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ABSTRACT

An elastic wave incident on an interface between two solid half-spaces produces
reflected and transmitted waves with amplitudes dependent upon the solids' properties
and the angle of incidence and amplitude of the incident wave. Reflectivity is defined as
the ratio of the amplitude of a reflected wave to that of the incident wave. P-wave to P-
wave reflectivities (PP) obtained from high incident angles are often used to estimate
lower half-space compressional velocity by a process known as CDP trace stacking. For
this process, it is assumed that using reflectivity values averaged from large incidence
angles in the place of the reflectivity value at normal incidence will result in little error in
the velocity estimation. Because several variables simultaneously determine reflectivity,
analyzing the effect on reflectivity of changing a single one is difficult. However,
assuming that the density and the ratio of S-wave velocity to P-wave velocity are the
same in both media, I plot the change of two different ratios of velocity against each
other to outline regions corresponding to material properties in which this CDP velocity
inversion will be successful to within 5%. If the average reflectivity is approximately
equal to the value for normal incidence or near to zero itself, then one can invert for
velocity in the lower half-space with little error if densities and upper half-space P-wave
velocity are known. Assuming constant density across the interface leads, in some cases,
to a better velocity inversion; in others inversion is less accurate. So, the accuracy of

accounting for density differences is ambiguous.

A compressional wave incident on a solid from a liquid yields, in general, a reflected
P-wave, a transmitted P-wave, and a transmitted S-wave. While discrete PP values
provide little information toward inferring solid properties, an examination of the
relationship between the solid's shear velocity and that pre-critical incident angle that
yields the maximum PP is useful and has possible applications in the field of non-
destructive testing. The ratio of the solid density to the liquid density, appears to have
little bearing on the relationship between the ratio of shear velocity in the solid and
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An elastic wave striking the interface between a solid half-space and a vacuum is a
much easier problem to model than the two previous cases. The vacuum has no density
and cannot propagate any waves. Therefore, wave reflectivity at the boundary depends
only on the ratio of elastic velocities within the solid and the angle which the incident
wave makes with the interface. This simplification yields a functional relationship
between the velocity ratio in the solid and the angle of incidence, if non-converted wave
reflectivity equals zero. This relationship might be useful as a check on sonic log

measurements or as a qualitative measurement of isotropy, homogeneity, or elasticity.

For the three previous cases, solid-solid, liquid/solid, and vacuum/solid, I make
several assumptions. I calculate reflectivity from equations describing elastic wave
propagation and boundary conditions at elastic interfaces and only examine pre-critical
incident angles. Also, amplitudes, and therefore reflectivity coefficients, are measured in
the direction of wave propagation. So, a geophone, situated above the reflector and
measuring a single component of displacement, would have to be corrected according to
which component of displacement, horizontal or vertical, it is measuring. Below the
reflector, the geophone measurement, after the geometric correction, would be the
negative of the value calculated from the equations I use. Another assumption is that all
incident and scattered waves are in a plane perpendicular to the interface and are time-
harmonic dependent. I also examine only homogeneous waves, such that the phase and
energy velocities are equal in direction and magnitude. By relaxing the restrictions on
the wave and interface types by looking at inhomogeneous waves interacting with
viscoelastic interfaces, several differences from elastic theory appear. Seismic velocities
and the quality factor, Q, depend on frequency; phase velocity travels in a different

direction than energy velocity, dependent on incident angle

SOLID-SOLID INTERFACE

At the boundary between two solid half-spaces, a P-wave, in general, yields a
reflected P-wave, a transmitted P-wave, a reflected SV-wave, and a transmitted SV-wave
[Aki and Richards 1980] (Figure 1). This simple two-layer model is analogous to surface
seismic and crosswell survey geometries. Waves are generated at the surface with
receivers placed at different offsets (angles) in the former case; in the latter situation,
shots and receivers are both downhole, and incidence angle changes according to their
vertical locations within the well and the depth of the reflector. These waves'
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shots and receivers are both downhole, and incidence angle changes according to their
vertical locations within the well and the depth of the reflector. These waves'
propagation directions are described by Snell's Law and amplitudes by the Zoeppritz
equations. The reflectivity of this interface is the amplitude of a reflected wave divided
by that of the incident wave. The reflectivity varies according to the angle of incidence
of the wave and the densities and elastic wave velocities of the half-spaces (See
Appendix A). The reflectivity from an incident P-wave reflecting a P-wave is known as
PP.

