-

ly interpolated using Faraday’s law �Newman and Alumbaugh,
995�.

NUMERICAL IMPLEMENTATION APPROACH

The most expensive part of our FE computation is advancing the
olution to equations 12a or 12b in time. To mitigate this potentially
igh computational cost, we use the fact that matrix D of equations
2a and 12b is a function of �t; for a given �t, the elements of matrix
do not vary in time. Therefore, matrix D should be computed with-

n a time-stepping loop only once. If a direct solver is used with a
onstant �t, the matrix needs to be factorized into corresponding
ower and upper triangular matrices L and U only once. Eventually,
fter the explicit factorization, the computational cost in every time
tep reduces to that of forward and backward substitutions, resulting
n a much cheaper computational cost per time step. When an itera-
ive solver is used to solve equation 12a or 12b, a preconditioner also
eeds to be computed only once if �t is constant.
EG license or copyright; see Terms of Use at http://segdl.org/
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F120 Um et al.
In this rendition of the algorithm, we choose a direct solver
Davis, 2006� over an iterative solver because the use of an iterative
olver for equation 1 results in poor convergence and spurious solu-
ions in the static limit �Alumbaugh et al., 1996; Smith, 1996; Dyc-
ij-Edlinger et al., 1998; Newman and Alumbaugh, 2002�. Before a
irect factorization starts, the matrix is reordered to minimize fill-ins
n the resulting triangular matrices �Demmel, 1997�. Minimizing
ll-ins is critically important to reduce the computational and mem-
ry costs. Once the factorization generates triangular matrices, they
re repeatedly used to advance the solution of the equation 12a or
2b via forward and backward substitutions.

Although using the constant �t eliminates the necessity of refac-
orizing the FE matrix in every time step, the constant �t is not the
est choice for simulating diffusive TEM responses, especially over
large range of time �e.g., from 10�6 to 102 s�. For such a diffusion
roblem, a very small �t is required in early time to resolve the broad
requency spectrum of the induced TEM fields. However, as the
igh-frequency components of the TEM fields are more rapidly at-
enuated in time, one can take increasingly larger time steps and thus
an advance the solution quickly without affecting the accuracy.
herefore, it is desirable to change �t as an efficient problem-solv-

ng strategy. If, however, the algorithm is allowed to change �t at ev-
ry time step in an attempt to determine and use the optimal �t, our
imulation, at least in a serial computing environment, shows that
he effort entails significant computational overhead, resulting in a
et loss of the computational benefits from a larger �t.

In our FETD algorithm, we attempt to double �t every m time
teps, where m is an input parameter. If an earth model is conductive
nd attenuates the EM fields quickly, a smaller m is chosen; if an
arth model is somewhat resistive, a larger m needs to be chosen.

hen the FETD algorithm tries to switch a time-step size from, say,
t to 2�t, the electric fields are computed at a given time using the

wo time steps. Then the difference between the two sets of the elec-
ric field solutions is compared. If the difference is smaller than a
rescribed tolerance, 2�t is accepted as a new time-step size. If the
olerance criterion is not satisfied, the algorithm rejects 2�t and con-
inues using the current �t. However, the triangular matrix for 2�t is
tored for future use after another m time steps. For brevity, we call
his approach the adaptive time-step doubling method.

VALIDATION AND PERFORMANCE ANALYSIS

So far, we have described the details of our FETD algorithm and
ts numerical implementation. To demonstrate the accuracy and per-
ormance of our algorithm, its serial implementation, named
ETDEM3D, is written in MATLAB 7.5, from which several exter-
al routines are also called. The MATLAB portion of FETDEM3D
ainly includes FE preprocessing tasks, whereas the external rou-

ines are responsible for the main FE computations; the direct matrix
actorization is performed using SuiteSparse 3.2 and other auxiliary
outines authored by Davis �2006�; fill-reducing ordering of sparse
atrices is performed using METIS 4.0 �Karypis and Kumar, 1999�;

nd 3D FE discretization is carried out using the Delaunay algorithm
nd other algorithms in COMSOL 2008 Multiphysics 3.5a software.
he FETD computations presented here were carried out on a single-
ore Opteron 875 2.2 GHz with 8-GB memory running Red Hat
inux.
Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to S
The results are compared with 1D analytic or the 3D FDTD solu-
ions of Commer and Newman �2004�. Note that the analytic solu-
ion first computes the frequency-domain responses at a selected
umber of frequencies and then converts the responses to the time
omain using inverse fast-Fourier-transform routines. Although our
ETD algorithm can simultaneously handle multiple arbitrarily con-
gured electric dipoles that are excited with various source wave-
orms over general anisotropic media, only single step-off electric
ipole responses over isotropic media are considered in this section
or comparison and verification purposes.

omogeneous seafloor model

The first example is a simple marine TD-CSEM simulation. Fig-
re 2 illustrates a homogeneous seafloor model with a 400-m-deep
eawater column. A 250-m-long electric dipole source is placed
0 m above the seafloor. Its ramp-off time is set to 0.01 �s�. Eight re-
eivers are placed on the seafloor from x�1 to 8 km along y�0. To
nsure both numerical stability and accuracy, the resistivity of the air
s empirically set to 10,000 �m.

