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ABSTRACT

The renormalization theory is a broad concept whose content can be understood
from various perspectives. It can be viewed as a technical device that get rid of
infinite results in quantum electrodynamics; or as a up scaling theory in statistical
mechanics; or as a regulative principle in the inverse problems. In this paper we use
the renormalization to regulate Born expansion and extend Born approximation to

the inverse scattering problem with strong fluctuations.

INTRODUCTION

Extensive numerical computations, e.g., finite difference methods (Alford, 1974), are
feasible for elastic 2D and 3D models. If it were only necessary to study a few standard
structures, such computations might be adequate, but given the great variety of
scales and combinations of structure encounter in geophysics, it is necessary to use
more efficient approximation methods. Even using finite difference computation, it
is unlikely that all features of seismic data can be modeled, and again approximate
methods are more appropriate. Finite difference calculations have to be interpreted
using the same approximation methods used to interpret real data.

A number of previously intractable problems in several very different areas of
physics have been successful solved using renormalization techniques. The goal of
this paper is to present the renormalization techniques in the inverse scattering prob-
lem with strong fluctuations. To extend Born approximation we recast the Born

approximation into an exponential form, i.e., to utilize the Rayleigh’ renormalization
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technique to effectively sum the secular Born expansion. While the total field is ap-
proximated by incident field in the first Born approximation, with this method, the
total field is replaced by the renormalized incident field. This provide a tool to simu-
late certain forward problems with reasonable accuracy. For the inverse problem, we
first invert an auxiliary function which is the product of the renormalization factor
and the object function. Since the renormalization factor is known, we can extract
the object function from the auxiliary function by solve another easier nonlinear or
linear problem (Torres-Verdin, 1994).

NONLINEARITY VS. RENORMALIZATION

The integral representation of scalar wave equation is expressed as
U=U+Gvu, (1.1)

where the symbols stand for operators (e.g., matrices), and their ordering is important
and cannot be altered at will. In the operator notation, Equation (1.1) is valid
regardless of whether U/, G and V are in the r domain representation or in the k domain
representation. Multiple scattering correspond to nonlinear fields is intractable with
hardly any rigorous mathematical foundations at all. The only hope for most practical
purposes is to treat the multiple scattering, i.e., the nonlinear terms, as a perturbation
and look for a power series expansion in terms of €. In our case the parameter € is the
strength of velocity perturbation. Therefore, an alternative way to express Equation

(1.1) is obtained by iterating on U:
U =Uy +GVUy + GVGVU + ... (1.2)

The smallness of the perturbation means that for low frequency and low contract
one can have convergence in low orders, without having to struggle with the question
of whether the power series itself converges. In strong fluctuations, the expansion
parameter is of order large than one, the perturbation expansion does not converge

at all; What is the physical meaning of those secular terms of the expansion? We
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may revisit ”small deformation” assumption of the wave equation and conclude that

the linear assumption is not intend to account for nonlinear terms. In this paper,
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Figure 1.1: When perturbation parameters is not small, the recursive relation is not valid
because of unobservable reflections.

we are not trying to pursing those nonlinear theory, rather to apply a practical fix,
i.e., we consider some of interactions or reflections, as depicture in Figure 1.1, are
not observable. They are “virtual” reflections. What one can do then is to apply the
concept of renormalization to get rid of “infinite”, i.e. to apply the regulations to the
asymptotic expansion.

Lord Rayleigh (Optical Society of America, 1994) developed a renormalization
technique to generalize his first scattering from a thin slab to scattering from many

slabs. He obtained an expansion of the form
u = €*%(1 + ikonz), (1.3)

for first scattering form one slab. Where kgnz << 1 nis refraction index. To obtain

a solution valid for many slabs, he recasted this expansion into an exponential, i.e.,
u = eilkotkon)e, (1.4)

In this manner he effectively summed the sequence
o0
> (ikonz)™ /ml, (1.5)

m=1

of secular terms. Before we renormalized Equation (1.1), recall that its explicit form

for the first Born approximation is

u(x) & uo(x) + /v(x’)G(x’)uo(x’,x)dx’, (1.6)
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which can be rewritten in terms of Rayleigh’s elementary scattering of Equation (1.3):

u(x) & up(x)(1+ u—otx—)/v(x’)G(x,x”)G(x’,x)dx’). (1.7)