Incident P | Reflected S Reflected P

a1, B1, P

ap, B2, p2

Transmitted S Transmitted P

Figure 1: Reflection, transmission, and conversion of a P-wave incident on a solid-solid
interface. @, B3, and p are compressional velocity, shear velocity and density,
respectively (c¢; > a9) [Tooley et al. 1965].

Velocity Inversion from PP Reflectivity and CDP Stacking

Much of the velocity inversion performed today is based on common depth point
(CDP) stacking. Shots and receivers are placed at successive intervals along the surface
to record the traces of several waves' bouncing off a single reflector point (Figure 2).
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Figure 2: A surface seismic CDP survey - rays emanate from shots on the surface on the
left and are reflected to receivers at the surface on the right.

Using an NMO correction, individual traces are moved up to equalize the different
pathlengths the waves took to generate them (Figure 3). Traces are then collapsed
horizontally to a point on the surface directly above the CDP in a process known as trace

stacking.

NMO
corrected

asuodsar 1oArsoar

offset

Figure 3: A normal moveout correction adjusts the traces from far offsets according to
the distance the ray traveled that created that trace. In this way, traces from
nonnormal angles of incidence are used to image a reflector point.
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Reflectivity values from nonnormal incident angles are averaged in the stacking
process and used as an approximation for PP at zero incidence. To study the validity of
this approximation, I try to develop relationships between average reflectivity and
‘material properties. Later, I will show that PP reflectivities averaged in this way from
high angles of incidence will not invert correctly for lower layer compressional velocity,
except under certain conditions. Therefore, some of the simple velocity inversion work
practiced today, which does not treat reflectivity at nonnormal incidence in a rigorous

fashion, is imprecise.

Effect on Reflectivity of Varying a Single Variable

In figures to follow I use velocity and density ratios from a synthetic shale/sandstone
contact [Turcotte and Schubert 1982] and from McElroy well logs (West Texas
carbonate) at approximately 2845 ft. depth. These ratios are derived from the following

velocities and densities:

Synthetic (control): shale - density = 2.60 g/cm3 o=4.08 kim/s f=2.45km/s
sand - density =2.42 g/cm3 o=4.12km/s [=2.54 km/s

MCcElroy well logs: upper - density = 2.85 g/cm3 0e=620km/s f=3.55km/s
lower - density = 2.71 g/cm3 =584 km/s F=3.27km/s
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Figure 4: PP reflectivity versus angle from the shale overlying sandstone contact and
from an interface within the McElroy field. The control curve does not reach
90 degrees, because a critical angle exists at about 81 degrees for this case.
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In field seismic surveys, reflectivity is often measured as an average over a range of
angles. For surface seismic geometries this range is approximately O to 50 degrees, while
for crosswell it is approximately 20 to 70 degrees. If the average PP does not change
appreciably over a wide range of angles, then one can use the value at higher incidence as
an estimate for PP at normal incidence. Now, at normal incidence the equation for PP is
much less complicated than the general Zoeppritz equation, because there are no
converted waves [Levin 1986]. Assuming constant density, this simplification leads to
an inversion scheme for velocity in the lower half-space, given the velocity in the upper

half-space and the reflectivity at the interface.

