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GREEN'S FUNCTIONS OF STRATIFIED MEDIA:
- SCATTERING SIMULATIONS
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ABSTRACT

An efficient numerical solution to the two-dimensional scattering problem is
achieved by decomposing the original 2-D problem into a layered medium and relatively
small scatterers embedded in it. The moment method is applied to solve the scattering
from the small scatterers with the Green's function of a layered medium. The layered
Green's function is calculated with Fourier transforms. The computational examples
show that the proposed method is more efficient than that of directly applying the

moment method, especially when large scale problems are involved.
INTRODUCTION

Many imaging problems are carried out in the frequency domain and often require
intensive forward modeling computation. Thus, there is a need to be able to efficiently
calculate the wave field directly in the frequency domain. Furthermore, for large spatial
scale problems, the costs of the finite difference methods increase dramatically, so that it
is limited in many real applications. Two-dimensional scattering from inhomogeneous
bodies in an unbound uniform medium has been studied extensively with the moment
method (Richmod, 1965). However, the method is effective only for small scatters and
uniform host medium. The objective of this paper is to develop an efficient numerical
solution to the 2-D scattering problem for the scatters embedded in a layered background
medium. We calculate layered Green's function first and then apply it to the moment
method. The efficiency is achieved by only discretizing the scatters embedded in the
layered background.

The paper is organized into three sections. In the first section, the approach of the
analysis is outlined in terms of the supposition principle. Section two is a brief review of

the moment method. Section three is an analysis of the computation of the Green's
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function for layered medium. Finally, we employ the layered Green's function in the
moment method to show the effectiveness of the proposed method. In the end of each of
the sections, we show some numerical examples to ensure that the implementation of the
algorithm is valid.

THE APPROACH OF THE ANALYSIS

For reservoir imaging problems, the low spatial frequency components can often
be obtained via prior geological information, or traveltime tomography or other means as

indicated in Figure 1.
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Fig. 1 For a common reservoir imaging problem, the velocity structure illustrated
in (), can be decomposed into low components (b) and high spatial frequency
components (c).

In order to image high frequency components, it is necessary to be able to
efficiently calculate the wave field of the slowly varying background. Since the
background variation is relatively simple, in many practical situations, it can be described
by stratified structure with some additional local features, as shown in Figure 2.
Therefore, the problem can be analyzed separately as a layered medium with small

scatterers embedded in it.
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Fig. 2 A 2-D structure (a) can be separate as a 1-D
background and a relatively small and isolated 2-D body.
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For a two-dimensional scalar Homholtz equation

2 2

{—+%+k2(x,z)}u=—5(x—x' V6(z—172'), (D

the corresponding integral equation can be written as

u(s,g) =u'(s,8) - | w(r . f(r)G (g1 )d’r', @

where G°(g,r') is the Green's function for a uniform background, and f(r') is the

scattering potential relative to that background. The same problem can also written as
u(s,g)=u'(s,8)~ [ u(r ,5)e(r)G' (g, )d’r', 3)

where G'(g,r') is the Green's function for layered background medium. The function
e(r') is the scattering potential relative to the layered background. For most realistic
situations, the distribution of the function e(r’) is more isolated and weaker than that of
f(r'). Consequently, solving equation (3) with the moment method is much easier than
solving equation (2), since a relatively small area needs to be discretized. However, we
have to solve following differential equation in order to obtain the Green's function for

the layered background:

2 2

{—+—+k2( NG =-8(x—x)8(z—72). 4)

Fortunately, we can almost solve the above equations analytically with the Fourier

transform. We will discuss this in more detail in the following sections.
THE MOMENT METHOD

The moment method is often applied in the calculation of the scattered field from
a two dimensional inhomogeneity (Bath, 1982, Chew, 1990). The scattered field is

described by following equation:

u(ry= u — j u(r Ye(r' YG(r,r )dzr‘ . ®))
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The method is straightforward and efficient when the size of the scatterer is small. The
relatively small and isolated region we separated from the layered background is divided
into N square cells. Then, the scattering potential and wave field are represented as a

summation of basis functions over the N cells, i.e.,

e(r)= e(r)b,(r)
j.k

u(r) = z aub,(r)

Fig. 3. Scattering potential is divided
up into N square cells

where b, (r) is the basis function, e(r; ) and a, represent the coefficients describing the

scattering potential and wave field over the basis function. We choose the same pulse

basis function bji(r) to discretize equation (5), where

b 1 resy
(=10 res; .

Applying the point-matching procedure, equation (5) can be written as a linear algebraic

system

s+, 8UJn ki) f(ry ity = G(ry), 6)

where g(j,k,i,m)= j G(r;)d’r.

We implemented the above algorithm for the homogeneous background. With the
model shown in Figure 4, the scattered and total field both in the time and frequency
domains are calculated. Similar to finite difference method, the dimension of the cell is
chosen approximately as one tenth wavelength at the lowest velocity in the calculations.
The results are displayed in Figure 5 and 6 and it is obvious that the forward scattering is

stronger in the forward direction, as expected.
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Fig. 4. (a) Forward scattering model for computation with moment method.
(b) The amplitude of the calculated scattered field (Frequency= 400Hz).
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Fig. 5 Forward scattering modeling with moment method.
Total field time signal with a source at the depth of 250m.
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Fig. 6 Forward scattering modeling with moment method.
Time domain scattered field which is stronger in forward direction.

