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WAVEFRONTS IN NON-WEAK ANISOTROPIC
MEDIA

Jessé Costa

ABSTRACT

The extension of an efficient mapping algorithm based on reciprocity to anisotropic
media requires the computation of wavefronts in these media. We extend the shortest path
algorithm to compute wavefronts in 2-D anisotropic monoclinic media. Weak anisotropy is
not assumed and the algorithm can be used with any convex slowness surfaces and

arbitrary velocity contrasts.
INTRODUCTION

The general and efficient approach for obtaining XSP-CDP mapping trajectories based
on reciprocity (Van Schaack, 1996) assumes only that wavefronts can be computed
through the media starting at each source and receiver position. For isotropic media, a finite
difference solution of the eikonal equation (Vidale, 1988) is undoubtedly the most efficient
method for wavefront computation. Unfortunately this approach does not generalize easily
for arbitrary anisotropy. The shortest path algorithm (Moser, 1991), although slower than
finite difference approaches, can be extended easily for arbitrary anisotropy even in 3-D.
The wavefront computation, based on Huygen’s principle, has no limitation on high
velocity contrasts. The only limitation of this approach is the requirement of convex
slowness surfaces which impose restrictions on the medium in order to compute qSV

wavefronts.
COMPUTATION OF WAVEFRONTS USING GRAPH THEORY

The wavefront computation using graph theory can be reduced to the determination of
the shortest path between two nodes on the graph. A graph is a data structure defined by a
set of nodes, a set of arcs connecting nodes, and a weight function defined on the arcs set.
The shortest path problem is well known in graph theory and its solution is given by the
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Dijkstra algorithm (Moser, 1991). The graph structure for the wavefront computation in
this implementation is shown in Figure 1. The medium is discretized using homogeneous
rectangular cells with the graph nodes regularly distributed along the cell’s edges. The arcs
consists of the straight rays connecting the nodes through the cell. The weight function is
the traveltime along the arcs.
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Figure 1: Graph structure for wavefront computation. The detail shows the arcs
connecting the nodes in a forward start set.

Dijkstra Algorithm

A description of the Dijkstra algorithm requires some definitions (Klimec and
Kvasnika, 1994). Let N be the set nodes and A c NxN the set of arcs defining the
graph. The subset of arcs F(i)={j | [i,j] € A} define the forward star of the i’th node. The
distance function, A — R where R is the real numbers set, in this case the traveltime
between the nodes i and j connected by the arc [i,j] € A. The algorithm is initialized setting
the traveltime at the nodes to a large value except at the source nodes which are initialized to
zero. Let S be the set of nodes defining the source, T the set of nodes with minimum
traveltime already determined, Q the set of nodes connect to at least one node in T, and E
the remaining nodes in the graph. The Dijkstra algorithm for the solution of the shortest
path problem is:
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1 - Initialization:
T=J, Q=S, E=N- S
7(S) =0; 1(i))=BIG Vi € E.
2 - Selection:
Find i in Q with minimum T,
3 - Update:
Y j € FG) N Q: 1 (H=min{ T (), T ()+dG.)};
V j € F(i) N E: 1 (j)=7 (i)+d(i,j) and add j to Q.
Remove i from Q to T;
If Q = stop else go to step (2).

At the end of the iterations the minimum traveltime from the source to every single node
is stored in the array 7T (i). Following Moser (1991), the HEAPSORT algorithm (Press et
al, 1990) is used in the selection step.

Traveltime between two points in anisotropic models

The complete information about the medium where the propagation occurs is contained
in the arcs weights d(i,j). Therefore, the extension of the algorithm to anisotropic media is
reduced to the computation of the traveltime between two nodes in a homogeneous cell.