Average Reflectivity

Because reflectivity equations are ratios of a scattered ray property to an incident ray
property, they are unitless. Therefore, absolute values for material densities or velocities
are meaningless, while using ratios of these values as inputs to the equations is simpler

and easier to interpret. I name these input ratios as follows:

% p=Br B _P2 )
0y o %1 b1

Using the properties from the synthetic shale/sandstone contact, I vary the separate
velocity and density ratios to examine the individual effect each one has on the PP
reflectivity averaged over a 50 degree window (Figures 5-8). I also examine the average

reflectivity data calculated from the McElroy field logs (Figure 9).
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Figure 5: PP averaged over a 50 degree window, varying only the a ratio. Normal
incidence values are dependent on g and so are shown to the left of the
majority of data points. (shale/sandstone contact: b =.600; ¢ =.623; r = .931)
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Figure 6: PP averaged over a 50 degree window, varying only the r ratio. Normal

incidence values are dependent on r and are shown to the left of the majority
of data points. (shale/sandstone contact: a = 1.010; b = .600; ¢ = .623)

In Figure 5, as the range of angles over which PP is averaged increases, that average
diverges for the different values of a, o9. At the surface seismic end, central incident

angle of 25 degrees, only four values of a, 0.94, 0.97, 1.00, and 1.03, are close enough to
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their respective normal incidence values to be considered candidates for velocity
inversion. At the crosswell end, central incident angle of 45 degrees, only the values
1.00 and 1.03 are near enough.

The opposite effect is seen in Figure 6 as central incident angle increases. Now, the
average PP converges for different density ratios. This effect makes sense since velocity

and density have reciprocal effects in the reflectivity equations.

Both Figures 5 and 6 show that normal incidence reflectivity can change sign even if
the compressional velocity ratio, a, and the density ratio, r , do not cross unity. This
makes sense because the important quantity determining reflectivity is not either of these
values alone, but the impedance, the product of velocity and density. Normal incidence

reflectivity in terms of impedance is:

_La—7a
Zo+7Z1

PP )

If the impedances are replaced by the corresponding velocity and density ratios, then

ar—1

PP = .
ar+1

3

Figures 7 and 8 illustrate changes in average PP due to changing the & and c ratios,
the shear velocity values. In these cases, both graphs diverge toward higher angles, so

velocity inversion for crosswell geometries would be less likely than for surface seismic
ones. However, as b, or By, increases, reflectivity goes up, whereas a similar increase in

B2 causes reflectivity to drop.
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Figure 7: PP averaged over a 50 degree window, varying only the b ratio. Normal

incidence is flat because it is independent of b. (shale/sandstone contact: a =
1.010; ¢ =.623; r=.931)
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Figure 8: PP averaged over a 50 degree window, varying only the ¢ ratio. Normal
incidence is flat because it is independent of ¢ . (shale/sandstone contact: g =

1.010; b =.600; r=.931)

Figure 9 indicates that differences between the McElroy angular average and the
McElroy normal incidence seem much too great (> 50%) for velocity inversion to be
feasible according to this single ratio analysis. However, as will be shown later, McElroy
log numbers do invert very accurately for lower compressional velocity. Accounting for



Bacharach, S.R. - Angle-Dependent Reflectivity H-10

density and P-wave velocity differences simultaneously leads to better velocity estimates.
Also, because the absolute values of normal incidence and averaged PP are both near
zero, reflectivity is "damped" in the formula for o).
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Figure 9: PP averaged over a 50 degree window using ratios from a McElroy log. McE
zero inc. is the McElroy reflectivity at normal incidence.

The individual velocity and density ratios are too coupled within the Zoeppritz
equations, making the interpretation of changing a single ratio meaningless. In fact, the
equation for the calculation of PP involves so many factors that the only meaningful
assumption resulting in a significant simplification is normal incidence. Other
assumptions, such as constant density and Poisson solids, o/ = (3)1/2, are not sufficient

to obtain a simple relationship for velocity ratios as a function of incidence angle.

Using smaller angular windows does not help to constrain the variability of average
PP with respect to angle. In fact, smaller windows yield average PP values that vary
more, because they are smoothed from fewer angles. Larger windows could make
average PP curves slightly flatter, but windows much larger than 50 degrees in the field

are rare, and would not flatten average PP curves significantly anyway.

I also examine PP averages using my control numbers and the McElroy numbers
over different angular ranges from zero degrees (Figure 10). Unfortunately, the
following figure does not indicate that either case exhibits behavior in a regular pattern

that could lead to an inversion scheme.
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Figure 10: PP reflectivity averaged over increasing angular ranges beginning at normal
incidence and ending at the angle indicated on the horizontal axis.

