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ABSTRACT

To overcome the difficulty resulting from a strongly non-uniform medium, a
variable background is chosen to maintain a weak contrast between the scatterers and the
background so that the single scattering approximation is still valid. Assuming that the
amplitude variation of the wave field, due to propagation, is less than the phases, the Green's
function of variable background can be treated as the Green's function associated with a
constant reference background modified by a phase distortion function. The spectrum of
the scattering field is expressed as a planar integral of harmonic oscillators. Each oscillator
possesses an amplitude consisting of the scattering potential and a nonlinear phase. The
phase factor is further expanded into Fourier series. The inverse Fourier transform applied
to the filtered spectrum of the measurements is equivalently applied to each harmonic
component in the series which results in multiscale images. The complete image is

obtained, via Mobius transform, with those multiscale images.
INTRODUCTION

The image reconstructed with the ray tomography has the resolution only on the
scale of first Fresnel zone even for full aperture. When a higher resolution result is
required, such as in reservoir imaging, other wave phenomena should also be utilized in
addition to transmission traveltimes. The resolution of the reconstruction with diffraction
tomography is about one wavelength. The existing diffraction tomographic inversions are
mainly based on plane wave expansion and Fourier transform techniques for uniform
background medium (Devaney, 1982, Harris, 1987, Wu and Toksoz, 1987). Such methods
are simple to implement but do not work well when the background medium is strongly
non-uniform. One way to overcome the problem of the strong inhomogeneity of the
medium is to apply the distorted Born approximation (Devaney, et al. 1983). This consists
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of adopting a variable background to maintain a weak contrast between the perturbation and
the background medium. However, under the distorted Born approximation, the difficulty is
not only how to find the Green’s function associated with the variable background but also
the Green’s function generally has little use for utilizing Fourier transform techniques to
reconstruct images. This is why most proposed algorithms dealing with variable
background are restricted to some special case. For example, the case of 1-D medium in
which the problem is greatly simplified (Dickens, 1992, Huan, 1992).

By introducing a reference medium and the WKBIJ Green’s functions, and
assuming the amplitude variations due to the variation of the background is less the phases,
we reformulate the inverse scattering problem of an arbitrary 2-D host medium such that the
spectrum of the scattered field is expressed as a planar integral of harmonic oscillators. The
oscillator possesses an amplitude which consists of the scattering potential and a nonlinear
phase. In order to utilize Fourier transform reconstruction techniques, the phase factor is
expanded into Fourier series. The inverse Fourier transform applied to the spectrum of the
measurements is equivalently applied to each harmonic component in the series which leads
to the construction of the images with different scales. The complete image is combined, via
Mobius inversion, from those components with different scales. The reconstruction
algorithm is essentially the same as that of Fourier diffraction tomography for a constant
host medium, except that we first construct the images with different scales and then

combine them together.

SPECTRUM OF SCATTERED FIELD
FROM A HARMONIC OSCILLATOR MODEL

For a variable background medium, the scattered field generated by an
inhomogeneity perturbed over a variable background can be written as

u(s,8)= [ o(ru(r,s)G(g.r)dr (1)

where G is the Green’s function of the background. With distorted Born approximation,

the equation (1) is liberalized as

u(s,8) = [ o(r)G(r,5)G(g.r)dr @)
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Generally, it is difficult to find the Green's G function associated with the variable
background. By introducing the Green’s functions of a constant reference background, we

can rewrite equation (2) as

G(r,5)G(g,r)

G(r.9)Gle.r) G(r,s)G(g,r)dr, 3)

u*(s,8)= | o(r)

where G(r,s) and G(g,r) are the Green's functions associating with the reference
G(r,s)é(g,r)

with corresponding
G(r,s)G(g,r)

background. By replacing the Green’s functions in

WKBJ forms,

G(r,r )= A(r,r )e*"") and Glrr)=r— ! 'Ie—”‘"'-"',
r—r

and neglecting the variation of the amplitude due to the variation of the background, i.e.,

assuming

A(r,s) ~1, and A(g,r) ~1
Ir—sl fg—rl

2

we have

G(r.9)G(&.r) _ o

G(r,s)G(g.7) @

where ¢(r) is the phase distortion resulting from the “variation” of the background

medium. Substituting (4) into equation (3) leads to

u“(s,8) = [ o(e®*VG(r,5)G(g,r)dr. ©)

We can see that equation (5) is the same as in the case of the uniform background medium,
except that the integrand is modified by a phase distortion function. In a 2-D medium with

a line source, the Green’s function is the Hankel function of first kind and zero order, i.e.,

G(r,r')= iHél)(lzlr—r' D.
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Taking the Fourier transform of equation (5) over s and g , which is decomposing the

cylindrical wave into plane waves, we have

usc (ks,kg )4 yx,}/ge—i(yxd_‘.+'}’gdg) — J. O(r)e—ik(r)-rdr, (6)

where dy, - d, is the separation between source and receiver well, y, =+/k>—k? and

Ve =k>—k . k=(k,k,)=(y, 7.k +k,) is the wave vector in the reference medium.
Av(r)

The resultant wave vector k(r) =k (1— ), where Av(r) is the variation on the top of the

reference medium V. The equation (6) states that the spectrum of the scattered field is

—ik(r)r

generated equivalently by an “harmonic oscillator” o(r)e located at each image point.

The oscillator possesses the amplitude o(r) and the nonlinear phase ¢(r) =k(r)-r.