GREEN'S FUNCTIONS FOR THE LAYERED MEDIUM
We calculate the Green's function of the stratified medium through the Fourier

transform (Brekhovskikh, 1982). Since the medium is 1-D, we take the Fourier transform

of the Holmbholtz equation (4) along the horizontal direction and obtain
(N

2

oz
where & is horizontal wave number. The solution of this equation G(&,z,7') is the one-
dimensional Green's function and satisfies appropriate boundary conditions. Recall that

G(¢,z,7) is continuous everywhere in the interval of definition and dG/dz is

~+k%(2) - EX1G(€,2,2 ) =-8(z— 2 )™,

continuous everywhere in the interval except at z=z'. At the source depth z',

7'+e

}al_r)réz'_[f(z—z Ydz =1,

7'+

and lim j Y2 ()U(,2,2 )dz =0,
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which is true, if ¥(z) and G(&,z,7') are continuous. Here, ¥(z) is vertical wave number.
From the above analysis, we can see that the delta function creates an artificial layer or

interface for our problem. The eigen-equation of equation (7) is
82
[57+ Y (@)ly=0. ®)
<

The solution to equation (7) can be constructed with two linearly independent solutions of

the eigen equation (8), i.e.,

a <z \
G={ v, Z z'
by, z21

Fig. 7 at the source depth the derivative
of the Green's function is discontinuous

With the constrains of the conditions discussed above, we have
ay,(z ) =by,(z)
and at//‘l(z')—bl,u'z(z')=—eik*x'.

Therefore, the unknown coefficients a and b can be solved. Notice that the solutions
and sy are for arbitrary stratified medium. For a layered medium, Y1 and 7 are plane

waves in each layer, i.e.,

Ae-i71(z—11)

iy2(z—21) —iy, (z-7')
Be + Fe
Eet'Yz(z—z‘) + Ce-l’}’z(z—Zz)

De—iyz (z—z3)

(8)

The conditions at interface are:



Wang - Scattering Simulations I-8

i. The wave field is continuous.
ii. The derivative of the wave field is continuous (for constant density).
iii. The wave field at the source depth is continuous.

iv. The derivative of the wave field across the source depth is discontinuous.
* A
F
—_ = - — — 7' (source)

s Vo
v 2
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Fig. 8, In each layer the solution to the eigen-equation
is a plane wave. Source depths are treated as artificial interfaces.

With these conditions we can solve for the unknown coefficients of the plane waves in
each layer. The Green's function of the layered medium is obtained by taking the inverse
Fourier transform of G(&,z,7').

The computation of the Sommerfeld-type integral encountered in the spectral
representation of Green's function has a well-known difficulty of their numerical
evaluation, namely the oscillatory behavior of the integrand due to the function et
and the presence of singularities contributed by G(&,z,z'). These include poles and

branch points that result from the dispersion relation
2
2 _ O 2
v =—F-¢.
12

It is possible to leave the pole out and take the Cauchy principle value, a common
procedure for dealing with improper integrals. However, there is no need to proceed in
this way, because all propagating wave systems are naturally dampened and any amount
of dampening takes the poles and moves it off the real axis. The integral then becomes
proper and can be evaluated without ambiguity. After including a small amount of

attenuation, the dispersion relation becomes

» (o+ig)

(G HiE) ©)
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From Im 7y =0 we have
vy, =285 + 23‘)22 =0.
Therefore, the curves on which the branch points lie are
§,§i=sv—“j>0, (10)

as shown in Figure (10). Since z is positive, we can not have Im7y <0 on the physical
sheet of the complex function e, since that would lead to an exponential solution which

is unnatural.
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Fig. 9, Branch cut and branch points

We implemented the above algorithm of Green's function for layered medium.
The results are shown in Figures 10, and 11. In figure 10 (b) the pattern of the frequency
response agrees with those results calculated using the finite difference method. The
reflection and transmission events in the figure 11 are consistent with those of events
from theoretical analysis. With the verification of Green's function for layered
background we are ready to apply the solution obtained using the Green’s function, to the

moment method to compute the scattering form 2-D structures.
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Fig. 10. (a) Three layer model. (b) The amplitude of the frequency response of the
calculated Green's function (Frequency=400 Hz).
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Fig. 11. The time domain Green's function of three layer model.
The reflection and transmission are consistent with theoretical analysis.
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SAMPLE RESULTS OF SCATTERING FROM 2-D STRUCTURE

On inserting the proper representation for G{(r,r') into equation (6), which is
rewritten here as

Uik +Z g Uik, i,m) f(r,, ), = Gl(rjk)a

where g'(j,k,i,m)= j G'(ry)d’r, and G'(r,) is Green's function for layered
background, we can calculate the scattering field from a 2d model as indicated in Figure
12 (a). The amplitude of the frequency response with the sample model is shown in

Figure 12 (b) and the corresponding scattered field in the time domain is shown in Figure
13.
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Fig. 12 (a) 2-D model forward scattering model, v1=4000, v2=3000
v3=3500 and v=3600 (m/s). (b) The amplitude of the frequency
response at frequency=500 Hz
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I-12
Moment method with layered Green's function
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Fig. 13 Scattered field from the model in figure 12 using the
moment method with layered Green's function.

CONCLUSIONS

With the layered Green's function, the calculations using the moment of method
become much more efficient in some situations, because only relatively small scatterers
needed to be discretized. The layered Green's function can be calculated with a Fourier

transform technique. This forward scattering calculation provides a useful tool for
migration or inversion in the frequency domain.
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