Range from zero

A single variable study of the effect on reflectivity, averaged over a moving 50

degree window or a lengthening window starting at normal incidence, is not very

enlightening. A two or three ratio model is more appropriate to delineate the range of

velocity ratios such that the average angular PP remains within a certain tolerance level

compared to normal incidence reflectivity PP (Figure 11).
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Figure 11: Shaded areas show values of f8;/0;; and o/c; such that the average angular
PP and normal incidence PP differ by less than 5% (crosswell is averaged
from 20 to 70 degrees; surface seismic is averaged from O to 50 degrees).
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Velocity Inversion

Inputting the PP value averaged from higher angles into the formula for reflectivity
perpendicular to the boundary, I can solve for compressional velocity in the lower

medium analytically:

PP(i=00)=p2a2_plal , (4)
P20 + P10y

where i is angle of incidence, can be solved for ¢ if we assume that p;=pj. This

assumption yields:

PP+1
o =-on( 2222 5)

I use two different methods to make envelopes of error in the estimation of or.
First, I directly compare ¢, using the average angular PP in Eqn. (5) to the original
value. The second method is a mathematical construction in which I introduce a small
error into the estimate of PP and deduce the size of the resulting error in & (Appendix
B). The following two error envelopes are designed using two constraints. I assume, as
in Eqn. (5), that r = 1. Also, to simplify the problem to two variables from three, I
assume that (Bj/a]) = (f2/0Q), orc=axb.
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Figure 12: Shaded areas denote values of 8;/c;; and oz/0¢; such that o estimated from
average angular PP and actual og differ by less than 5%.
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Figure 13: Shaded areas denote values of 8;/0; and orp/0y such that error of average
angular PP from normal incidence PP yields a less than 5% error in ag from
the actual value (Appendix B).

Figures 12 and 13 are shaded mostly on the right. This region corresponds to near
equal P-wave velocities. With a7 near 2, acoustic impedance is small for all incident
angles and so reflectivity is as well. Therefore, even if the averaged PP differs from the
normal incidence PP by a large percentage, velocity inversion will still be accurate since
PP is added to and subtracted from unity in Eqn. (5). This obsérvation makes sense
because if compressional velocities are nearly equal, then mathematical interpolation that
relates one P-wave velocity to the other should be more stable than if the velocities were
very different.

The crosswell region on the figures is smaller than the surface seismic region,

because the latter is averaged from angles closer to normal incidence, therefore the

corresponding reflectivities and estimated velocities are more accurate.

Other Reflectivity Types

I focus on PP average reflectivities not only because of their wider use in the field,
but also because other average reflectivities and reflectivity zeroes do not provide a
useful inversion. Although the equation for SH-wave reflectivity,
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g = PP cos 1:2 — P cos J:1 o ©6)
P23 cos jp + 1By cos jy

is much like Eqn. (4), one can not invert for lower half-space shear velocity using
reflectivities from higher angles in the equation for normal incidence. The residuals
between the normal incidence SH and the angular averages of SH are too high to provide

a plausible inversion, and SH is only near zero at normal incidence, which is trivial.

Attempts at linking PP and S V-wave reflectivity zeroes with rock properties were
also fruitless. The number of velocity and density ratios involved in their calculation is
too great to define discrete, meaningful relationships between their values and the

behavior of zeroes.

Simple zero incidence reflectivity/velocity équations, like Eqn. (4), do not exist for
converted waves and SV- to SV-wave reflections. Converted wave reflectivities, PS and
SP, can not be used for inversion in the above manner, because they are always zero
perpendicular to the interface. Little can be learned from the behavior of PS and SP
zeroes, because they depend upon too many variables simultaneously.

DISCUSSION

Because of the interdependency of the input ratios in the Zoeppritz equations,
studying the effect on reflectivity of changing a single ratio is a wasted effort. However,
a multi-variable examination provides some insight toward devising an inversion scheme
from average reflectivity. I can use the two variable velocity inversion method as a self-
consistency check, by solving for o2 and f8; from PP, o7, and f37, and by comparing with

other velocity estimation techniques such as sonic logs or traveltimes.