The boundaries of the model are extended to 100 km from the
odel center to eliminate possible artificial boundary effects at the

eceiver positions. To discretize the model economically, element
rowth factors ranging from 1.5 to 2.0 are used in most areas. How-
ver, inside the seawater column, which has a thickness of 400 m,
etrahedral elements are not allowed to grow rapidly in the x- and

y-directions so as not to skew the elements too much. Consequently,
he model is discretized into a somewhat large number �108,540� of
etrahedral elements, generating 125,883 unknowns.

Figure 3 shows the inline and broadside responses over the model
nd their relative percentage errors with respect to the analytic solu-
ions. Overall good agreement is observed for both solutions. As
ime stepping continues, the oscillations of percentage errors gradu-
lly increase due to the error migration from early to late time but re-
ain within acceptable levels. Note that the z-components of the

Sediments: 0.7 Ωm

Sea: 0.3 Ωm

Air: 104 Ωm

400 m

x

z

y

x = 0 m

igure 2. The x-z section �y�0 m� of the homogeneous seafloor
odel. The black horizontal arrow is an electric dipole source direct-

d along the x-axis. Its center is placed at �0 m, 0 m, 350 m�.
EG license or copyright; see Terms of Use at http://segdl.org/
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Finite-element time-domain simulation F121
lectric fields �Ez� are more vulnerable to the error migration than
he x-components of the electric fields �Ex�. When an x-oriented
lectric dipole source is simulated, such an error pattern is observed
epeatedly in our modeling experiments. We believe that this is be-
ause the amplitudes of Ez are an order of magnitude smaller than
hose of Ex and therefore are more easily contaminated with numeri-
al noises. The y-components of the electric fields �Ey� clearly show
ypical sign reversals observed in the broadside configuration. In the
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icinity of the sign reversals, the percentage errors sharply increase
ut quickly reduce to a reasonable level, verifying the accuracy of
he FETD algorithm.

Note that the analytic solutions for the z-components of magnetic
elds �Bz� are computed first, and then their time derivatives ��Bz� t�
re numerically approximated. The approximations are somewhat
oisy in a very early time range �e.g., from 0.01 to 0.05 s� due to cat-
strophic cancellation and thus are not plotted in that time range. The

1 2

1 2

1 2

2

Figure 3. The TD-CSEM inline and broadside re-
sponses for selected receiver positions over the
model shown in Figure 2. The left column contains
the EM fields; the right column contains the per-
centage difference �e.g., error� between the analyt-
ic and the FETD solutions. �a� Inline Ex. �b� Rela-
tive errors �%� in inline Ex. �c� Inline Ez. �d� Rela-
tive errors �%� in inline Ez. �e� Broadside Ey. �f�
Relative errors �%� in broadside Ey. �g� Broadside
��Bz� t�. �h� Relative errors �%� in broadside
��Bz� t�.
0
time [s])

0
(time [s])

0
time [s])

ime [s])
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F122 Um et al.
oise resulting from the numerical approximation is still seen as a
tair-step pattern in the early time �e.g., from 0.05 to 1 s� in Figure
g. However, in intermediate and late time �from 1 to 100 s�, the
Bzdt curves of both analytic and FETD solutions show excellent
greement with low percentage errors �e.g., �2%�, ensuring the ac-
uracy of the FETD algorithm.

Figure 4 summarizes the performance and effectiveness of the
daptive time-step doubling method. Without the method, the simu-
ation took 16.2 hours with 50,000 time steps to complete the simu-
ation. In contrast, when the doubling method was used, the simula-
ion was completed in just 36 minutes with 1393 time steps. The
ime-step doubling procedures were applied eight times, which im-
lies that the factorization of matrix D in equation 12b is performed
nly nine times to complete the simulation.
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eafloor model with resistive layer

In the next example, a 100-m-thick and 100-�m resistive layer
e.g., oil or CO2 reservoir� is inserted into the first model �Figure 2� at
depth of 1 km from the seafloor. The other simulation parameters
re kept the same. The model is discretized into 209,252 tetrahedral
lements, generating 243,543 unknowns along the edges of the tetra-
edral elements. Again, a large number of tetrahedral elements are
equired to discretize the thin 1D reservoir. It took 68 minutes to
imulate this seafloor model with eight time-step doubling proce-
ures. The inline and broadside electric field responses over the
odel are shown in Figure 5. The FETD solutions agree well with

he analytic solutions.