RECONSTRUCTION WITH MULTISCALE
FOURIER TRANSFORMS

Equation (6) is not a conventional Fourier type integral, since the resultant wave
vector k(r) is spatially variant. We can not directly reconstruct the scattering potential
function o(r) via the inverse Fourier transform. One way to overcome this difficulty is to
expand phase function p(x,z)=e™®?**:®94 intg a Fourier series with k as the
fundamental wave number, and then treat each harmonic separately. Notice that p(x,z) is
defined in the rectangle region 0<x< L, 0<z< H. If we extend p(x,z) into a periodic
odd function with periods of L and H in the horizontal and vertical directions respectively,

ie.,
p(x,2) 0<x<L, 0<z<H
—p(—x,2 —-L<x<0,0<z<H
odd(x,5)=1 P
_P(x,_z) OS.XSL, —H<z<0
p(-x,—z7) ~—-L<x<0, —H<z<0,
and

odd(x+2L,z)=odd(x,z7)
odd(x,z+2H) = odd(x,z), X,2 € (-00,0)

then the finite sine transform of odd(x,z) can be written as



Wang - Diffraction Tomography S-5

4 Lo

P(m,n) = —_” p(x,z)sin(k mx)sin(k,nz)dxdz ,
LxH:yy

where L and H are the width and height of the image domain respectively. With the above

definitions, we can expand p(x,z) as

p(x,2) = i P(m,n)sin(k,mx)sin(k_nz). (7)

m,n=1

Substituting expansion (7) into equation (6) and interchanging the order of the summation

and integration we obtain

=iy d;+Ygdy) _
u“(ks,kg)4ysyge 8787 =

> _ _ 8
ZP(m,n)_[ o(x,z)sin(k mx)sin(knz)}dxdz. ®

m,n=1

From equation (8) we can see that the filtered spectrum of the measurement on the left side
of the equation is related to a series of weighted multiresolution potential spectra on the
right side. Taking the inverse Fourier transform to both sides of equation (8) we obtain

FT7 {w (k,. k)47, Y, e " 71Tk ko k) =
- _ _ —x —7 > 9)
O LA Y B 4 Y A S

—4 mn m n m n m n

n=1

where J(k Jkooky) is the Jacobean transformation from (EX,EZ) to (k,,k,). Notice that the

average value of the image is not computed correctly by the finite algorithm, since it will
evaluate the spectrum at the origin as zero. The D.C. component of the image is restored by
computing it directly form the data as 4u*(0,0)e ** / L x H.

In the case of a constant background medium, equation (9) would be the
reconstructed scattering potential function. Now, after the inverse Fourier transform is
applied to equation (9), instead of the potential function itself, a summation of multiscale
components of the potential function is reconstructed. The role of the harmonic indexes m
and n is that of the scale lengths in the Wavelet transforms. Consequently, the component

0(1,_2_) is an image with a specific scale. With large scale length, i.e., small m and n,
m n
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o(i,i) provides a global view, while small scales, i.e., large m and n, 0(_{6_,_Z_) provide
mn mn

increasingly detailed views of smaller subsets of the image. The remaining problem is to

invert equation (9), i.e., to combine those multiscale images into a complete image.
MULTISCALE INVERSION VIA MOBIUS TRANSFORM

We want to invert the scattering potential function o(x,z) using equation (9), which

can be rewritten as

oo

d(x)=— D %o(i,i), (10)

m,n=1

where d(x,z) = FT ' {u*(k, .k )4y,v,e”" """ lJ(K;k,.k,)l}. Losing no generality, we
have assumed o(x,z) = —o(—x,z) = —o(x,—z) = o(—x,—z) in equation (9). According to
Mobius inversion theorem (Hardy, 1979, Chen, N. 1989), if

F@=Y, /) (an
n=1
then
=Y BOIFC), (12)
n=1

where Mobius function

1 n=1
u(n) =41’ n include r distinct prime factors
0 otherwise.

Applying Mobius transform (12) to equation (10) we obtain the complete image of the
scattering potential

_ A pmpm)  x oz
O(x’z)_P(l,l)m,zn;‘l mn d(m’n). (13)
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const.
Note that

. Therefore, the series (13) is absolutely convergent.

d(i,i)/mn <
m n

mn

Equation (13) can be explicitly written as

z plmpn)

m,n=1 mn (14)

J. usc(ks,kg)4,yx,yge-i(7:d;+7gdg)|J(E; k )le e ; dksdkg

o(x2) = P(1 D

X
m

which states that the potential function is reconstructed by summing a series of multiscale
inverse Fourier transforms of the filtered spectra of the measurement.

It is convenient to use u¥(kg,kg, a/n) instead of u*“(nks,nkg, @) in the computation.
It can be show that u5¢( ks,kg, an) = us¢(. nks,nkg, ). Thus,

o(x,2) = P(11 Z ,u(m)u(n)
)mn =1 mn , (15)
n[ w (nk, k)47, 7,e T T IEsnk ke dk d,
_ pmp®)
9= 5 2 mn
and : (16)

n n —i(Pd — ik, Z+k,2)
nJ‘ U ks,kg,2)47’s7’ge (Y:d:+7gdg)|J(k;ks,kg)|e k m k dksdkg
n

CONCLUSIONS

We have presented a formulation of diffraction tomography for variable background
medium which relates the filtered spectrum of the measurement to multiscale spectra of the
scattering potential resulting from the Fourier expansion of the spatially variant phase
function. The potential function is recovered from multiscale components via Mobius
inversion. As well as the applicability to strongly non-uniform medium, the method can be
easily implemented and is computationally efficient, since the algorithm is similar to what is

used in a constant background medium.
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