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SEISMIC WAVE PROPAGATION
AND ATTENUATION
IN HETEROGENEOUS POROUS MEDIA

Xiaofei Chen*, Youli Quan, and Jerry M. Harris

ABSTRACT

To unveil a reservoir's properties, we need to know how time-domain seismic waves
propagate in saturated porous media. In this paper we derive a new and effective formula
for modeling seismic wave propagation and attenuation in 1-D heterogeneous fluid-
saturated media, by extending the generalized reflectivity theory to the porous media. At
low frequencie, we neglect the second kind compressional wave (i.e., slow P wave), then
we obtain the quasi-viscoelastic solution for seismic wave propagation and attenuation in
vertically layered saturated porous media. Presently, we have finished coding the quasi-
viscoelastic formulation, and the computation code for general vertically layered
saturated porous media case is under development. As a preliminary application, we use
quasi-viscoelastic approach to investigate the seismic wave propagation and attenuation

in a vertically layered saturated porous media.

* Department of Earth Sciences, University of Southern California
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INTRODUCTION

Last year we reported a rigorous analysis on the reflection and transmission
coefficients between two saturated porous media, and discussed the possible influence on
the AVO analysis. In conventional AVO analysis, the properties of saturated porous
media are inferred from seismic sounding data based on the reflection coefficient
formulas of plane wave (i.e., single wave number). There is an intrinsic problem with
this analysis strategy: the seismic data used in AVO analysis are seismograms, i.e., time-
space domain data; while the basic formula for analysis is for wave number-frequency
domain data. Strictly speaking, to reveal rigorously the reservoir's properties, we need to
be aware of the knowledge of reflection of seismic waves in saturated porous media in
time domain. In this paper, we shall report our effort in this problem. To investigate the
time domain response to a point source in heterogeneous saturated porous media, we
develop a set of semi-analytic formulation by extending the generalized reflectivity
theory (Luco and Apsel, 1983; Kennett, 1983; Chen et al. 1996) to the porous media case.
In the following sections, we shall first briefly summarize some of the basic equations
and properties of the field in the porous media. We then derive the generalized
reflectivity formulation for solving the viscoelastic waves in the porous media excited by

a point source. Finally we report some preliminary numerical results.
WAVE FIELDS IN HOMOGENEOUS SATURATED POROUS MEDIA

Denoting by u and U the displacements in the mineral and liquid phases, the
frequency domain equations of motion in a saturated porous media are of the form (Biot,
19564, b):

'{9;;1' + pf, = ~0*(pyu, + poU,) + iwb(u, - U,), (1)
and

% =-@*(p, U, + ppi;) — ioob(u; — U,), )
where |

6, =2Ne,; +[F(V-u)+G(V-D)]3, (3)

0=G\V-u)+T(V-U)_=-p; (4)

€5 = ';"(”i,j +uy,), (5)



—

e ey
[S )

=

Chen, Quan and Harris — Waves in porous media L-3

&; = %(Ui,j + Uj,i)’ (6)

and the effective Lame coefficients F, G, T and N are defined in terms of the
properties of pore fluid, mineral framework, and bulk mineral from which the framework

is constructed:

(1-B)1-B-K,/K)K, +BKK, /K, 2

F= 2N, 7
1-B-K, /K, +BK, /K, 3 (72)
_ (1-B-K,/K,)BK, (Tb)
1-B-K, /K, +PBK, /K,
2
T= b X, , (7)
1-B-K, /K, +BK, / K,
and
N=(1-By, . (7d)

Here, B is the porosity, K is the bulk modulus, and u is the shear modulus; the
subscripts s, f and b denote properties of the mineral, fluid, and porous framework. In
equations (1) and (2), p,;, p,, and p,, are mass balance coefficients giving the inertial
coupling between fluid and framework motions. b(®) is a function of frequency that
couples viscous forces in the fluid to the surrounding framework. According to
homogenization theory (Auriault, 1980; Auriault et al., 1985), these coefficients can be
related by a complex frequency-dependent permeability k(@) in the following way:

b(w) = Hy(w), (8a)
B2
Py (W) =—H (w), (8b)
()
P12 (w)= Bps —Pxn (w), 8c)
and
P ()= Bpf — P (®), (8d)

where, Hp(w)+iH,(w)=1/x(w), and p,and p, are, respectively, the densities of the

solid and pore fluid. In this study, we shall use Auriault's formula of complex

permeability (Auriault, 1985), i.e.,
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where, 7 is the viscosity of pore fluid, and k is the intrinsic permeability of the mineral

