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DIFFERENTIAL
ACOUSTIC RESONANCE SPECTROSCOPY

Jerry M. Harris

ABSTRACT

A new method of measuring the velocity and Q of sound, i.e., compressional waves,
in rocks is proposed. The new method, called Differential Acoustic Resonance
Spectroscopy (DARS), is based on measuring the change in resonant frequencies of a
cavity perturbed by the introduction of a small sample of rock. The cavity's fundamental
resonance can be used to measure acoustic velocity and Q over a broad band of
frequencies, including the low frequency seismic band, e.g., 100s to 1000s of Hz. The
dispersion of multiple resonances can be used to accurately estimate other properties, e.g.,
density, of the rock sample. Acoustic spectroscopy (ARS) is an established methodology
that is used by the National Bureau of Standards to measure the velocity and Q of fluids.
For rock measurements, DARS is readily adapted to high pressures and high temperatures
in order to simulate in situ conditions. Moreover, DARS can be used to estimate the
acoustic properties of samples of unconsolidated sediments, samples of irregular shape
such as well cuttings, and small samples (low frequencies). In this paper I present the

theoretical basis for the DARS measurement.
INTRODUCTION

The velocity of sound in rocks and fluids is important diagnostic information of a
variety of important physical properties of materials. Applications in the Earth sciences
abound from the basic sciences (e.g., development of equations of state and motion) to
the commercial (e.g., exploration, development and monitoring of hydrocarbon
reservoirs). A problem that has bothered the petroleum community for years is the large
discrepancy in frequency used in laboratory measurements (e.g., 1 MHz) and field
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measurements (i.e., 10 Hz - 10 KHz). Issues of frequency dispersion are often raised but
most often go unresolved.

In order to better understand frequency dispersion and to aid with the
interpretation of field data, rock physicists have developed numerous theoretical and
empirical models for "homogeneous" porous rocks with fluids. Many of these models
have been conditioned to high frequency lab data, but may have been inappropriately
used to interpret low frequency field data. Why don't geophysicists make "routine low
frequency" measurements of the velocity of sound in rocks and fluids. The problem is
largely due to availability of small samples only. The most popular laboratory technique
is the time of flight of waves through acoustically large samples. When the sample is only
a few centimeters long, this demands wavelengths of millimeters or megahertz
frequencies. Low frequency measurements are possible (e.g. the resonant bar) but are
more difficult, expensive, and measure fundamentally different properties (i.e.,
extensional wave velocity vs. compressional wave velocity). Issues of heterogeneity and
sampling are also important but are not the subject of this paper. What is needed is a
broadband and low frequency measurement that can be applied on dimensionally small
samples of rocks.

Cavity resonators have been shown to provide a remarkably accurate means of
measuring the velocity of sound in fluids (Mehl and Moldover, 1981). The idea is simple.
The resonant frequency of a cavity is dependent on the velocity of sound in the contained
fluid. The frequency can be measured with an accuracy of one part in a million and the
velocity of sound easily determined to an accuracy better than 0.05%. Measurements with
precision of 0.003% have been reported. Furthermore, the velocity is easily measured as a
function temperature and pressure. The measurement is routinely made at a few kilohertz,
e.g., 4 KHz, in the laboratory. This technique has been called Acoustic Resonance
Spectroscopy - ARS.

In this paper, I propose a variation on ARS. First measure the resonant frequency
of the fluid-filled cavity. Next, introduce a small sample of the test material, i.e., rock,
into the cavity and measure the change in frequency. Through a combination of
calibration and modeling, determine the velocity of the sample from the change in
frequency. I call this method Differential Acoustic Resonance Spectroscopy or DARS.
Accurate velocity measurements can be measure for acoustically small samples at
frequencies as low as a few hundred Hertz in the laboratory, i.e., at seismic frequencies.
As with ARS, the velocity can be determined at different temperatures and pressures.

