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ABSTRACT

A new and effective forward modelling technique - KOND (Kernel Optimum Nearly
analytical Discretization) algorithm has been developed and implemented into the numerical
simulation of multi-component seismic wave-fields in 2-D heterogeneous and anisotropic
media, The main idea for constructing such an algorithm is to use the source equations and
their branch equations as many as possible, to find a higher order approximate solution as
analytically as possible, to use more local continuous solutions around the grid points as
frequently as possible, and to use the connection relations as many elements as possible to
compensate for the loss of information when the source equation is discretized. Computing
seismic wave-fields, reflections on artificial boundaries have been suppressed with the use
of absorbing boundary conditions, and interior interfaces have been treated with the FBI
(Forward and Backward Iteration) technique. The results for model computations reveal
that the algorithm is stable, precisive and shows less dispersion than conventional methods;
can save more computer memory and time than conventional methods to reach the same
accuracy; is feasible to simulate the seismic propagation in complicated media, and
extendible easily to 3-D and other sophisticated problems in Geophysics.
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INTRODUCTION

Recently, many observatory experiments and theoretic studies have demonstrated that
seismic anisotropy is widespread, whether it is interstice or apparent which is induced by
thin layering or oriented cracks or fractures. The information of seismic anisotropy has an
important meaning in the exploration and production of oil and gas reservoirs, in the study
of Geodynamics, and for the prediction of natural disasters (Crampin, 1980; Schonberg,
1989; Backus, 1962; etc.), which has been absorbing the research interests of
seismologists and explorational geophysicists (Thomson, 1986; Crampin, 1991;
Schonberg, 1988; Helbig, 1984; Teng et al., 1992; etc.).

Numerical simulation is a useful technique for increasing our understanding of seismic
propagation in heterogeneous and anisotropic media, for interpreting of practical multi-
component seismic observations and for testing the feasibility of software of lately
developed forward, inverse and migration schemes(Reshef, and Kosoloff, 1985; ).

So far, many numerical methods have been developed for forward modelling of single
or multi-component seismic wave-fields in acoustic or elastic, isotropic or anisotropic
media, such as the reflectivity method for modelling seismic propagation in layered media (
Booth and Crampin, 1983a, b; Fryer, 1984; Schoenberg, et al., 1989; Chen, 1990, 1996;
etc.), the Ray tracing technique (Cerveny, 1985; Chapman, 1991; etc.), the Fourier
transformation method (Kosoloff, 1988; etc.), the Finite difference method (Verierx, 1986;
Faria, 1994; etc.), the Finite element method (Kunhua Chen, 1984; etc.), and others
(Vidale, 1988; Qin et al., 1993; Tessmer and Kosloff, 1994; Hornby et al., 1994, etc.).
They have their merits and drawbacks. Generally, the wave equation is directly discretized
by the finite-difference or finite element method, which leads to some problems, namely,
the two types of information embedded in the wave equations (source equation) are lost
more or less. One type of information loss is the relations that are embedded in the source
equation and connecting the local values and their time evolution, the other one is the
information on the functional ‘values’ embedded in the solution of wave-fields. The
greatest problem may be that the conventional method used to process wave equations
would yield a finite error compared with the source equation, which may be the main
source of the diffusive error. And that is the starting point of the KOND algorithm.
Kondoh(1991) used such a Thought Analysis method to develop KOND scheme to solve
one- and two-order equation in the fusion sciences, and obtained good results (1991).

In this paper, we utilized a similar thought process to solve the wave (source)
equations in anisotropic media as directly as possible, avoiding the use of the finite
difference equation. In order to develop the KOND algorithm successfully in the modelling



s
s

e
(S|

)
0

Zhang et al. - KOND Algorithm J-3

of seismic records in 2-D heterogeneous anisotropic media, we review the main points for
constructing the KOND algorithm in general, in the first, the detail may refer to Kondoh
(1991). Then introduce the new numerical scheme for the simulation of seismic wave-fields
in complicated media. In the computation of wave-fields, the reflection on artificial
boundaries is suppressed with the use of an absorbing boundary condition for each
component, the interior interfaces in the computational region are approached with the FBI
technique (Zhongjie, et al., 1996) . Some computational results are given and analyzed.
The results show that the KOND algorithm developed here is stable, precisive with less
dispersion than other methods, and can be easily extended to 3-D and other complicated

problems in Geophysics.