Recast Expansion (1.7) into an exponential form:

u ~ uoexp(m

1
= u > (—GVG)"/ml.
‘m=0 %0

/ o(x')G(x, X” )G (x', x)dx') (1.8)

Comparing to asymptotic expansion without renormalization
U=UT+VG+VGVG +..), (1.9)

we can see that Equation (1.7) is uniformly valid.
Let R(x,x”) = exp(yr J o(x)G(x',x")G(x', x)dx’) be renormalization factor.
With the renormalization relation, i.e., a localized nonlinear approximation to the

total internal field, the scattering problem can be modified as

Us,r) ~ / v(x)R(x,5)G(x,5)G(r, x)dx. (1.10)

FORWARD MODELING

In Figure 1.2 we compare the true solution to various approximations as a function of
the velocity ratio between the sphere and the background. At the receiver location,
scattered field, at frequency of 350 Hz is essentially in-phase with the primary field.
The background velocity is kept constant at 3500 m/s, while the velocity of the sphere
is varied. The renormalization method provides very good estimates of the true solu-
tion over 150 percent of contrast. At this frequency, the amplitudes of the scattered
field and the amplitudes of the scattered field approximations are small compared to
the background. The Born approximation, on the other hand, are inaccurate except

when velocity perturbation is small.



¢

PR

PR

gy

oy

Guan — Renormalization

== moment method
| | === renormalization
< bom approximation

Amplitude

F B
H e

3 1
[} 50 100
perturbation (percent)

150

Figure 1.2: Comparison the field vs. the velocity contrast of a sphere model. The fields
are calculated with the moment method, born appl_‘oximation and renormalization method.

In Figure 1.3 we examine the accuracy of the approximations as a function of

frequency. The velocity perturbation is fixed at 50 percent. The amplitude is given

very accurately by both approximations for frequency up to 300 Hz. Therefore, the

calculation with renormalization provides a better estimate of amplitude. Until at 1

KHz it is in error by about 50

0.8
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Figure 1.3: The comparison the moment method, born approximation and nonlinear born
approximation over frequency. The model is a sphere with fixed contrast of 50 percent

In Figure 1.4, we show time sections of a two layer model. Again the calculations
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Figure 1.4: (a), (c), and (e) are total fields calculated using moment method, renormal-
ization, and Born approximation respectively; (b), (d), and (f) are corresponding scattered

fields.
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using the moment method, born approximation and nonlinear born approximation
are compared. We can see that the results by the renormalization method are agree

to that of by the moment method.

INVERSE SCATTERING

When the observation points inside the scatterer, one must be careful in defining the
volume integral because of the singularity of the field u and Green’s function. For

the interior points, the above equation can be rewrite (Habashy, 1992) as

w(x) = uo(x) + ug(x) / o(x)G (%', x)dx’ (1.11)

+ / (%) (o (x) — uo(x))G(x', x)dx"} (1.12)

Since the field G is a localized function, i.e., G(x, x) is significant only when x’ — x.
Therefore, the second term can be ignored, one obtain Rayleigh’s single scattering
form (1.4) _

u(x) = uo(x)(1 + / (%) G (X, x)dx") (1.13)

An argument in favor of this approximation is as follows: From the singular nature
of G(x',x) at x' = x, one may expect that the dominant contribution to the integral
in Equation 1.12 comes from points in the vicinity of x’ = x. if the internal field is
approximated by its value at x' = x, the error is given by the second term on the
right hand side of Equation ??. This approximation is particularly appropriate since
the internal field uo(x’) is a smoothly varying function of the position. The error term
can be expected to be small because ug(x') — ug(x) is zero where G(x', x) is singular.
Hence, the accuracy of the approximation depends on G(x',x) falling off rate as x’
moves away from x and the slow variations of the internal field. The validity of the
local nonlinear approximation is shown in Figure 1.6.

We recast Equation (1.13) into exponential as in Equation (1.5), i.e.