Perhaps more importantly, small samples with irregular shapes can be measured. In
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summary, DARS is capable of measuring the velocity of compressional waves of rocks

under the following conditions:

(1) Low frequencies - 100's of Hertz

(2) Broad measurement bandwidth - 10,000's of Hertz

(3) narrow band measurement at a particular center frequency, e.g., 1200 Hz
(2) Small samples, also implying low frequencies

(3) Samples with irregular shapes, such as borehole cuttings

All that has been said about velocity can also be said about attenuation or Q. ARS
provides an accurate measurement of the Q of the fluid, and through DARS the Q of a
rock sample as well.

In this paper 1 present the methodology of Differential Acoustic Resonant
Spectroscopy and some preliminary theoretical modeling. I reiterate that DARS is simple
yet a very sophisticated method for measuring the acoustic properties of fluids and rocks.
Through a combination of modeling and calibration, accurate and precise measurements
of velocity and Q can be made fast and with low costs. The development of the technique
a systematic development effort that will probably take 3-5 years. Nevertheless, useful
and accurate results can be made during the first year of study if sufficient funding is
available. This is not an STP level activity, but will require major support, by possibly a

combination of government and private sources.
DIFFERENTIAL ACOUSTIC RESONANCE SPECTROSCOPY

The method is illustrated in Figures 1 and 2. The unperturbed resonant frequency f,
of a cavity resonator is known from calibrated measurements. The enclosed fluid can be a
gas or liquid, depending on the desired frequency of operation as discussed below. The
cavity should be of simple shape to facilitate accurate description of the acoustic fields,
but any shape can be used if properly calibrated in the laboratory. The immediately
obvious shapes are the sphere and the right circular cylinder illustrated in Figure 1. The
low order modes of the cavity are "long wavelength" modes. that is, they represent
standing waves in the cavity over a narrow band of frequencies, e.g., high Q. In fact the Q
of a gas filled cavity often exceeds 1000, so very accurate measurement of resonant
frequency is easily made using conventional techniques such as electronic frequency
counters. If a more accurate measurement is required, phase quadrature techniques yield

frequency accuracies to 1077.
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Figure 1. A closed fluid-filled cavity with rigid walls has a spectrum
of high Q resonances fy,f,f2 -+ fn-

When a small sample of rock is placed in the cavity as shown in Figure 2, the
resonant frequency is perturbed to f, + Af,. We'll see later that small means percentage
by volume, e.g., <1%. The location of the sample is also important.

Because the sample is small compared to the wavelength, it can be thought that the
sample perturbs the "average" velocity of the media, but this idea is too simplistic. We
will see in the theory section how the perturbation occurs.

Figure 2. The fluid-filled cavity with a test sample has perturbed
resonances f, + Af o, f; + Af e f + Af i
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For example, for long and thin right circular cylinders, the resonant frequency f, of
the first longitudinal mode is dependent simply on the length of the cylinder L and the
velocity of the enclosed fluid c, i.e., f, =c/2L. The frequency can be adjusted by
changing either the length or the fluid. There is a variety of well characterized liquids
with velocities of the order of 1000 m/s to 1500 m/s, thus a cylinder 0.5 m long can be
easily made to resonate near 1000 - 1500 Hz. If the liquid is replaced by a gas '(e.g.,
velocities approximately 300 m/s), the same 0.5 m cavity resonates near 300 Hz. It is
possible to synthesize fluids with designer velocities ranging by more than a factor of

two.
AN EMPTY SPHERICAL CAVITY WITH RIGID WALLS

In this section I'll review the model for the spherical resonator. We first consider
oscillations of a lossless fluid in a cavity with rigid walls without the sample. The
spherical resonator with a test sample at its center may be the ideal choice for DARS. The
geometry is illustrated in Figure 3. A spherical cavity of radius a, volume Vg and inside
surface area Sg. The resonator is fully filled fluid with wave velocity of ¢, The acoustic
wave fields for the spherical cavity can be described analytically. This simple model for
the real cavity that originally treated by Rayleigh in the 1800's. According to Bureau of
Standards measurements, this simple model is sufficient for obtaining the velocity of

sound in the fluid with an accuracy of 0.02%.

