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CALCULATION OF DIRECT ARRIVAL
TRAVELTIMES:
BY THE EIKONAL EQUATION

Le-Wei Mo

ABSTRACT

We present a traveltime calculation scheme based on the eikonal equation that
calculates the traveltimes of direct arrivals from a point source. In typical earth models,
critical refractions, diffractions and reflections are weak. Most of the energy radiated by
the source is contained in the direct arrivals. Direct arrivals are thus generally the most
energetic events in a time evolving wavefield. Our scheme successfully computes the
travel times of direct arrivals and is computationally efficient. The travel time maps are
then used to find ray paths from the receivers back to the source. The method is presented

in two dimensions.
INTRODUCTION

Wave propagation in medium, in high frequency asymptotics, can be described by the
WKBJ Green's function, which consists of traveltimes and amplitudes. The traveltimes
satisfy the eikonal equation that relates the gradient of the traveltimes to slowness of the
model. The amplitudes satisfy the transport equations. In this paper, we will address the
problem of solving the eikonal equation for direct arrival traveltimes. One method of
solving the eikonal equation is the method of characteristics (Cerveny et al., 1977
Zauderer, 1989). The ray equations are derived from the eikonal equation, whose
solutions are raypaths or the characteristic curves of the eikonal equation. Because the
raypaths are local, wave propagation along rays is thus intuitive and easy to understand.

This explains why the application of ray tracing is so popular and there has been a wealth
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of published information about it. However, ray tracing has its limitations and
disadvantages as pointed out by some authors (Vidale, 1988). Seismic depth migration,
and many other applications require traveltimes on a uniform grid. If these traveltimes are
computed by ray tracing, computation cost is immense. We would rather solve the
eikonal equation directly for traveltimes on a uniform grid.

Reshef and Kosloff (1986) formulated finite-difference scheme to solve the eikonal
equation for traveltimes on a uniform grid by extrapolating the depth gradient of
traveltimes. Vidale (1988, 1990) formulated a finite-difference scheme in Cartesian
coordinates that solves the eikonal equation progressing outward from an ““expanding
square” for traveltimes of first arriving waves from a point source. His scheme can
quickly fills in traveltimes in a uniform grid, and is by far the fastest method of
computing traveltime. However, Vidale's scheme encounters stability problems, e.g.,
calculating the square root of a negative number. Qin et al. (1992) proposed an alternate
of Vidale's scheme, i.e., progressing outward from an ““expanding wavefront." Qin et
al.'s scheme solves some of the stability problems of Vidale's algorithm. But searching
for the global minimum to start computation at each step makes their scheme
computation costly. Podvin and Lecomte (1991) dissected wave propagation in a cell
into all possible modes of transmission, diffraction and head waves, resulting in a stable
scheme of traveltime calculation. Van Trier and Symes (1991) formulated traveltime
calculation in polar coordinates by extrapolating the gradients of traveltimes. In their
schemes, traveltime computation has the contradiction of dense sampling near the source
and coarse sampling far away from the source. And mapping the slowness and traveltime
fields to and from polar coordinates requires additional computation cost. As a matter of
fact, efficiency of a traveltime computation scheme also depends on the computer
architecture. But Vidale's scheme requires the least number of algebraic operations.

The common shortcoming of the above finite-difference traveltime calculation
schemes is that they all explicitly or implicitly calculate traveltime of first arriving waves,
which may carry very little energy and are very weak, e.g., head waves and diffractions.
In this paper, we propose a traveltime calculation scheme that aims at calculating the
traveltimes of direct arrivals from a point source. In typical earth models, diffraction and
reflection effects are weak. Most of the energy radiated by the source is contained in the
direct arrivals. Direct arrivals are thus generally the most energetic events in a time
evolving wavefield. First, we analyze why we prefer direct arrival traveltimes to first

arrival traveltimes in tomography and migration imaging. Then we present our scheme of
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calculating direct arrival traveltimes. Finally, we show several numerical examples of
calculating direct arrival traveltimes. Our scheme successfully computes the traveltimes
of direct arrivals and is computationally efficient. The method is presented in two