If T know upper half-space velocities, I can read off a corresponding range of a values
from the error envelope and estimate a range for a2 = @ x ;. I can then solve for o
directly from the PP velocity inversion formula and compare the two methods to see if

the method works for that particular layering scheme.
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A possible application of this method is as an estimate of degree of inhomogeneity,
‘anisotropy, and viscoelasticity. If I have upper half-space velocities that fall within a
small error envelope, I can then make confident estimates of lower half-space velocities,
under the same assumptions from which the original Zoeppritz equations were derived.
The difference between my estimates of o, and 2 and those calculated from a sonic log,
traveltime, or some other means might be able to give me an idea of how much these

assumptions of isotropy, homogeneity, and elasticity are violated in the media.

Figure 12, which shows the velocity ratio regions that yield an inversion within 5% of
the true velocity, demonstrates the importance of shear wave velocity information for
making an inversion at a common depth point. Estimates of o will be often be incorrect

if large offset reflectivity (averaged or discrete angles) is substituted for normal incidence
reflectivity.

Check of Velocity Inversion Error

I use the synthetic layering numbers and McElroy log numbers to check the error in
velocity estimation associated with them. For the synthetic case the estimated PP
averaged from typical crosswell incidence angles results in an o value that is about 5

percent too low, while for the McElroy simulation, the estimated velocity is within 1% of
the original value. These two layering models do not demonstrate serious problems
associated with the use of large offset PP, possibly because o¢; and ¢z are about the
same. From Figure 10, one éan see that for o/ ratios near unity, velocity error is

minimal.

The assumption I make to arrive at Eqn. (5), namely pr=p2, is not normally

appropriate. If density is not constant, then Eqn. (5) becomes
PP+1 '
o, =—ay| 2L (—) %)
Py NPP—1

The density ratio sometimes acts as a correctional factor, as in the synthetic case.
Using the density factor, estimated o2 is only 1% above its true value. Using density,



Bacharach, S.R. - Angle-Dependent Reflectivity H-16

though, can lead to problems in other situations. Another two layer model,

approximating a carbonate over a sand, with properties,

upper layer (1) - density =2.80 g/cm3 o=6.20km/s S=3.50 km/s
lower layer (2) - density =2.20 g/cm3 o =4.10km/s S =2.50 km/s

actually works better if densities are assumed to be equal. Using Eqn. (5) to solve for a»

from PP averaged from typic‘al crosswell angles yields a value of 4.09 km/s, an excellent
result. Conversely, if Eqn. (7) is used, the value is 5.21 km/s." Therefore, contrary to
intuition, accounting for the density differential across the interface is not always more

accurate.

There are three cases to consider when trying to-calculate lower compressional
velocity in a system of two flat, elastic layers. If ¢ is approximately equal to as, then,
as I have shown, inversion using P P reflectivity averages is reliable, because
reflectivities are small. If o is less than o, then oz can be solved using the travel times
from head waves through the lower medium. Finally, if ¢  is appreciably greater than
0t2, head waves do not exist so reflectivity analysis would be an option. However, if the
average reflectivity is not near zero or the normal reflectivity value, then caution must be
used to avoid errors when analytically solving for oz.

LIQUID-SOLID INTERFACE

A P-wave incident on a liquid-solid boundary from the liquid will, except at normal
or grazing incidence, yield a reflected P-wave, a transmitted P-wave, and a transmitted S-
wave [Boﬁrbie 1982] (Figure 14). This seismic wave geometry corresponds to marine
surveys in which shots emanate from the water and reflect off the sea floor, or to the non-
destructive testing of a material immersed in a liquid using scanning beams. The
reflectivity varies according to the angle of incidence of the Wavel, the elastic wave

velocities of the materials, and their relative densities (Appendix C).
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Incident P Reflected P

Liquid: a1, p1

Solid: ap, B, p2 Transmitted P

Transmitted S

Figure 14: Reflection, transmission, and conversion of a P-wave incident on a liquid-
solid interface (0 > f2 > ).