Fig. 3. A rigid spherical cavity resonator

with a spherical perturbation at its center.
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The time-harmonic acoustic fields for waves may be described by the velocity

otential @(r)e™ , where ¢(r)is a solution of the reduced wave equation
p ¢ ¢ q

2

(V2 + %)(p(r) —0 within R. (1)
(1]
2 0
IH‘P dv =VII E(P(r)=0 onS 2)

The acoustic particle velocity u(r), pressure p(r), and density p are related to the
potential by

u(ry=Veo(r) (3)
and
p(r)=—iopo(r) 4)

In spherical coordinates the solutions of (1) take the form of spherical Bessel
functions of nth order j,(kr) and spherical harmonics. For the moment we are concerned
with radial modes. The radial motion R(r) satisfies an eigenvalue equation whose
eigenvalues v, are determined by requiring that the normal component of velocity of the
"I" mode vanishes at the rigid walls at r=a, i.e.,

d .
-J;J,(kr) =0, r=a. &)

The eigenvalue index n is used to delineate successive roots of equation (5) for the
Ith radial mode. Only the I=0 mode for which j,(kr)=sin(kr)/kr is of immediate
interest; therefore equation (5) reduces to

tan(ka) = ka. (6)

From the eigenvalues v,,, we immediately find the eigenfrequencies
f, =¢,V,o / (2ma). Eigenfrequencies for the first mode (n=1) in a laboratory-sized
cavity of different dimensions filled with water are listed in Table I below. When the

cavity dimensions are known, the solution given by equation (6) for a rigid cavity is
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accurate enough to determine the velocity of the fluid to within 0.02% in a real and

practical cavity.

a(m) Freq. (Hz)
0.05 21,454
0.10 10,727
0.25 4,291
0.50 2,145
1.00 1,073

Table I. Eigenfrequencies of a spherical cavity of
radius g filled with water (1500 m/s) for the first
radial mode with eigenvalue V,, = 4.493409.

A RIGID CAVITY CONTAINING A SMALL ROCK SAMPLE

The effect of a small sample of rock or other material inside the cavity can be
analyzed by considering scattering by the object. The acoustic properties of the sample
are expressed in terms of its density dp and compressibility dx relative to the fluid. The
sample occupies a volume V1. In the absence of the sample, the solutions of the wave
equation for the eigenfunctions ¢, and eigenvalues v,, are given above.

If we assume that the sample volume is small compared to the cavity volume, i.e.,
V1<< V, a pair of integral equations for the new eigenfunctions v, and eigenvalues 7,
can be found in terms of the unperturbed eigenfunctions ¢, and eigenvalues Vv,, using the

calculus of variations:

A
My = Vi == [[[K*0xg} + SplV o dr. )
\ %4

”j K*5x@,0, + 6pVo,Vodr

ViD= o+ AL e
k=l k 1

©.(r). (8)

where Ag, is the modified wavefield inside the rock sample. The eigenvalue
estimation can be further simplified when the sample is very small and by writing

equation (7) in terms of the velocity:
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k2V1 2.2,,2

KV,
T’ZI = V:t _WO) Colty >5p-— 1

T (9})ox, V,<< A, 9)

where u, = (1/kpc,)V@, is the velocity and (a®)=(1/V,)[[[ o%dr is the RMS field
(velocity and pressure) inside the sample. Equation (9) is valu&'for small samples whose
maximum linear dimension is less than about one-third wavelength.

DISCUSSION

From equation (9), we see that the change in the eigenvectors and eigenfrequencies is
proportional to the ratio of the volume of the sample to the volume of the cavity, (V; / V.
A part of the change is proportional to the perturbation in the density op=(p,—p)/p,
times the mean-square velocity of the unperturbed wavefield. A second part of the change
is proportional to the perturbation in the compressibility éx =(k; — k)/x times the
mean square of the pressure at the sample.