U(s,r) ~ /v(x)R(x, s)G(x,s)G(r,x)dx (1.14)
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Figure 1.5: The validity of local nonlinear approximation.

where the renormalization factor R(x) = ezp(fv(x')G(x',x)dx’). If we treat the
combination v(x)R(x) as a new variable D(x), then the conventional diffraction to-
mographic procedure can be applied to invert the variable D(x) as described in (Har-
ris, 1987) and (Wu, et al. 1987). The object function itself can be evaluated through
the equation

D(x) = v(x)e] v)GEx)ax (1.15)

Notice that if D(x) = 0, then v(x) = 0. Therefore Equation 1.15 is degenerated,
we only consider non-degenerated case. The integral in the Equation (1.15) may be
discreatized as 0;G};, where Gi; = [, G(x', x;)dx’. Equation (1.15) can be rewritten
as

_kgole_kgojclj - dl (116)

NONLINEAR INVERSION

We consider nonlinear least square inversion for Equation 1.16 through successive lin-
earization. The inversion implement is based on the Levenberg-Marquardt algorithm
(Numerical Recipes, 1989), which combines the best features of the gradient search

with the method of linearizing the fitting function. This is achieved by increasing the
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Figure 1.6: Comparison linear and nonlinear inversion on five diffractors. The top panel is
the reconstructions with the Born and renormalization methods. The bottom panel is their
difference.

diagonal terms of the curvature matrix a by a factor 1+ A that controls the interpola-
tion of the algorithm between the gradient search and linearizing the fitting function
through Taylor expansion.

Initial parameter values are first guessed for a particular model, and a linear
deviation is allowed from the starting model. The residual function r, i.e., the square
sum of the difference between the modeled and the observed values, is computed
during each iteration step. Parameter values corresponding to the smallest residual
are accepted. If the iteration is convergent towards a reasonable parameter set, then
the smallest residual is usually reached in the last iteration step. The initial value of
the constant factor A should be chose small enough to take advantage of the analytical
solution, but large enough so that r function decreases.

The first estimates are very important because this method is very sensitive to

those estimates. In our case, we start from the model inverted with the first Born
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approximation. To check the algorithm, we reconstructed a idea model of five diffrac-
tors. Results are shown in Figure 1.6 and 1.7. Since the scatterers are isolated we

expect Born approximations works well.

(@ (b)

z(m)

20 40 60 80 100 20 40 60 80 100
X (m) x (m)

~0.2 0 0.2 0.4 0.6 0 0.2 0.4

Figure 1.7: Comparison linear and nonlinear inversion on diffractor model. (a) is the
reconstructed image with the renormalization method and (b) is the reconstructed image
with the Born approximation.

In Figure 1.8 and 1.9, we shown reconstruction of a complicated model of three
fractures. We can see that the nonlinear inversion has less distortion compared to
linear Born approximation.

To invert Mcroly near offset data, we linearize Equation (1.16) as
—k?,(ol - dl ZOJ'GU) = dl. (1.17)
J

where d; is first step inversion using linear Born approximation. Then we solve the
linear system using conjugate gradient iterations. The results are shown in Figure
1.10. The residual error of the iterations is shown in Figure 1.11. Notice that we

didn’t perform any processing to the data set. The results are not intend to be the
final.
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Figure 1.8: Comparison linear and nonlinear inversion on fracture model. The top pa,nel is
the reconstructions with the Born and renormalization methods respectively. The bottom
panel is their difference

CONCLUSIONS

The renormalization is use to regulate Born expansion and extend Born approxima-
tion to the inverse scattering problem with strong fluctuations. This provide a tool
to simulate certain forward problem with reasonable accuracy. This procedure also
result in a inversion algorithm that can be applied to the case in which media have

strong fluctuations.
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Figure 1.9: Comparison linear and nonlinear inversion on 3 fracture model. The left panel

is from nonlinear inversion and the right panel is from linear Born inversion.
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Figure 1.10: The reconstruction of McElroy near offset data. The left panel is reconstructed
with the Born approximation, The middle panel is reconstructed with the renormalization,
and the right panel is their relative difference.
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