BACKGROUND

Assuming there is a two-order equations to be solved in the following form:

2UX
(X) (1)

LEOUK)=p =

we use Eq.(1) as source equation.
From Eq.(1), we know the following equation is valid always:

2
FX[LU—pa ;thx)]=0 2

Where X=(x1, x2, X3, ..). Fy denotes the derivative function(s) of source
equation(s) with respect to X. we use Eq.(2) as a set of branch equations.
The optimum solution of Eq.(1) is to include the information embedded in Eq.(1) and
Eq.(2), that is, the best solution is shown in the following set on the functional values of
the analytic solution and its derivatives:

{v0.3,U0,9;u%).--} 3

The conventional finite-difference equations for Eq.(1) has finite error compared with
the source equation Eq.(1) and therefore it has finite loss of information on the relations
which are embedded in the source equation and connecting the local values and their time
evaluations.

From discrete values of solutions at grid points:

{Un:0:U,9Uns-} 4)
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interpolation curves around grid points:

[U(5),0:U,(5),95Un(5),} s=x-xh )
and connection relations at the neighboring grid points:
Un(=hg)=Up Un(hg)=Upsy
0iUn(=hg)=0;Up_y 0;Up(hg) =0;Up
(6)

BijU,,(—hd)=a,-jUn_1 aijU,,(hd)=a,-jU,,+1
Each element of the set (4) should be the piecewise segment of the corresponding
analytic solutions of Eq.(3); and the combination of Eq.(4), (5) and (6) is exactly
equivalent to the set of the true solution of Eq.(1).
Using the Taylor expansion, Eq.(6) can be written as follows:

Up(s)=Uy + Y 0Uys1 + 335U 15 4+ (7a)
i ij
AU =3V + Y 3Upsj + 3 05Uy T4 - Tb
iUn(8)=9;Uy iiUnSj + iikYn Dt (7b)
i Jik
3Un() =350y + O 3yl + X dyaUn ¥ +--- (7c)
k k,l

Obviously, the discrete values of the solution are the coefficients of the interpolation
curves by the Taylor expansion and therefore they can induce good approximate and locally
continuous solutions around the given grid point. In other words, the infinite set of the
discrete values of Eq.(4) itself becomes one of the best discretizations for the whole
information on the functional values of the continuous true solutions in Eq.(1) based upon
the interpolation curves by the Taylor expansions.

Since we can use two or three elements, for example U,,0,U,,0;Uy,-. some finer
information included in the rest infinite terms beyond the terms 9;;U, would be lost. but the

rest infinite terms in the Taylor expansions can be folded up approximately in the finite
additional terms by using the connection relations of Eq.(6). From such a way, we can
suppress effectively the loss of information.
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We can see from the above analysis that in order to suppress the loss of information
by the discretization of the source equation, we should find higher-order approximate
analytic solutions for the source and its branch equations as analytically as possible. or say,
if we’ve a method which is nearly analytical for obtaining better approximate solutions for
the more elements of the set of Eq.(4), we would get the more accurate and denser
information for the set of true solution Eq.(1).the accuracy of the information for the
solutions by this method is optimum at the grid points, the discretization by this method is
kernel optimum nearly analytic.

The four basic and key points of the KOND algonthm based on the above thought
analysis is as follows:

a. use the source equations and their branch equations as many as possible.
b. find higher-order approximate analytic solutions as analytically as possible.

c. find the set of discrete solutions {U,,,a,-Un,a,-jU,,,---} using as many elements as

C possible.

d. use the connection relations as many elements as possible in order to include the
semiglobal information for the curved regions between the neighboring grid points and to
find the additional higher order Taylor coefficients which represent approximately the rest
B of the infinite terms of the Taylor expansion.

Each part of the KOND algorithm seems to be rather simple and abstract to develop
new schemes with higher numerical accuracy. The following section will demonstrate how
the four elements of the KOND algorithm give us novel numerical schemes which yield

. great accuracy and therefore significantly reduce CPU time to attain the same accuracy.

KOND ALGORITHM FOR MODELLING IN HETEROGENEOUS
ANISOTROPIC MEDIA

[ In heterogeneous anisotropic media, we have :

cijj t+ /i =pu; (3)
The relationship between stress and strain:
oj = Cjueji )]

. . . oU;
¢; mean the stress and strain component, respectively, and e; = l[% +—’—J,

t Where o;
2 ax ] ax,-

l]’
L Cy is elastic parameter in anisotropic media, we will designate it as C; in the following

discussion.
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According to the first point, to use the source equations and the branch equation as
many as possible, we set the following as 1st branch equations:

U; =W pi = Wi (10)

Where, U=[u]",W=[w]",P=[n]", F=[ A% w is a displacement component , u; is a

velocity component, and #; is an accelaration component.