framework. Introducing scalar and vector displacement potentials relative to each phase
in the equations of motion, three kinds of body waves can be found in a saturated porous
media (Biot, 1956a, b): two compressional waves, P1 wave and P2 wave; and a shear
wave, S wave. In frequency domain, the phase velocities of two dissipative

compressional waves are the solutions of the biquadratic equation,
4 2
(Vp) (822811 - g122) - (Vp) [gzz(F+ 2N)+g,T— 2g12G]
+ (F+2N)T-G* =0, ®

and the phase velocity of dissipative shear wave is given by

V.= \/gzzN/(gugzz - 8122) ) (10)

where,

£ (@ =Py@ =i 2D for pg=12. an

Following Helmholtz theorem, we can demonstrate that the displacement vectors of solid
and fluid phases can be expressed by the supposition of the three kinds body waves in the
form of

u=Vé +Ve,+Vx(y3), (12)
and
U = 3, (0)Vo, + 1, (@)V §, + 2,(@0)V X (y3), (13)

where, ¢,, ¢, and y are the scalar and vector potentials for two compressional waves
and shear wave, respectively. The partition coefficients y; are given by

1 (F+2N)T-G* L &l —2,G
(Vp1,2)2 826G — 8T 826 — 8T

Ko@) =— (14a)

and

_gp(w)

X:(@)= gzz(w).

(14b)
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WAVE FIELDS IN VERTICALLY LAYERED SATURATED POROUS MEDIA

Let us now consider the wave fields in vertical layered porous media. As shown in
Figure 1, the physical model considered here consists of M plane homogeneous and
isotropic saturated porous layers in which the top boundary is a traction free surface and
the bottom boundary extends to the infinity. Seismic source is embedded in the s-th
layer. Each saturated porous layer consists of the solid mineral grains and pore fluid, and
is described by the Lame coefficients of the mineral and pore fluid, and the porosity and
permeability of the solid framework. As shown above, the wave fields in such media can
be decomposed into three types of body-wave, and the corresponded potentials are ¢,, @,
and . Due to the effects of reflection and/or transmission effects by the up and down

plane boundaries, wave fields inside each layer consist of the up-going and down-going

waves, i.e.,
] D¢ _ (¢, i1 ;
¢1(1)(x w)_?_J'{ ;Jl)u in"(z z)_|_ ;11) em (z-2 )}etloc dk, (15)
b/
e, _ J) (-1 ;
99 (x, w)——J{ R D™ e ik, (16)
and
) ] i W iVU)(ZU)'—Z) ) iv(j)(z__z(i—-l)) ik
v (x,w)=—2——j{csue +cge }e dk, ¥))
b/
where,

7 = \/(a) / me)z —k*,  with Im{y{}} 20,

v =@/ V) -k,  with Im{v?}20,

G oD LD DD 4) - i :
and ¢, Cph» Cob» Cpias Cppa @0d ¢ are unknown coefficients to be determined by

imposing boundary conditions and source radiation. The boundary conditions at each
plane interface between two saturated porous media are:

¢ Continuity of total displacement (normal & shear components),

e Continuity of fluid motion (normal component of fluid displacement),

¢ Continuity of total traction (normal & shear components),

e Continuity of the pressure of pore fluid.
To apply these boundary condition to determining those unknown coefficients, we define

a motion-stress vector as
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Figure 1. The physical model considered in this study. A seismic source is
embedded in the s-th layer, receivers can be anywhere within the media.

+o0

YO (z,k) = J‘ [Wij),Wz(j), Uz(j),zij),zij)’ p§j)]T (x,7) €™ dx, (18)
where,

W(J')(x) — (1 _ﬂ(j))u(j)(x) +,B(j)UU)(x), (19)
and

2Px)={cV(x)+©(x)I} 2 (20)

are the total displacement and traction on a plane interface, respectively. Substituting
equations (15) through (17) into (18), we obtain )
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Y(j)(z) ‘—"A(j)A(j)(Z)C(j), (21)

where, ¢ =[cO),c,cP,cl).cSh,cP| is unknown coefficient vector; AP (z); is a

diagonal matrix function given by
A(j)(z) _ diag{eiy}j)(ZU)_Z) eiﬁ”(z(”-Z) e,-,,(j)(zm_z)
3 b ’

2

ind) (5, (=1 ki p_P-1) iyl (p—i-1)
etyl (z-z ),etyz (z-z ),etV (z-2 )}. (22)

and AY is a 6x6 constant coefficient matrix whose elements, { a; ny;m=1 2, 3}, are

given in Appendix A.
In terms of motion-stress vector ¥, the boundary conditions at each plane interface

between two saturated porous media can be expressed as

YO)=y9"PY), for j=123,.,M; (23)

Y(2)|,.,.. = finite; (24)
and

Y90y o

YP(0)|=|0| on free surface. (25)

Y0y |0

REFLECTION AND TRANSMISSION MATRICES

To effectively determine the unknown coefficients for each layer, we introduce
modified and generalized reflection and transmission (R/T) matrices and derive their
explicit expressions by imposing the boundary conditions.

