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ABSTRACT

In this paper, we present wavefield tomography methods based on asymptotic ray
theory. We introduce the concept of the wavefield tomography operator and compare it
with traditional tomography methods. When the scattered fields, after being processed by
a correlation procedure, are operated on with the tomography operator, we get an image
of the velocity perturbation relative to a velocity background. If instead we input
separated up-going and down-going reflection data into our tomography operator, we can
get an image of reflectivity. With this general idea, we can develop and use tomographic
reconstruction operators and algorithms not only for velocity inversion, but also for
migration imaging. In the last part of this paper, we present simulation results and an
example using real crosswell reflection field data. The results confirm that the algorithms

are useful for crosswell imaging.

INTRODUCTION

Wave equation tomography is increasingly finding a place in crosswell data
processing. Wave equation tomography methods, based on full wave theory, can be
implemented in the time domain or in the frequency domain. In frequency domain, there
1s a very large matrix that occupies extremely large computer memory to be inverted
(Harris and Yin, 1994). In the time domain, forward and back propagation computations
cost too much CPU time (Tarantola, 1984) and also occupy significant computer
memory. In addition, when the frequency is very high, we must sample the imaging
region into many pixels or nodes and calculate the fields and Green's functions at this fine
scale. To avoid these problems, wave equation inversion methods using asymptotic ray
theory have been introduced (Beylkin, 1985, Miller, et. al., 1987, Yin, 1993).
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The methods described herein are based on the full wave theory. We use a Ly
norm objective function derived for multiple frequencies for the observed wavefield
minus the calculated wavefield. Then, we can use a Frechét derivative of this objective
function to update the velocity relative to a background medium as in the paper by Harris
and Yin (1994). Due to some disadvantages of full wave theory tomography as we
mentioned above, we prefer to use asymptotic ray theory which is not only suitable for
velocity inversion but also for migration imaging. With ray theory, the phase of the
Green's function in the background medium can be calculated accurately and we do not
need to compute the fields many pixel locations or nodes, e.g. as with moment methods
and finite difference methods. This advantage is very important in field data applications.

By applying the geometrical optical approximation and inverse Fourier transform
to the Frechét derivative of our L) norm objective function, we obtain the Frechét
derivative represented by wavefield data in time domain and use this function for velocity
inversion. In order to understand the physical meaning of this function for inversion, we
compare the result with traditional traveltime tomography. We find that the Frechét
derivative corresponds to simple backprojection tomography (BPT) as it is applied to
traveltime data (Herman, 1980). In traveltime BPT, traveltime data are backprojected
into the image region along raypaths, but in this case, the scattering data are
backprojected into the image region along isochronic lines. We call this procedure the
tomographic operator, and accordingly the Frechét derivative is the local linearized BPT
tomographic wavefield operator. In this way, we can develop many wavefield

tomography operators for inversion. In this paper, we consider only the SIRT operator.

In addition, from the Fréchét derivative, we can see that a correlation process on

the wavefield data is required. This is one of the main characteristics in these methods.
If we omit this correlation term, we must separate up-going and down-going wave before
the tomographic operator is applied to the wavefield. Otherwise, the image will be
contain many artifacts because of mispositioning of waveforms at the boundaries of
heterogeneities.

We find that if we input the scattering field data into our tomography operators,
we can get velocity perturbation image; therefore, we call this procedure wavefield
tomography. If we input the separated up-going and down-going reflection data, or
reflection data after being processed by a correlation procedure, we obtain as image
which is similar to that obtained from migration; therefore, we call this image
tomographic migration. We applied our algorithms to synthetic data and field crosswell

data. The results show that these methods are extremely useful.
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WAVEFIELD TOMOGRAPHY AND TOMOGRAPHIC MIGRATION

The goal of the non-linear wave equation tomography is to minimize the Ly norm

objective function:
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this background medium is u‘(r)=S(w) i° , where S(w) is the spectrum of the source

function. The Frechét derivative can be derived as
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We have implemented the above method as in the paper (Harris and Yin, 1994).
However, the total field i°(r,r,, ®) must be evaluated for each frequency. Because our
method is derived in the frequency domain, it is non-local in space and thus requires
much computer time and memory to implement. To avoid these computation problems,
we applied geometrical optical and the Born approximation to implement our method in
the time domain. In the time domain, the finite speed of propagation of waves is used to
restrict the domain of influence at an image point.

Using geometrical optics, the Born approximation, and the inverse Fourier

transform, the above expression for Frechét derivative can be written as
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where a(r,,r,r,) =A(r,r)ATr,), 7(r,,r,r,)=T(r,r)+T(rr,), and A and T satisfy the

transport and eikonal equations, respectively. Using the geometrical optics

approximation, we have

E(rs,rg,t) = J m(r )a(r,,r ,r)6(t - 7(r,,r ,r,)dr’ (8)

\4
From equations (5)-(6), we can see that a correlation procedure must be applied to
the source function in wavefield tomography in order to obtain a zero phase time function
W(t)=S(—t)*S(t); therefore, the convolution between W(t) and @(rs,rg,t) does not
change the phase of E(rs,rg,t). and it is not necessary to separate the down-going

wavefield from the up-going wavefield in wavefield tomography method. This
separation step is usually required in cross-hole migration. In addition, although the
forward calculation of the wavefield requires accurate computation of »¢ and updating

~—=——the-model-using-equation—(4)-is—done-repeatedly, we-can reach -the-goal of velocity

TITVerSIon—"wie re—ftnction —tends—to—zero—We—ean—also—condy one—iteration

inversion for imaging a velocity perturbation under the linear assumption, using equation
(5).