The following wave equations in 2-D anisotropic media can be considered as source
equations and part of branch functions:

W=P=(L1+LZ)U+§ (11)
Where differentiator operators L; and L, take the following forms:
10 ( 0 0 ) 19(, 3 )
-2 % cZic, 2 Ll=——(c 9.c _)
L p ox Yo %oz poz\ Sox oz
CGi1 Gs Gg [Cis G3 Cu
G=|Gs G55 Cs G =|Css (G35 Cys
CGs GCs6 Ces [Cs6 C36 Cas
Cis G55 Csg [Css Cis Cus
G=|CG3 G5 G Cy=|Cs Gz Cyy
Ca Cys Cge [Cis C3q Cuy

As there are two types of variables namely spatial and temporal variables x, z and t. so
too can we get the other part of the branch equations from the derivative equation of

source equation with respect to spatial variables and make the following setting:

_ T

U=[U,%U,B%U] 12)
and

_ T

p=[p,§;p,§—zp] (13)
and

_ T

W=[W,§—xw,%w] (14)

According to the second point, we should solve the above equations locally around
one given point (x;,z;.t,41 ) as analytically as possible. Using the Taylor expansion around

the time t=ndt, we can get the following formula:
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n n n
- 2( 8277 3( 837, 4( ~4 71,
ur = U,, Al 3U aU RORE ;J G0 A 5 M (15)
J ot 2 | o 6 | o 24 | ot
ij ij ij ij
and
_\n ) .- n n 4 4 n
- - oW (Af)"| 0 W (At) (An)" | o* W
ntl . wi e A 2
Wy =W t[ ot ] i ( ot? ] 6 8t T | o (16)
ij ij ij ij

According to the definition of U, W and P, we can get the following relation:

am+k+l+1 U am+k+l W am+k+l—1 P

17
™ ke or"axkor | or™ lox*ar! an

Considering the above relations , the equations (15) and (16) can be rewritten as

follows:
Un+1__Un +AtW" (At) (At)3 21_1 (At) (18)
6 ot 24 az
iJ ij
and:
U 1. o .Y I -5 i i I GO
Wiy =Wt ARy {a:} 6 | o’ 24 at (1%
ij iJ iJj

Now, we proceed to the third point. In order to find the set of discrete solutions of

uPt! and W' from the above equations, we should use the terms at right sides of above

equations with the values at the time t=nAr and t=(n-1)Ar. Using the definitions from

. 3.3 9 , 0 ,
eq.(11), we obtain gP,a—ZP,ﬁP,at—azP,--- as follows:

0 10 1 dp

2 p= LYW +~—F—~——F 20

ox (IJ_‘}+ 4) +P ox p2 ox ( a)
0 19 1 ap '
2 p=(L ~ 2 - 2

P (5+L6)U+pa F 28z (20b)
o> L P=(3+ L)W+ l_@z_F__l_a_pa_F (20c)
3rdx YT oo ptax o
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02 1 92 1 dp oF

= __p= BalRC A P esall
o - Ust LW+ p 010z F p? oz ot (20d)
82
5—P (L + L)Y U+ +Ly)— +pF, (20e)
a3 F 1 23 1 9p 3*F
P +L)YU+L;—+=— F- 20
or? L+ 1) L7 parfax  p?ox ot (200
o3 F 19 1 3p o*F
A - 20
ot%d p por2dz  p? oz ar? (20g)

Where differentiator L, Ly, Ls, Lg, Ly, Lg take the following forms:

13,0 1%,
L= (pax ax)L L= (pazJ“aleQ
1,9 1op .0
Ls = (paz ax)L Le = (pax az)Lz
=2 (b+ 1) L= (L +1y)

Proceed to the fourth point in the next. Since we have to determine the values of U(i,j,
n+1) and W(i, j, n) with higher numerical accuracy from those of U(, j, n), W(, j, n) etc.,
we peed the values of the following terms:

2 n 2 n 2 n
N (2,) (2
oxr ). lazZ ) C\oxdz | .

ij ij ij

So, we use the following interpolation curves to determine the above terms with
Taylor expansions:

ze—il 2422y 21
X.2)= 0; ox 0z 21)

The derivatives with respect to x and z can be written as:

N-1 r

1 0 ) o

G,(X,Z)= 2—[)(— + z—) U (22a)
~r ox dz) dx
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N-1 r
G,(X,Z)= %(xiJrzi) 9y (22b)