Modified R/T matrices, which describe the reflection and transmission effects about
an interface between two homogeneous saturated porous media, are defined by the

relations:

¢ = T,ﬁ"’(c,ﬁf“) +5 6 )+ Rg)(cf,f’ +sd55j)

£Os(j+1)
)+ T{Y)(cf,j) +sd6sj)’

. ‘S (26)
ey = R,f{,)(cﬁ’ Mysd

uYs(j+1)

for j=123,.,M. Here, T, R, R}, T} are the modified R/T matrices for the j-th

interface, they all are 3x3 matrices; and ¢’ =[c).c,cP| and c¢{’ =
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Gy () )

T . . . . . .
Cpta>CprasCs ] are coefficient vectors for up-going and down-going waves in the j-th

layer;s, and s, are seismic source vectors related to seismic source radiation. Inserting

the explicit expression of ¥’(z), eq.(21), into then boundary conditions, eq.(23), we

T RYY_TAD AT TAS AP B -
gy 19|7|ap —agr] lagr agl  wo)

for j=123,...,M. Here AY, A, AY and A{)’ are four 3x3 sub-matrices of

AY; and EY is a diagonal matrix given by

obtain

; . i) (LD _ 1) inkd) ¢ ) _ (-1 v (0 _,U-D
E(J) :dlag{e'yl( (ZV'-2 ), el?’g (V-2 )’ e'V (z¥'—2 )}.

On the free surface, the modified reflection matrix, R'?, is defined by

¢ = ROcP.

ud ~u
Using the traction free condition, eq.(25), we obtain
RO =~(AD) ADE®. (28)

Equations (27) and (28) provide the explicit formulas for computing the modified R/T

matrices for each plane interface and free surface.
The generalized R/T matrices, T, R, RY and T, are defined by the

following relations:

us(j+1)

G+D _ pGiY [ LG+
cd - Rud (cu +su6s(j+1)

P zjvu)(c(m) +56 )
u AN ) for j=s-15s-2 ..,2 1; (29

and

U = T 458
{d d (d d ”) for j=s,5+1 .., M-2 M—1. (30)

P =RP (e +5,3,)
Substituting eqs.(29) and (30) into eq.(26), we derive the following recursive formulas:

A A - _1
) — _ pWpl-n 6))
{Tu L I N U T 31)

pU) _ pl) ) pU-1(j)
Rud - Rud +Td Rdu Tu

and
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50 _[r_ pipusd T i)
{Td =[1-RPRG TP j=s s+ ., M=2 M—1. (32)

U _ plid) G RpUDA])
Rdu - Rdu +Tu Rdu Td

where I is a 3x3 unit matrix, T, RS, RY and T, are all 3x3 matrices. In the

bottom layer ( j = M), only down-going waves exist, i.e., c¢™ =0, therefore

RM =g, (33)

In the top layer (j=1), the down-going waves only come from the free surface

(z=272 =0), thus

RY=RJ. (34)

Equations (31) and (32) along with the initial conditions given by egs. (33) and (34)
provide an efficient recursive scheme to calculate the generalized R/T matrices from the

modified R/T matrices given in equations (27) and (28).

SOURCE RADIATION

The seismic source vectors s, and s, can be determined by a special integration

consideration. In the source layer, the @ —k domain wave fields directly radiated from

the source have the following form:

S(z) =AY AP (2)s(z), (35)
where, \
(g=| &) 36)
s(z)= S H(z -2)| (

In terms of motion-stress vector S(z), the basic equations of motion [eqgs.(1) and (2)) and

constitutive equations ( eq.(3) and (4)] can be rewritten as

B _ ir'S(z)—qé(z—z,), 3D

where,
= diag{—yl(”,—yé’),—v(’),yl(”,yé”, v(’)},

and
q=10,0,0, fx,fz,O]Te—ikx: )



Chen, Quan and Harris — Waves in porous media L-10

Integrating eq.(37) over an infinite small region around the source point z =z, yields
8(z;)-8(z;)=—94. (38)
Substituting eq.(35) into equation (38), we obtain

s -1 5 5 5 s -1
5= AT (49 - 4945749 ) g, G380
and

s -1 s ) s s -1
5, =A@ (a9AT7AS - AY) 4., (38b)
where, g, =Lf,,f,,0 ¢, and

(= digel oM@ 0-2) i @0~z) E-z)
A3 (zs)—dzag{e ! ¥ eM T o ,

. A, =) A (o 5D iV e, _Ls=1)
A(;)(Zs):dlag{elyf (7,7 ),eqé (z,—7 ),e'v (z,~7 )} .