According to equation (9), if the rock sample is massive but incompressible
(p, > p. K, < k), the first term in (9) decreases the frequency because of the sample's
immobility causing the fluid near it to move faster, thus increasing the effective mass of
the standing wave. The second term in (9) increases the frequency of resonance because
the sample is stiffer than the displaced fluid and increases the effective stiffness of the
wave.

Furthermore, we see that the change in frequency depends on the location of the
sample. If placed near a pressure minimum where the velocity is high (i.e., pcu > ¢) the
frequency generally decreases. If the sample is placed near a pressure maximum, the
frequency increases. This situation is similar to the electromagnetic case where the effect
of conducting object depends on the magnitude of the electric or magnetic fields at the
location on of the object.

The change in frequency depends on the location of the sample relative to the maxs
and mins of the pressure and velocity fields. Therefore, the sample will disperse the
frequencies of different modes because each mode has a different spatial structure. This
multi-mode dispersion will be useful for estimating multiple properties of the sample,
such as density and compressibility simultaneously.

Finnaly I point out that the model developed here can be applied to porous media or
attenuating media as well. In principle this provides a method for estimating the
permeability of the sample.



Harris - Acoustic Spectroscopy F-9

. THE GENERAL ELASTIC RESONATOR WITH A SMALL PERTURBATION

For the general resonator with an elastic sample of arbitrary shape we may apply the
Boltzmann-Ehrenfest adiabatic invariant theorem which states that if the state of any
[ oscillating system is changed adiabatically, the ratio of the time-average stored energy

ey

P—

E to the resonant frequency ® remains invariant, i.e.,

vz ey

= const. (10)

e |t

An adiabatic change is defined as a perturbation which does not cause a change from
the unperturbed mode to an adjacent mode. Usually this means that the sample
(perturbation) is small. When a sample is placed in a cavity the energy change is SE , and

{f the resonant frequency shift 6@ is related to 6F :
.

_ éw OF
. w, E,

The application of this theorem to an electromagnetic cavity resonator is discussed by

Johnson (1965). In acoustics, the energy is

‘- E=T-U, (12)
2

L where T is the kinetic energy and U is the potential energy. We may express 7 as

B 1

L T= Emv(puiu,.)dv , (13)
£

Lo and U as

l U= ! dv 14
. = Il (oye)dv, (14)
L

where u;, 0; and g; are displacement, stress and strain components, respectively. We

may use the boundary integral equation

rr N ’ I i r

[N

O
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u,(r) = uf (r) + [[o [u;(r )gcij(r, r')—Gy(r, r )—a—nuj(r )1dS (15)

to find the wave field. Here, Gj; is the Green's function, S’ is the surface of the sample,
and u! is the unperturbed field. In general we need to use numerical techniques to solve
equation (15). After finding the displacement u; we may calculate the strain &; and stress
o;; in Cartesian coordinates from the equation

1 auj au-
g =—(—+—+ 16
v 2(8xi axj) (16)
and
0; = Ad;;€ +2UUE;. (17)

Averaging the energy obtained from equations (12)~(14) over a period T we have

B
E —F_([E(t)dt. (18)

We need to calculate the energy for the unperturbed and the perturbed wave fields in
order to find the change SE . Then from equation (2) we get

éw=w,0E / E,. (19)

The change in the resonant frequency, d®, is a function of elastic parameters A, 1, P.
By forward simulation we can understand how the elastic parameters affect the
frequency.

SUMMARY

I have presented the general idea of Differential Acoustic Resonance Spectroscopy
for measuring the acoustical properties of rocks at low frequencies. The theory indicates
that DARS can be an accurate and precise technique when calibrated. Such calibration is
required of all existing techniques as well, e.g. time of flight measurements. A

considerable amount of additional theoretical work and simulation is required.
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Preliminary laboratory results (not reported here) indicate that the frequency shift is

easily observed in the laboratory.
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