This problem is completely determined by the dispersion relation of the medium,

F(s,m) =0, ey

where s is the slowness vector and 7} is the tensor of parameters with the density
normalized elastic properties of the medium. The slowness vector associated with the
straight ray connecting the nodes i and j, located at x; =(x;,z;) and X; =(x;,z;), is

constrained by two conditions:

1) the ray direction must be normal to the slowness surface, e.g.,

(x; —x;)XVF=0; (2)

2) the slowness vector must obey the dispersion relation, Eqn 1.
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This nonlinear system is solved using the Newton-Raphson approach (Press, 1990). In
this implementation the dispersion relation for qP-qSv waves propagating at the plane of
symmetry of a monoclinic medium is used:

_ 2 2 2 2 |
Fop_gsv = (a115% + asss; +2a155,8, — 1)(assSy + a33s; +2a355,5, — 1) —

2 2 2 (3)
[a155; + aass; +(ay3 + ass )s,s, —1]° =0

where a;; = C;;/p is the density normalized elastic constant (Musgrave, 1970). The initial
value of the slowness vector for the Newton-Raphson iterations is taken from the weak
anisotropy approximations for the slowness surfaces (Costa, 1995) evaluated at the ray

direction,
Fop, =[C+Dcos26 - Asin?20-2ysin20 + gsin46-1/5*] =0, (4)
Fys,, =|C+Asin®20 - psin46-1/5%| =0, )
with,
Cc =113
2
¢ =dss
p=41"93
2
A= C- (013 + 2055) (6)
B 2
G5t
=T
= %5 ~ 435
=7

where 0 is the angle measured with respect to the x-axis.

The process converges in 2 to 3 iterations even for strongly anisotropic media. The
only requirement is the convexity of the slowness surface, which is always satisfied for qP
waves. Once the slowness vector is computed the traveltime between the nodes is obtained

from

T; =d(i,j) =5 (x; - X;). )

This procedure is used to compute the weight of the arcs used in the shortest path
algorithm.
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EXAMPLES

Wavefronts compute with the shortest path algorithm have the same accuracy as finite
difference solutions of the eikonal equation (Moser, 1994). In order to evaluate the
accuracy of this implementation, anisotropic wavefronts were computed in the
homogeneous medium shown in Figure 2. The medium has density normalized elastic
parameters close to a typical shale which are the main source of strong anisotropy in
sediments. This is most likely one of the worst cases for the graph method since the
straight rays cannot be represented exactly in the graph solution. The principal axis of the
symmetry plane was rotated 45° for these tests. The medium was discretized in 70x140
square cells 5 ft on each side. The exact solution was obtained computing the traveltime
between the source and every cell corner in the mesh using the procedure described in the
previous section. The shortest path solution for the qP wavefronts and the percent error are
plotted in Figure 3. The number of nodes in the cell’s corners used to compute these
figures were 7 and 11 respectively. The equivalent picture for the gS wavefront is shown in
Figure 4. Except near the source, the percent error is smaller than 0.3% using only 7 nodes

per cell’s edge.
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Figure 2. Group velocity surfaces for quasi-P and quasi-Sv waves. The medium has
density normalized elastic parameters close to a typical shale with ds5 a1 = 36 ki/s,
aiz = 8 kf/s, a33 =25 kf/3 and 055 =9 ki/s.
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Figure 3. Shortest-path results for qP wavefronts in the medium of Fig. 1. The gray scale
indicates the percent error in the solution. (a) shows the results using 7 nodes along
each cell’s edge. The example shown in (b) was computed using 11 nodes per edge.
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Figure 4. Wavefronts for the qSv waves computed using 11 nodes per cell’s edge. The
percent error is shown in grayscale.
These results suggest that the shortest path solutions have sufficient accuracy for
crosswell applications. The inversion formalism for anisotropic tomography developed last
year (Costa, 1995) combined with the mapping algorithm using wavefronts (Van Schaack,

1996) provides a consistent set of the tools for including anisotropy in crosswell imaging.



Costa — Wavefronts in Anisotropic Media N-7

DISCUSSION

The shortest path method for calculating wavefront maps has the advantage of being
easily extendible to include anisotropy and arbitrary mesh geometry, even for 3-D models.
This is an important feature for the representation and computation of wavefronts in
complex models. The only limitation for anisotropic applications is the requirement of
convex slowness surfaces. Although this is always the case for qP wavefronts, qSv waves
can have non-convex slowness surfaces associated with triplications on the wavefront. The
accuracy of the method is the same as the finite difference solution of the eikonal equation.
The main drawbacks of the approach are its large memory requirements and the slow

performance compared to finite-difference wavefront computations.
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