Use of Maximum PP

Reflectivity values can indicate, in a non-intrusive manner, some properties of the
solid. Although an examination of individual PP values does not provide much help in
developing a relationship between reflectivity and material properties, maximum PP
values do show promise. Because there are no S-waves in the liquid, the b value, /¢,
is not relevant for this type of interface. Remaining are the ratios that concern density,
02, and B2. Given the o/ values of 2, 4, and 6, the following three figures depict

those points where PP reflectivity is a maximum for pre-critical incident angles.
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Figure 15: Points indicate the P-wave incident angle (on the solid from the liquid) and
the ratio B/arj that yield the highest PP reflectivity. For this case, a/or = 2.
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Figure 16: Points indicate the P-wave incident angle and the ratio By/¢; that yield the
highest PP reflectivity. For this case, o/o; = 4.
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Figure 17: Points indicate the P-wave incident angle and the ratio By/«; that yield the
highest PP reflectivity. For this case, ory/oj = 6.

DISCUSSION

Points corresponding to different densities lie either on top of each other or so
close together that distinguishing them individually is very difficult. Therefore, Figures
15-17 clearly show that r, the ratio of the solid density to the liquid density, has little
bearing on the relationship between fy/cr; and the incident angle which yields the largest
amplitude reflected P-wave. The vertical axis of Bx/0y increases as op/oy increases,
because if o is higher, then 8, which must be less than the product of (.5)1/ 2 and oy for
elastic waves, can be higher. The range of pre-critical angles yielding the maximum
reflection coefficient decreases with increasing op/cy, because the critical angle

decreases sharply.

The relationships illustrated in Figures 15-17 could be useful in determining elastic
properties of solids. From preliminary lab measurements one can find values for liquid
and solid densities and «;. Then, measuring reflected amplitudes from the solid-liquid
interface, that angle which produces maximum reflectivity can be recorded. The critical
angle can be found as well. These angles provide values for By/c;; and o/,
respectively, which, in turn, give values for elastic velocities within the solid. Once these

are known, calculation of elastic constants such as bulk or shear modulus is elementary.
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FREE-SOLID INTERFACE

At the interface between a solid half-space and a vacuum, a P-wave yields, except at
normal incidence, a reflected P-wave and a reflected SV-wave [Aki and Richards 1982]
(Figure 18). This seismic wave geometry usually describes earthquake waves that travel
from the hypocenter to the surface and reflect off it. The free-solid interface is also
applicable to crosswell though. Waves originating in one well bounce at different angles
off the free surface and are detected by receivers in the other well. The reflectivity of the
two scattered waves is their amplitude divided by that of the incident wave. The
reflectivity varies according to the angle of incidence of the wave and the elastic wave
velocities of the solid (Appendix D).

vacuum

o, B, p

Incident P Reflected S Reflected P

Figure 18: Reflection and conversion of a P-wave incident on a free-solid interface
[Ewing ef al. 1957].

Examining the relationship between incidence angle and elastic velocity ratios can
provide more than just the solution to a mathematical curiosity. This relationship could
be used in materials studies and sonde calibration. In particular, those angles where
reflectivity is zero yield information on velocity properties of the solid.

Zero Reflectivity

Because waves cannot transmit through the interface, PP reflectivity is only a
function of the angle i and the quantity B/cc. If PP is equal to zero, which can be
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recognized on seismograms by changes in polarity, then a given incidence angle

determines a solid velocity ratio (Appendix D).
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Figure 19: If PP = 0, then for a known angle of incidence, a corresponding velocity ratio
of the solid can be found. The minimum of the scatter plot is at about 69
degrees, (J/0)=.565.

DISCUSSION

Figure 19 also describes the relationship between i and S/« for incident/reflected SV-
waves [Aki and Richards 1982]. Reflectivities for converted waves, PS and SP, equal
zero only at normal incidence and grazing incidence (i = 90 degrees). SH-wave
reflectivity is also not a useful quantity; no wave conversions or transmissions take place
so reflectivity should be independent of solid properties. Previously, I did not examine
reflectivity zeroes for the solid/solid or liquid/solid cases as I did here, because the
number of interdependent velocity and density ratios made finding a relationship such as
Eqn. (D3) prohibitive.