igure 4. Comparison of computational efficiency in the model
hown in Figure 2 with and without the time-step doubling method.
a� The evolution of a time-step size as a function of diffusion time.
b� The wall clock time as a function of diffusion time. �c� The num-
er of time steps as a function of diffusion time. The diffusion time is
he time scale in which the EM diffusion phenomena occur.
F
s
�
�
b
t
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Finite-element time-domain simulation F123
D gas reservoir model

The next example is a 3D resistive gas reservoir shown in Figure
. In this model, the resistivity of the air is set to 108 �m, which is
our orders of magnitude larger than that of the air in the previous
odels. However, our numerical modeling experiments indicate

hat such a highly resistive air layer is required to ensure accurate so-
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utions when sources and receivers are placed at the air-earth inter-
ace. As a side note, we were able to set the resistivity of the air to a
aximum 1012 �m when a direct solver is used. Beyond the limit,
atrix D in equations 12a and 12b becomes too poorly conditioned,

esulting in inaccurate and unstable solutions.
The inline TD-CSEM responses over the gas reservoir are simu-

ated using both FDTD and FETD algorithms.A250-m-long electric

1 2

1 2

1 2

2

Figure 5. The TD-CSEM inline and broadside re-
sponses for the three receiver positions over the
model shown in Figure 2 with the 100-m-thick res-
ervoir at 1-km depth below the seafloor. The left
column contains the EM fields; the right column
contains the percentage difference �e.g., error� be-
tween the analytic and the FETD solutions. �a� In-
line Ex. �b� Relative errors �%� in inline Ex. �c� In-
line Ez. �d� Relative errors �%� in inline Ez. �e�
Broadside Ey. �f� Relative errors �%� in broadside
Ey. �g� Broadside ��Bz� t�. �h� Relative errors �%�
in broadside ��Bz� t�.
0
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1
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F124 Um et al.
ipole whose ramp-off time is set to 10�4 s is placed at the center of
he model. The FDTD modeling results for the model are computed
sing the 3D FDTD solution �Commer and Newman, 2004�. The
DTD model consists of 139 � 99 � 71 grid cells in the x-, y-, and
-directions with the computational domain boundaries at 10 km
rom the source. The FDTD model has 2,931,093 unknowns. In con-
rast, the FETD algorithm discretizes the model into 114,116 tetrahe-
ral elements, generating 131,741 unknowns. Note that the total
umber of grid cells required for the FDTD model is nearly nine

Reservoir: 100 �m

500 m
500 m

Subsurface: 10 �m

+x

+z

+y

Air: 108 �m

igure 6. The 3D gas reservoir model. The thick black arrow on the
ir-earth interface is a 250-m-long electric dipole source. The size of
he reservoir is 600 � 600 � 100 m in x-, y-, and z-directions, re-
pectively. Its axis base point is �200 m, �300 m, 600 m�.
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igure 7. The TD-CSEM inline responses at three receiver positions
ver the model shown in Figure 6. The analytic solution for the same
arth model without the 3D gas reservoir is computed only for the

lectric field at x�500 m. �a� Ex. �b� ��Bz� t�.

Downloaded 02 Dec 2011 to 171.64.173.107. Redistribution subject to S
imes larger than that for the FETD model. The comparison above il-
ustrates the fact that an FETD mesh can economically discretize a
arge computational domain with a relatively small number of un-
nowns.

The cross-sectional view �y�0� of the FETD mesh used for the
odel is shown in Figure 1. In the FETD mesh design, we deliber-

tely use very fine elements around the source so as to accurately re-
olve the very early time behavior of the TEM fields for verification
urposes even though the early time TEM fields do not convey use-
ul information about the 3D reservoir. Note that such a mesh gener-
tion is feasible only in FE modeling because fine meshes in the cen-
er of the model do not have to extend to the computational bound-
ries of the FETD model �Key and Weiss, 2006�. The mesh boundary
f the FETD model is 30 km away from the source to ensure accu-
ate solutions at very late time. It took 53 minutes to complete the
ETD simulation with 1559 time steps when the adaptive time-step
oubling method was used.