SOLUTION SYNTHESIS

Having the generalized R/T matrices, we can compute the unknowns ¢\ and ¢ for

any layer. Therefore, we can determine the displacements and stresses for any layer.
From egs. (29) and (30) we obtain

~ ~, 211 ~
) = (s=1) (o) (s=1)
c; +s, —[I-Rud R, ] (sd +R,; sd)
®) A -] pec ) (39)
c, +su=[I—RduRud ] (su+Rdusd)

Plugging the eq.(39) into, again, egs.(29) and (30), we can calculate the unknowns ¢’

u

and ¢’ by the following formulas

. A . ~ . A o) Ko _1 D
{c;n =TI T[1- RORG™] (s, + RYs, ) (40)

3 — pU-D,M)
cd _Rud cu
for j=1, 2, 3, ..., s-1; and

. A . A . A A Ll _1 A
() — pU-Dp) (s) (s-1) p(s) (s-1)
{cd’ =FYTP. TP[1-RGORD] (s, + RS™s,) 1)

) — ) ()
¢, =R;’c;
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for j=s+1s+2...,M. Incorporating ¢\’ and c{’ into eq.(21), we obtain the k- @

domain solutions in any layer:

4oo
[W(” wO,U,, 59,39, pf]T(x,a))= % J‘ YO (2, k, @) A (2)c e dk. (42)

Finally, by taking inverse Fourier transforms over @ we can obtain the final solutions in

time domain.

QUASI- VISCOELASTIC SOLUTIONS

In the most circumstances we encountered, the second kind compressional wave
(P2) has negligible contribution to the observable wave fields, because of its high
attenuation in the saturated porous media. In such case we can neglect the second kind
compressional wave, only consider the coupling between the first kind compressional
wave and shear wave. Then the formulation for general saturated porous media derived

in previous sections can be simplified, and are reduced to the quasi- _viscoelastic

formulation. Such reduction is simple and straightforward: neglect the unknowns cf,’z)u

and cf,’;d, and accordingly only impose the continuities of total displacements and
tractions at each boundary. As result, the formulation of quasi-viscoelastic solution will
be in the same form as those of general saturated porous solution presented in prevoius
sections, except the 6x6 constant matrcies A’ become 4x4 ones; the 3x3 R/T matrices

become 2x2 ones.

PRELIMINARY NUMERICAL RESULTS

At the present stage, we have finished coding the computer program for quasi-
viscoelastic formulation. The computational code for general multi-plane layered porous
media problem is still under developping, and expect to be finished in the near future.
Therefore, in this report, we shall only show some preliminary numerical results of
modeling the seismic waves in multi-layered porous media by using the quasi-
viscoelastic formulation. We shall consider two examples to investigate seismic waves
propagation and attenuation in this 1-D saturated porous media. The first example is
three layer model which consists of a high porosity low-velocity zone. The second
example is a 10-layer saturated porous media model which consist several high porosity
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zones. The parameters of these models are given in tables 1 and 2, respectively. The
simulation results are shown in Figures 2 through (7). Figure 2 is a gather of
seismograms of the horizontal and vertical displacements from which we can see that the
waves propagating in satuated porous media Figure2a shows stronger attenuation than
the elastic waves (Figure 2b). Figure 3 shows the effects of permeability on the
attenuation, where the permeabilities are taken as 0.01D, 100D and 100000D for
Figure3a, b and c, respectively. Figure 3d is an elastci case for comparisons. From these
comparisons, we can see that the effect of permeability on the attenuation is noticeable.
Figures 4 to 5 show the results for a 10-layer saturated porous media model. Once again,
we can observe the attenuation effects caused by the saturated porous media .