A few applications of the i to /o relationship might exist. Although this section
concerns waves incident on the interface from within the solid, if a conjugate relationship
exists for those impinging from the other side, then that function could provide a means
of non-destructive testing using transducers at the interface. Figure 19 might also have
applicability as a check on sonic log measurements. Finally, since the reflectivity

equations used in this study assume isotropy, homogeneity, and a flat, elastic interface,
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measured residuals from predicted /o values indicate qualitatively the degree to which

those assumptions have failed.

ANELASTICITY

If the materials through which the incident and scattered waves propagate are
modeled as anelastic instead of elastic, much of the physics is altered, which affects
calculations of reflectivity. Borcherdt (1982) examined the interactions of waves in
linear viscoelastic media, at anelastic interfaces. There are a few similarities with the
elastic cases, and several differences. As in the elastic case, P-waves only convert to SV-
waves and vice versa as long as the waves are all in the same plane perpendicular to the
interface; also, homogeneous waves incident at pre-critical angles will reflect
homogeneous waves at the same angle [Borcherdt 1986]. However, Borcherdt (1986)
found that transmitted waves will be inhomogeneous for all incident angles, pre- and
post-critical, except normal incidence (Figure 20). Intrinsic absorption at a viscoelastic

interface causes several other effects not predicted by elasticity theory:

i) phase velocity, indicated by the propagation vector, and energy velocity,
indicated by the attenuation vector, propagate with different speeds and
directions (Figure 20);

ii) o, B, and the quality factor, Q, which is a measure of attenuation, are all
frequency dependent;

iii) phase velocity is dependent on travel path and therefore on incident
angle;

1v) energy is transmitted to the lower half-space at post-critical angles due to
the interaction of the incident and reflected wavefields and the decrease in
the amount of energy transmission is not as abrupt as for the elastic case
[Borcherdt 1982,1986].
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Incident Homogeneous Wave Reflected Homogeneous Wave

Q

Q2 <Q1

———P  Propagation Vector | Transmitted Inhomogeneous Wave
——> Attenuation Vector |

Figure 20: Reflection and transmission of a homogeneous plane wave on an interface
between two viscoelastic solids. The propagation vector is perpendicular to
planes of constant phase. The attenuation vector is perpendicular to planes
of constant amplitude. (Bourbie 1982).

Another effect of anelasticity is particular to a wave within a viscoelastic solid
striking a free-surface. Borcherdt (1982) shows that unless Qg = Qp. an incident P-wave
will never have a zero reflection coefficient, making the use of Fig.19 problematical.
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APPENDIX A
PP Reflectivity from an Elastic Solid/Solid Interface (Aki and Richards 1982)

The reflection coefficients I use are in terms of displacement amplitudes rather than
energy. Displacement amplitude is measured positive in the direction of wave
propagation. Seismic receivers generally measure signal only in one direction, vertical or
horizontal, but the measured amplitudes can easily be corrected by multiplying by a sine

or cosine depending on which component is desired.

Assuming the four possible incident waves, P and S from above and below, and the
four scattered waves, the waves' displacement amplitudes are combined with the interface
boundary conditions giving a set of four coupled equations. Incident wave displacement
amplitudes are °R, ', P, and ;. Scattered wave displacement amplitudes are Py, S/,
"By, and 5. The boundary conditions are continuity of displacement and traction in both

the parallel and perpendicular directions. The coupled equations are
siniy (B + P[)+cos jy (§ + 87) =siniy (B, + P§ ) +cos j, ('S +53),

cosiy (‘R — P{)—sin jy (\§ — Sf) = cosi, (B, — P} ) —sin (S, - S3),
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21t peosis (R — Pf)+pifBy(1- 27 p*)(S - 57)
=2p,Bipcosiy(By - P3)+pafs(1- 28507 )(S - 53).