dimensions.
WHY DIRECT ARRIVAL TRAVELTIMES

Figure 1(b) shows the snapshot wavefield at 0.16 seconds of a two layer velocity
model of Figure 1(a). The wavefield is simulated by the finite-difference solution to the
scalar wave equation. The source is at the upper left corner. The source wavelet is the
first derivative of the Gaussian function. For this model, head wave is generated and part
of its travel path is the boundary separating the slow and the fast medium. The head
wave is a boundary wave, and carries very little energy. Figure 1(c) is the common shot
gather or history wavefield of receivers at the right edge of Figure 1(b). From Figure
1(b) and (c), we see that the first arrival - head wave, travels ahead of the direct arrival
and is much weaker than the direct arrival. If the traveltimes of the head wave in the
slow medium were used for transmission traveltime tomography, the slow velocity
medium would be inverted as an erroneous high velocity medium. And reflections that
are used by migration to image velocity discontinuities are not generated by the first
arrival head wave. Thus traveltimes of the first arrival - head wave, are not suitable as
inputs for transmission traveltime tomography and migration imaging. In stead,
traveltimes of direct arrivals should be used. Overlay on Figure 1(b) and (c) are the
direct arrival traveltimes computed by our finite-difference scheme of solving the
eikonal equation. The direct arrival traveltimes closely match the first breaks of the

direct arrivals computed by finite-difference wave equation modeling.
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Figure 1. (a) is the 1-D velocity model. In (b), source is at the upper left corner.(c) is the
common shot gather with receivers at the right edge of (b). The label “hw” point to the
head wave event, which is much weaker than the primary reflection.
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RAY TRACING

Figure 2 is a two layer velocity model. The lower medium has higher velocity. By
ray tracing, the incidence ray at point C is in critical incidence and generates a creeping
ray along the boundary. The incidence rays to the left of point C, e.g., at point A, are in
pre-critical incidence and generate refracted waves in the lower medium. The incidence
rays to the right of point C, e.g., at point B, are in post-critical incidence, and total
reflection occurs. For post-critical incidence rays, the symptoms are the sine of the
refraction angle is greater than 1 and the incidence wavefront in the slow medium and the
creeping wavefront in the fast medium are discontinuous across the interface.
Transmission ray tracing can be performed for pre-critical incidence rays to the left of
point C. However, transmission ray tracing can not be performed for post-critical
incidence rays to the right of point C. That is, transmission ray tracing is performed only

until total reflection occurs, or until the sine of the refraction angle is greater than 1.

S

Vv
low

Post—critical ray

Vhigh

Pre~—critical ray

Figure 2. Incidence ray at point C is in critical incidence. Incidence ray at A (B) is in pre-
critical (post-critical) incidence.
SOLVING THE EIKONAL EQUATION

In a two dimensional medium, the traveltime of wave propagation is governed by the

eikonal equation, which relates the gradient of traveltimes to the slowness of the medium,
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where (x,z) is spatial coordinate, ¢ is traveltime, s(x,z) is slowness. We parameterize the
medium by square cells, with mesh spacing &, Figure 3. In a localized cell of Figure 3,
when traveltimes at three corners a, b and ¢ are known, the traveltime at the fourth corner
-- d can be found by finite-difference method based on the assumption of local plane
wave. We use the centered finite-difference (Vidale, 1988) to approximate the two
differential terms in equation (1)

o 1

aza—]’:(tb-l-td_ta—tc) (2)
and

o 1

:9'—2-=E};(l'c+td—l’a—tb) (3)

Substituting equations (2) and (3) into equation (1) gives

1, =1, +~/2(hs)’ = (t, - 1,)’ @

where % is mesh spacing, s is the slowness inside the cell with the grid indexes of corner
d, t, t,, t and t, are the traveltimes at the corners a, b, ¢ and d. Finite-differences in

equations (2) and (3) have second order of numerical accuracy.

c d

a b

Figure 3. In a square cell with constant slowness s, wave propagates from corner a to
corner d through corners b and c. Traveltime is larger at corner b than at corner a.
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Equation (4) can only be used for traveltime calculation at pre-critical incidence. At
post-critical incidence, the problem is to compute the square root of a negative number.
But setting the negative number inside the square root to zero (Vidale, 1988, 1990) does
not conform to physics. When geometrical ray theory is valid and the wavefronts are
continuous across an interface, the time difference between diagonal nodes of a square

cell is at most /2hs, where  is the mesh spacing of the cell and s is the slowness inside
the cell. Thus there are three equivalent symptoms of post-critical incidence, the sine of
the refraction angle being greater than 1, wavefronts being discontinuous across an
interface and the time difference between diagonal nodes of a square cell being greater
than ~/2hs Thus in solving the eikonal equation, the term inside the square root of
equation (4) is negative at post-critical incidence. The method to handle post-critical
incidence traveltime computation is depicted in Figure 4. If corners a and b lie in a
horizontal direction and wave travels from a to b, then corners a and b are in the slow
velocity medium, and corners ¢ and d are in the high velocity medium. In geometric ray
theory, the direct arrival to corner d is a creeping ray from corner ¢ to corner d. The
traveltime at corner d is then computed as

t,=t,+hs &)