Table 1 Paramters of a three layer model

Layer  Depth p % \% Fluid B p %4
s s P K f f n
number () s s O (Darcy) (kmfs) ~ (Poisc)

1 0.00 2.677 322 5.45 Water 0.05 1.0E+3 1.00 1.50 1.0E-2
2 100. 2.628 2.84 4.30 oil 005 1.0E+5 0.88 1.45 1.8
3 120. 2.900 4.20 800 Water 0.10 10E+3 1.00 1.50 1.0E-2

Table 2 Parameters of a ten layer model

Layer  Depth Fluid

nurr);ber (Iﬁ) Ps (k:r/;/vs) (k:/nll)s) Type ﬁ (chy) Py (k‘r:;s) (P:i]se)
1 0.00 2.677 322 545 Water 0.05 1.0E+3 1.00 1.50 1.0E-2
2 100. 2600  2.80 420 Water 005 1.0E+3 1.00 150  1.0E-2
3 110. 2660  3.50 590 Water 0.10 1.0E+4 1.00 1.50 1.0E-2
4 120. 2570 285 4.30 Gas 0.16 1.0E+4 0.14 063 2.2E-4
5 130. 2.628 2.60 4.10 0il 0.19 1.0E+5 0388 145 1.8E+0
6 140. 2.630 2.85 430 Oil 0.16 1.0E+4 0.88 145 1.8E+0
7 160. 2.600 322 5.45 Oil 020 1.0E+5 088 145 1.8E+40
8 170. 2.728 2.80 42 Water 0.15 10E+4 1.00 150 1.0E-2
9 180. 2.800  3.60 6.00 Water 010 1.0E+3 1.00 1.50 1.0E-2

—_
(=]

200. 3.000 4.40 800 Water 005 10E+2 1.00 1.50 1.2E-2
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Uz: quasi-viscoelastic case: KO=10*"5D
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Figure 2a The synthetic seismograms for a three layer porous media.
Compared with the elastic solution shown in Figure 2b, we can see the

attenuation caused by the porous properties.
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Uz: elastic case
0.35 ! ! ! T T ! !
: A
0.25 : : A % | | VLTS S v
: - vo— T i
0.2 I Ay v
— : Aty ¥ ;
B 0.15 v 43"‘. ‘“'A.A -
£ — WA
o v et
0.1 - Wt
0.05 » Ho -
o . A"A o
_0.05 i | 1 1 ; 1 I
0 0.02 0.04 0.06 0.08 01 0.12 0.14
time(sec)

Figure 2b Snythetic seismograms for the elastic model.
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Figure 3 Comparisons of synthetic seismograms for different
permeabilites: (a). K0=0.01d; (b). KO=1.D; (c). K0=10**5d; (d).
FElastic case.
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Ur: quasi-viscoelastic case: 10-layer model
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Figure 4a Synthetic seismograms for a 10-layer porous media model.
Compared with Figure 4b for the elastic media, a noticeable attenuation
can been seen.
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Ur: elastic case: 10-layer model

L-17
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Figure 4b Synthetic seismograms for the model with the same structure

but of elastic case.
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Comparison of displacements (Ur): 10-layer model

0.2
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()
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_02 : N '
0 0.05 0.1 0.15 0.2

Figure 5. A close compariisons of synthetic seismograms
for a 10-layer model with that of elastic model.

CONCLUSIONS

To effectively modeling the seismic waves propagation through the vertically layered
saturated porous media, we have derived a set of efficient formulation by extending the
reflectivity theory to our porous media problem. This formulation is useful in the
reservoir characterization and discription, and it also can be used to asses the AVO
analysis. If we neglect the slow wave, our formulation is reduced to the quasi-

viscoelastic solution. As preliminary results, we have used the quasi-viscoelastic solution
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to investigate seismic wave's attenuation in saturated porous media. Our results show the

attenuation shows up when the peremability become lager.
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APPENDIX

The elements of constant coefficient matrix A are defined as
WD — ) — D)
ay’ =ay =o'k,
G _ D — D)
a;y = af =05k,

()
2
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G — _ 0 — _ (DA
Ay =—ay =—07Y

G — _ ) — _ ) afld)
Ay ==y =—0y" Yy,

i =ap = ok,

B — ) — _a D) a,l)
a3y’ ==az ==XV
U — _ D) — _af(Daf)
Ay =—05 ==X V2

(6) N ¢ ) A )
ag =ag = X3k,

() — ) — () a7(d)
a;y =—ay =2y,"N"k,
aié) — _aig) — 27§])N(J)k,

G — A0 — A DND (DY _ 32
ag =g =X N [(V ) -k ],

ag) — a;{) ) N(j’(yl(j))z +[F(” +GW +(T(f) +G(j))l1(j)]

0P =al =-{2 N‘”(yﬁ”)z +[ FD 4+ G +(T‘f) +G(j))l

G — _GY — 5 a0 D)
asy =—asg =2X5"V NPk,

G — D) — _aDali)
Qe ==0gy =—X1 11 »
) _ ) — __ayDa,)
Ay =—0gs =—X3 V2 s
gy — )
Agy" = 0gg =Y,

where, &’ =1- P(1-x{”), for n=1, 2, 3.
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