P1051(1 - 2,312172)(\131 + P{) = 2p, i peos i (S + ;)
= P20y (1-2B3 0% (B + P3) - 2poB3peosjp (S +55),  (AD)

siniy _ sini, _sinj;

sin j . .
2 , the ray parameter. This is also a mathematical
| 0 B 2

equation describing Snell's Law.

where p=

Putting scattered waves on the left and incident waves on the right, we obtain

P R
S/ y
M T=N S . (A2)
L) )
S A

PP’ 'SP’ PP S'P’
, . 4 PS” SST P'ST S8
The complete scattering matrix becomes M~ N =| _ . ~. | (A3)
PP 'SP PP S'P
PS SS PSS S°S

We are only concerned with the top left term:

(BCOSII _CCOS12 )F_(A_'_DCOSll COS]szpz
PP’ o &7} )

> (A4)
EF+GHp

where

A= po1-2B:"p%) - pi(1-2B:%p?),
B =po(1-262"p% )+ 20",
C=p(1-28p* )+ 2027,

D =2(p2f2” - pif’),

cosi1 COosi2
E=B +C ,
o o2

cos j1 CoS j2

F=B—J 4

B B>
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G=A_Dcosn cosp,
on ,32
H=A_DCOSIZ COSJI,
o2 B
APPENDIX B

Solving for Error Limitation of ¢ from Error of PP

If the two solid half-spaces have equal density, then for normal incidence,

a2=—a1(PP+1j. B1)

PP-1

With error in angularly averaged PP from normal incidence PP, this becomes

PP+A+1
Oy =—0y| ———— |. B2
2 1(PP+A—1) (2

Rearranging,

1
E|—~PP
A _ (PP )

PP E(PP+1)+2 ®3)

equals the percentage error of PP, where E is the percent allowable error of ot.

Now if E << ,
PP+1

A _ E(1-pP) -
PP 2PP B9

which is the expression I used to construct Figure 11.

APPENDIX C

PP Reflectivity from an Elastic Liquid/Solid Interface (Bourbie. 1982)

Starting with P- and S-wave potentials for incident and scattered waves,
@; = A, exp|iky, (xsing +zcosi )~ ia)t]
@, = A, exp|ikg, (xsiniy — zcosi;) - ia|

D, = A, exp-ika2 (xsini, +zcosi, ) — ia)t]

W, = B,exp -ikﬂz (xsin j, +zcos j; ) — ia)z‘], (C1

k =

Vv

(0]
1%

b

H-26
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and combining with boundary conditions of displacement,

W, =, (C2)
and stress,

O, =

O-IZZ = O-ZZZ' (C3)

yields the expression for PP reflectivity from an incident P-wave on a liquid-solid
interface:

3

. . 2.\2 4B L o, . . .

o, cosii< (1—2sin —2 in% i, cOSiy COS j, + — P10t COSE

P20 cosiy|1—28in" j, | +—5 1 COS 1) COS Jp ¢ — P10 COSTy
PP ato,

T . (C4)
P06, COS il{(l —2sin? i2) + azozc sin’ I] COSiy cosjz} + P10 cosiy
12

APPENDIX D
Derivation of Incidence Angle/Velocity Ratio Relationship for a Vacuum/Solid Interface

The boundary conditions for the free surface/solid interface are discontinuity of both
displacement and traction. Also, no waves can propagate in the vacuum, and, of course,
the vacuum has no density. Combining these conditions with the wave potentials,

Wy 9V _,
ox oz

Wy, _dy,

X __TZ (), D1
0z ox (DD

reflectivity can be solved for in terms of the amplitude of the reflected wave divided by
the amplitude of the incident wave.

2 . .
_(L B 2p2] + 4p2 COSi COS j
o
PP =

B B i oo
3 ,(Aki & Richards p.140) (D2)
1 2 2 COSI COS J
H—-2 +4p°——m—=
(ﬁz ”] * o B
sini sinj '
where p=——=——, D3
p Vo Vs (D3)
If PP is set to zero then the following relationship results:
b8+( ,‘1,—1)b6+(%)b4+( __'f )b2+( ! 6,):o, (D4)
sin” i sin” i sin” i 16sin” i

where b = ﬁ
o