If corners a and b lie in a vertical direction and wave travels froma to b, the direct arrival
to corner d is a creeping ray from corner b to corner d. The traveltime at corner d is then

computed as
t,;=t, +hs (6)

We have described the traveltime computation at a localized cell. Next, we describe the

arrangement of computation patterns.
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Figure 4: Depending on the horizontal and vertical orientations of the inner edge of a

square cell, the way to compute boundary creeping wave travel time is different.

COMPUTATION PATTERN

Traveltime computation is initialized by assuming straight ray paths in a constant
velocity square surrounding the source point. We found the radius of 54 to be a generally
good choice for the initialization square. Traveltime computations are then carried out by
expanding squares around the source point, as the computation layout in Figure 6. The
filled circles indicate grid points that have had their traveltimes calculated. We are to
use the traveltimes at the boundary ring of grid points, large filled circles, to compute
traveltimes of grid points at an outer ring, the hollow circles. The inductive scheme for
calculating a new ring of traveltimes is now described. Computations proceed
sequentially on the four sides, as shown in Figure 6 (Podvin and Lecomte, 1991). To
initialize computation at a side, the points in the inner side are examined in a loop from
one end to the other to locate the point with local minimum traveltime. Using one-sided
finite-difference stencil, the traveltime of the point outside the point with local minimum
traveltimeis computed as
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1, =1, +/(hs)* — (1, — 1) )

where ¢, is the time to be found, z, is the local minimum traveltime in the inside row, 1,
is the traveltime of the neighboring grid point at the source side, s is the slowness at point
c. However, if the term inside the square root of equation (7) is negative, the traveltime

at point ¢ is computed as
t. =t +hs (8)
At the next stage, equation (4) is applied to compute traveltimes.

In application of equation (4), the propagation direction of local plane wave does not
come in play. The traveltimes at the three corners a, b and d can also be used to compute
the traveltime at corner ¢ because of the assumption of local plane wave. Equations (5)
and (6) are then changed by computing the right hand side unknown traveltime from the
left hand side known traveltime. However, it is easy to program calculation from small

traveltimes to large traveltimes, i.e., in a upwind format.

Consider calculating traveltimes at side 1 (top) of Figure 6. Application of equation
(4) is carried out in three loops, as shown in Figure 5. The first loop progresses from the
left end to the lateral location of the source. Then the second loop progresses from the
right end to the left end. Finally the third loop progresses from the lateral location of the
source to the right end. During each loop, calculation starts at each local minimum
traveltime point and progresses until a local maximum traveltime point is reached.

Similar traveltime calculations are carried out sequentially for the other three sides.



Mo - Eikonal G-10

3

S G OIS MM NN D SRS S S e -

~mil SN NN SIS S S SED EED EEN NS GIW O SRR I BN SN BN S S S Y W S S

1

A I D G N W S W

O000O0OOOLOOOOOOOOO

S
O

Figure 5: Travel time compuation at an edge is carried out in three separate loops, as
shown, loop 1, 2 and 3.

As shown in Figure 6, the start and end point indices of the computation layouts are
not the same for the fours edge. Thus, the computed travel times show artificial
anisotropy even for isotropic velocity models. To solve this problem, we need to rotate
the first of the four edges to start computation. For example, in Figure 6 we perform
computation sequentially at the top, right, bottom and left edges, then at the next ring we
perform computation sequentially at the right, bottom, left and top edges.

Figure 6. S is the source grid point. Traveltime computations proceed sequentially on the
four sides.
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EXAMPLE

Figure 7 shows in the grey-scale background a complicated 1-D velocity model, it
also shows the traveltime contours of direct arrivals with the source at the upper left
corner. All the possible direct arrivals in 1-D medium are correctly modeled. It has
transmission from high velocity medium to low velocity medium, transmission and
creeping boundary wave from low velocity medium to high velocity medium, and
overturning waves in medium with linear increasing velocities. Figure 8 overlies a snap-
shot wavefield computed by finite-difference wave equation modeling with the
corresponding direct arrival traveltimes computed by our eikonal equation solver. There

is a close match between the traveltimes and the waveforms.