So, we have the following connection function set to compute the above terms:

[G(x - Ax, Z)],n,] = Uin—l,j [G(x + Ax, Z)]l't] = in+l,j (233)

[Ge(x—Ax, D] = (i U)n [G,(x—Ax,2)]! . = (i U)n (23b)
* T \ox T )iy ‘ TR0z iy

(G (x+ A2 = (i U)n [G,(x+Ax )] . = (3 U)n (23¢)
NG R Bo\0z i)

With the above relations, we can obtain:

2 YV 2 . A 1 ((a Y 2 .Y
(ax_zUlj‘_(Ax)z( i+1,j ~2Ui; + i—l,j)_m[(a_x(]) —(aU) ] (24a)

i+1,j i-l,j
2 Y 2 1 ((o,Y 3\
Syl == (ur,,-2Ur U ) - —— (—U) —(—U) 24b
(azz l j (Az)z( BT 1) ZAZ( 9 Jij \02 Jijy (240
2 Y
(axaz Ulj Ry !AZ(Ul'n+l,j+1 ~Ulyjs1 ~ Ul ja + Uin—l,j—l) +

1 (3 Y 3 . 1 ((a Y 3 .Y
—|[Zvl -|=U +—I||=v| -|=U 24c
2Ax [( oz )i+l,j (az )i—l,jj 2Ax [( oz )i+l,j (az )i—l,j] ( )

@ Y 15 3 (a ) (a ) (a )
L vu| =—2 (Ut ;-U ) -——||=U]| +8=U| +|=U 24d
(ax3 ]i,j 2(Ax)3 ( +1.j 1'1) 2(Ax)2 { 0x  Jij ox ) ox Jij ( )

The other terms can be similarly obtained.
Meanwhile, in the computation of wave-fields at the time of the (n+1)th step, we must
consider the following relation:

okt W ok U
= 25
ax*o!  arx*ar’ ()

in order to compute the following term:
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_\" _\n-1
[ak+l U] (ak-&-l U
\n axkas! - axk "l
>+ w i x“dz g x 0z y 6
ox¥az! At
Lj
k+l 5
So, with the initial values of U(i, j,0),we use Eq.(24a)-(24d) to compute 9 ol and
A w - 9P #P :
—— With Eq.(26).We can get B ;—,— .~ with Eq.(20a)-(20g),furthermore to
ox*az! ot ot

compute the wave-fields U(, j, n+1) with Eq.(18) and (19).
TREATMENT OF ARTIFICIAL BOUNDARY
In the computation, as the computational region is limited by the size of the computer’s

storage space, meaningless reflections will occur at the artificial boundaries. In this work,
we use the following method to suppress reflections at the artificial boundaries:

I% + p_EAE ai U=0 for the right boundary 27
21
3 3,30
I—a?— p 2A2 Ew U=0 for the left boundary (28)
29
[1 ;’ +p'5c5 aa JU 0 for the bottom boundary (29)
29
Where matrices A and C have the following forms:
Ci1 Gs Gs Css Cy5 Css
A=|Gg Ce Css C=|Cis Cu Gy
Gs Cse Css C3s Ca Gi3)

The above absorbing conditions work well at the artificial boundaries. The interior
interfaces are treated with the Forward-Backward Interation techniques to maintain the
stress at the interfaces (Zhongjie et al., 1996).

COMPUTATION

One five layer model has been calculated with the above algorithm. Fig.1-3 represent
Ux, Uy and Uz component seismic records, Fig.4-6 are snapshots at 400th step of the
computation of the Ux, Uy and Uz components for the five layers model . We can see from
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the seismograms calculated that less dispersion effects were shown on the seismic records,
which makes this method is much more accurate than conventional methods.

CONCLUSION

We have developed a new algorithm for numerical simulation of multi-component
seismic wave-fields in heterogeneous and anisotropic media. the method is stable and
precisive, and less disperse and to be easily extendible to 3D and other kind of problems in
Geophysics.

The first author is grateful for the financial support of the Chinese Natural Sciences
Foundation and the President’s Foundation of Chinese Academy of Sciences.
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Fig. 1 VSP seismic record of y-component.

Fig. 2. VSP seismic record of x-component.

Fig. 3 VSP seismic record of z-component.



Zhang et al. - KOND Algorithm

Fig. 4 Snapshot of y-component displacement at 400th step.

Fig. 5 Snapshot of x-component displacement at 400th step.

Fig. 6 Snapshot of z-component displacement at 400th step.
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