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SUMMARY

Forward modeling by construction of synthetic seismic data can be very useful in the
interpretation of seismic time sections. In this kind of work, synthetic data are compared
to field results to determine how the assumed geologic model of the subsurface needs to

be modified to obtain better agreement between calculations and observations. Forward

modeling is also very useful in suggesting how the field survey should be laid out in
order to observe the response of the target. And forward modeling code can be readily

turned into a reverse-time migration code.

In cross-well seismology, owing to the limitations of the availability of wells, the
surveys are more likely to be carried out in two-dimensions. 3-D forward modeling can
reveal whether a 2-D survey can adequately predict the geology in a province. One may
simply argue that the earth is variant in 3-D. But depending on the relative magnitude of
the seismic wavelength used in the survey and the dimensions of the geology targets, 3-
D variant targets can be regarded as 2-D variant. An example is 2-D surface reflection
seismology, this technology has been successfully used for many years.

In this paper, I address the problem of 3-D finite-difference acoustic wave equation
modeling. 3-D wave equation modeling is an extremely computation intensive process,
and it requires large computer memory. Here at STP, we do not have the supercomputer
facilities to carry out large size 3-D computations. I describe how to use network
connected workstations to share the computations and test the method on a small sized
model. Additionally, I describe an effective and economical absorbing boundary
condition and apply it for this 3-D modeling.
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F-D EVALUATION OF THE WAVE EQUATION
Let us assume that the earth behaves like an acoustic medium in which the influence

of variations in density can be safely ignored. In that case, the propagation of energy into
the earth is governed by the acoustic wave equation

FUY (U (oU 1 (U
(azx)+(82y)+( 822)_ vz(x’y,z)( o ]+f(t)5(x_xx,y—ys,z—zz) (1)

where U(x,y,z) represents the wavefield and v(x,y,z) denotes the velocity of the medium
at spatial location (x,y,z), ¢t denotes time, and f(¢) represents a time dependent band-

limited source S located at (x,,y,,z,).

In finite-differencing, I use Z,j, k to represent the spatial coordinates X, y, z, and use
n to represent the temporal coordinate z. I can write the wave field

U(xay,z,t) = Ui',lj,k’n’ = 0,1,2,3,... ‘ (2)
fo=1

In solving the wave equation (1), I use tenth order finite-differencing to approximate the
second order spatial derivatives, and use second order finite-differencing to approximate
~ the second order temporal derivative (Dablain, 1986). In both the spatial and temporal
derivatives, I use central finite-difference schemes because the wave equation is
symmetic in both space and time.
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The coefficients in the second order spatial derivative are calculated by an optimization

method, which minimizes the dispersion for a given operator length of 11. The

coefficients are w0 = -2.92722, wl = 1.666667, w2 = -0.238095, w3 = 3.96825E-02, w4
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= -4.96031E-03, and w5 = 3.17460E-04. In forward marching in time, I need to use three

snap-shot wavefields: U,-l_ j,k,Uf iU .

3.t Ui,y is the previous snap-shot wavefield, U}

i,j.k

is the current snap-shot wavefield, these two wave fields are known. U; ;& 18 the next

time step wave field to be computed. The current wavefield Uf ;.4 18 used to compute the

spatial derivatives in equation (1) by finite-difference equation (3). The three spatial
derivatives in equation (1) can be computed independently. In this case, I distributed the
derivatives to be carried out in three separate DEC-Alpha workstations. The major
requirement is that there be a common disk that could be accessed by several computers

for data exchange. The master computer writes the wavefield U,.Z,j,k to the common disk

and sends a data-ready semaphore signal to the slave computers. The access to the shared
data by the three slave computers is controlled by a semaphore. The slave computers
compute the spatial derivatives in equation (3) and write the result to the shared disk and

send a data-ready signal to the master computer. Finally, the derivatives are combined by

the master computer to compute the unknown Uf ;& In equation (1).

ABSORBING BOUNDARY CONDITIONS

Appropriate implementation of absorbing boundary conditions is extremely important
in 3-D wave equation modeling, because in 3-D, any extra grid padding at the boundary
can rapidly increase the computer memory requirements and, consequently increase
computation time. I found that an effective and economical absorbing boundary can be

implemented by the following two steps. First, I apply the one-way wave equation
—+v—2=0 5)

to calculate US ;.« at the boundary. Then I apply the following multiplication factor

function:

G(i) = exp(~41*) ©)

where i is index distance from the actual useful grid boundary, h is the spatial sampling

interval and v is the velocity at the boundary. At each time step, after U, is computed
y ary P ijk p
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by the above equation (4), the multiplication factor equation (6) is applied to both
U .U

i,k i) k"

U, = UG(i),i = 0,....8 )

at the six boundary sides. Very good absorbing effect can be achieved by a padding width
of 8, as compared to the suggested padding width of 20, by using a different

multiplication factor (Cerjan, et al, 1985). Next, the wave field U7, , is copied into U,

and Uy, is copied into U7, ,. The next time step is ready to start computation.

EXAMPLE

Figure 1 shows a 3-D velocity model with a 15-degree dipping interface separating
two velocity strata, vl = 14000 ft/s, v2 = 18000 ft/s. The discrete size of the model is
100x100x100. The x,y,z sampling intervals are 1.5 ft. The number of time steps is 1000.
The time step is 0.2 ms. The second order derivative of the Gaussian function is used for
the source (Alford et al, 1974). The computation time for one shot gather modeling is 2
hours and 10 minutes. In a cross-well survey, the receiver well is off the dip plane from
the source. Figure 2 is a common shot gather. Figure 3 shows the first break travel times
of direct arrival wave forms and the travel times calculalted by analytic ray tracing
(Sheriff and Geldart, 1980, p81-85). They match pretty well. Figure 4 shows the
amplitudes of the direct arrivals recorded in the upper layer against the theoretical 1/r
geometrical amplitude, where r is the propagation distance.

CONCLUSIONS

A 3-D finite-difference acoustic wave equation modeling code has been developed
and tested on network connected workstations. The travel times of the wave forms are
consistent with travel times obtained from analytic ray tracing. And the amplitude decays
correctly as in analytic results. The new absorbing boundary condition introduced in this
paper is shown to be effective, and it requires less than half of the boundary padding that
existing methods require. The new absorbing boundary condition can find good
applications, especially in the 3-D computation. The network parallel computations
make 3-D wave equation computations feasible at our group at the present time. This

modeling code can be readily transformed into a reverse-time migrartion code.
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Figure 1. A 3-D velocity model with a dipping interface. S is the source, R is the receiver
well. The receiver well is off the dip plane from the source.
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Figure 2. A common shot gather recorded in a 3-D cross-well simulation. The receiver
well is off the dip plane from the source. A very good absorbing effect is achieved by an
absorbing boundary padding width of 8 grid points, as described in the main text.
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Figure 3. Comparison of the first break travel times of the direct arrival wave forms and
the travel times calculated by analytic ray tracing. The match is very good.



Mo-Modeling H-8

08 0¢c Ol

(3}) urded

)%

I |
0.52 0.06 0.6
Amplitude
Figure 4. Comparison of the amplitude of the direct arrival wave forms (the jittered

curve) and the theoretical 1/r geometrical spreading amplitude (the smooth curve, which
is actually a hyperbola).