After we compare equation (5) with simple traveltime backprojection tomography
(BPT), we find that equation (5) is almost the same as traveltime BPT except for the
weight. In traveltime BPT, we backproject the traveltime along the ray path. In

wavefield imaging, we backproject the wavefield & ;(rs,rg,t) along isochronic lines with
the specified weight. So we call the right hand side of equation (5) the BPT wavefield
tomography operator. Whenever it acts on the wavefield 6;(rs,rg,t), we can get the
velocity perturbation. The forward operator corresponding to this tomography operator is
Eu(rs,rg,t) = J %a(rg,r' ,Ig)O(t — T(rg,r' ,Tg)dr’ 9
\4
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In order to improve the image resolution, we can also modify the weight when we

backproject the wavefield & ;(rs,rg,t) along isochronic lines and develop other methods
to invert for function f(r)=aa—J. Next, we will develop SIRT wavefield tomography to
m

invert for function f(r) as follows.
Considering the kth jsochronic plane I(t,), the equation (9) can be discretized as

d=) cp [, (10)

where
Cor =2a(lkm)-pnkm-As (12)

where dk is the kth sampling point of the wavefield 6;(rs,rg,t), a(lxm) is the value of the
amplitude a(rg,r' ,I's) at the point lkm, Ppuim i the pulse basis function, As is the integral

step. Then, we have the following SIRT iterative form for f(r)
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where, f is a damping factor, z, is the non-zero numbers of ¢, (1<k<L-S-R). We call
the above inversion method the SIRT wavefield tomography operator. To use this
operator, we m know the isochronic lines in the background media for distribution of
f(r) along it.

The BPT and SIRT wavefield tomography operators for velocity perturbation are
obtained next. By comparing the inverse Radon transform(IRT) method(Miller, 1987) with
traditional traveltime tomography, we know that the method corresponds to the convolution
filtered backprojection tomography method for traveltimes. For wavefield data, this would
become IRT tomography wavefield operator. When we input the scattering data into each
tomography operator, we can output the velocity perturbation related to the current
background. All of the above methods are fast and accurate inversions.

But as we know, sometime, we are not only interested in velocity inversion, but also
in geometry in the imaging region. Next we will extend our tomography operators to invert

for geometry in the imaging region.
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If we omit the correlation procedure in above inversion equations, and directly

input the raw reflection data into our BPT wavefield tomography operator, we have

aJ
o Y la(r,.r,r )lref (r,,r,, w(r,rr )l (14)
5,8

Also, if we don't separate down-going and up-going wave and use equation (14) to
backproject the reflection data into model space directly, we will obtain many artifacts for
the reflectivity of a given layer. This is because reflections from opposite directions take
opposite signs when viewed from above or below the layer (Hu, 1988). If we modify

equation (14) as follow

aJ*”

£ =gg‘a(rs,r,rg)ref””(rs,rg,r(rs,r,rg)) (15)
oI —Za(r r,r ref*"(r_,r,, o( (16)
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then, we can get the migration image which represents reflectivity. This means if we input
up-going or down-going wavefield into our wavefield tomography operator, we can get a
migration image so we call the procedure tomographic migration. The operators are first
developed for velocity inversion, but we apply them to reflection data to get the geometry
image. We use Fig. 1 to show how the wave tomography operators for velocity inversion

compare with migration imaging.

SYNTHETIC AND REAL DATA TESTS

A synthetic model for crosswell imaging is presented in Fig. 2. We placed 40
sources in the left hole and 40 receivers in the right hole. We then use a ray method to
produce the scattering field data and use our BPT operator to get the velocity perturbation
picture as shown in Fig. 3. Next, we place three sources on the surface and locate 40
receivers in left hole and 40 receivers in the right hole. If we don't correlate the scattering
data, using the time function S(—t), and use our BPT and SIRT operators, we get the
results shown in Fig. 4 and Fig. 5, respectively. These represent geometry images of the
scattering region. From Fig. 5, we can see if we also put sources on the bottom and don't
correlate with the time function S(—t), and input the scattering field excited by both the
top and bottom sources, we will get a null picture, i.e., the top and bottom data will

cancel.
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CONCLUSIONS

In order to obtain a high resolution inversion image and save computation time
and computer memory, two wavefield tomography operators using asymptotic ray theory
have been developed. Through demonstration with a synthetic example and the field data
example, we believe that our methods will become very useful tools not only for velocity
inversion but also for migration imaging. Next we will apply our BPT and SIRT
wavefield tomography operators to real scattering field data for velocity perturbation

inversion.
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Figure 2:A scattering model for computer Figure 3: Velocity perturbation image by
simulation. SIRT wave field tomography operator

Figure 4: Geometry image of the scattering Figure 5: Geometry imaging of the scattering
region by BPT wave field Region by SIRT wave field tomography
tomography operator operator
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Figure 7: Reflection imaging
by our BPT wave field
tomography operator using
Devine dataset
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Figure 8: Traveltime tomography