The simulation results from the FETD and FDTD methods are
lotted in Figure 7. Although the curves for each receiver position
gree well with each other at most times, slight differences in the
lectric fields are observed in very early and late time. To evaluate
he degree of accuracy of both solutions, we adapt the methodology
f Commer and Newman �2004�; an analytic solution over the same
arth model without the 3D gas reservoir is calculated at the shortest
ource-receiver offset �e.g., x�500 m� and compared with the cor-
esponding FDTD and FETD solutions. Because the influence of the
D reservoir at the shortest offset can be assumed very small, the
loser agreement of the FETD solution with the analytic solution in
igure 7 verifies the accuracy of the FETD solutions. Therefore, we
afely conclude that the FETD and FDTD solutions will agree with
ach other more closely at very early time if the grid for the FDTD
olutions is carefully refined.

ipping seafloor model

Marine TD-CSEM responses, illustrated in Figure 8, are calculat-
d for a gently dipping 2D seafloor of 4° degrees with and without a
D hydrocarbon reservoir. To elucidate the effects of the slope on the

400 m

6 km

100 m

1 km

Air: 104 �m

Seawater: 0.3 �m

Seabed: 0.7 �m

Reservoir: 100 �m

Source

+y
+x

+ z

igure 8. A gently dipping seafloor structure with and without a res-
rvoir: � with arrows indicates EM receivers. The dipping angle of
he seafloor is 4°.A250-m-long electric dipole source is placed 50 m
bove the seafloor. The reservoir position is outlined with the dashed
ox. The size of the reservoir is 6 � 6 � 0.1 km in the x-, y- and
-directions, respectively. Its axis base point is �1 km, �3 m,
500 m�.
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Finite-element time-domain simulation F125
arine TD-CSEM method, a flat seafloor model with and without
he same hydrocarbon reservoir is also simulated. The flat seafloor

odel has a uniform 400-m-thick seawater column. The dipping and
at seafloor models are discretized into 165,528 tetrahedral ele-
ents with 191,780 unknowns and 127,046 tetrahedral elements
ith 146,871 unknowns, respectively. The simulations are complet-

d in 65 minutes and 41 minutes, respectively.
The inline Ex and Ez responses for the flat and dipping seafloor
odels with and without the reservoir are compared each other at

hree receiver positions in Figure 9. The noticeable differences ob-
erved in Figure 9 can be interpreted as the combination of the fol-
owing factors. First, receivers on the slope have a thicker water col-
mn above them as the source-receiver offset gradually increases.
s a result, they record a different level of the airwave effect from

hose on the flat seafloor. Second, receivers on the slope measure
tronger galvanic effects than those on the flat seafloor because of
heir shorter distance from the resistive reservoir. Third, receivers on
he slope are tilted toward the slope. Thus, the x- and z-components
f the receivers do not point in the same directions as the x- and
-components of receivers on the flat seafloor. Because the ampli-
udes of horizontal electric fields are much larger than those of verti-
al electric fields, the tilt of a receiver’s coordinate system due to the
lope has a significant impact, especially on the vertical electric field
easurements. In short, a gently dipping simple 2D seafloor struc-

ure can cause significant effects on the TD-CSEM measurements.
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s demonstrated above, seafloor bathymetry needs to be modeled
ith special care.

CONCLUSIONS

We have presented an efficient 3D FETD algorithm to simulate
M diffusion phenomena excited by electric dipole sources. The al-
orithm is especially useful for modeling complex topography and
eservoir geometry. Comparisons with analytic and 3D FDTD solu-
ions demonstrate the accuracy and efficiency of our 3D FETD algo-
ithm. The FETD algorithm directly solves transient electric fields
y applying Galerkin’s method with homogeneous Dirichlet bound-
ry conditions to the electric field diffusion equation. To compute
nitial electric fields over an arbitrary conductivity earth model for a
tep-off source waveform, the secondary potential method is used to
olve Poisson’s equation.

The FETD algorithm uses an implicit backward Euler scheme to
etain numerical stability with a larger time-step size that helps to ac-
elerate the FETD solution, especially in late time. The inherent
igh-computational effort associated with solving the resultant
ETD matrix-vector equation in every time step is mitigated by re-
actorizing the FETD matrix only when a time-step size is changed.
y adaptively doubling a time-step size at intervals, the FETD algo-

ithm trades off the computational cost in refactorizing the FETD
atrix for the faster advance in FETD solutions. The adaptive dou-

ling of the time step plays an important role in speeding up the

1 2

1 2

1 2

Figure 9. Inline TD-CSEM responses over the
model shown in Figure 8. �a� Ex at x�2 km. �b� Ez

at x�2 km. �c� Ex at x�4 km. �d� Ez at x�4 km.
�e� Ex at 6 km. �f� Ez at x�6 km.
0
(time [s])

0
(time [s])

0
(time [s])
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ETD computation, especially in a marine TD-CSEM simulation
herein an EM diffusion process occurs slowly until very late time
ue to the high electrical conductivities of the model.
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