Figure 9 shows a 2-D velocity model and the traveltime contours of direct arrivals.
Figure 10 shows a wave equation modeling snap-shot wavefield and the corresponding
direct arrival traveltime contour. The transmissions from high velocity medium to low
velocity medium, and from low velocity medium to high velocity medium are correctly
described. However, there are some jitters on the traveltime contours along the 45-
degree direction from the source, which is owing to shifting computation from one

square-ring to another, but the wavefront expands circularly from the source.
A POSTERIORI RAY TRACING

After travel times have been computed for all the grid nodes, ray path from any
receiver grid point back to the source can be traced by following the steepest descent
direction through the travel time field. The ray paths are guaranteed to end at the source
point as the source point has the smallest travel time, zero. The gradient direction in a

cell are computed by using the following finite-difference equations and using the labels

in Figure 3:
ot 1
== —E(tb g =1, ~1) )
and
ot 2 ot 2 ,
8—z= s° - ™ signum(t, +tg —t, —1tp) . (10)
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Equation (9) is different from equation (2), because in ray tracing we are following the
backward direction of the ray path. The z derivative computed in the above equation
(10) guarantees that pre-critical, critical, and post-critical ray paths are correctly handled.

Figure 11 shows the ray paths calculated on the McElroy near offset travel time
tomogram. In this case, thousands of ray paths can be computed in two or three minutes.
I just display 10 of them to reduce the size of the figure.

DISCUSSIONS

In this traveltime calculation scheme, the Velocity model is parameterized as constant
velocity cells. For one-dimensional velocity medium, it is perfect. For two-dimensional
velocity medium, dipping interfaces are represented by stairways. The other source of
inaccuracy is the computation square front differing from the actual circular expanding
wavefront.

As seen in Figures 1, 8 and 10, the calculated direct arrival traveltimes closely match
the waveforms of wave equation modeling. We are confident that the direct arrival
traveltimes calculated by our scheme are accurate up to the spatial and temporal sampling

requirements in traveltime tomography and seismic migration.

The computational cost of this scheme at each grid point is to evaluate equation (4).
For a model of realistic size, say 250,000 grid points, computational time is just a few
seconds at a present workstation with computation speed of Mflops/s. Also traveltime
computations are carried out in a few well defined loops as explained in the section of
computation pattern, this traveltime computation scheme can easily put into a vector
computer.

CONCLUSIONS

Direct arrivals are usually the most energetic events in a time evolving wavefield.
Traveltimes of direct arrivals are what are used in transmission traveltime tomography
and migration imaging. Our new scheme of finite-difference solving the eikonal equation
successfully computes the traveltimes of direct arriving waves. And the computed

traveltimes closely match the waveforms from finite-difference wave equation modeling.
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By incorporating the wave propagation phenomena in the process of travel time
computation, we are guaranteed that the method is stable. And by circulating the order of
travel time computations at the four edges of the computation expanding ring, we are
guaranteed that there is no artificial anisotropy in the computed travel time maps. The
aposteriori ray tracing methods can compute pre-critcal, critical, and post-critical
incidence ray paths. The methods presented can efficiently compute travel time maps
and direct arrival ray paths, they can be applied in Kirchhoff depth migration, travel time

tomography, and interactive seismic data processing.
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Figure 7: Shown at the grey-scale background is a 1-D velocity model. The contours are
the direct arrival traveltimes from a source at the upper left corner.
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Figure 8: Comparison of the calculated direct arrival traveltimes and the snap-shot
wavefields calculated by finite-difference wave equation modeling.
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Figure 9: Shown at the grey-scale background is a 2-D velocity model. The contours are

the direct arrival traveltimes from a source at the center of the model.
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Figure 10: Comparison of the calculated direct arrival traveltimes and the snap-shot

wavefields calculated by finite-difference wave equation modeling.
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Figure 11: A fan of direct arrival ray paths calculated by aposteriori ray tracing. The
model is the McElroy near offset travel time tomogram. Thousands of ray paths can be
computed in a minute. I display only 10 ray paths to reduce the size of the figure.



