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ANISOTROPY FROM HEAD WAVES IN CROSSWELL DATA
PART 1 : THEORY
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ABSTRACT

A method for using head waves observed in crosswell data to analyze anisotropic
properties of sedimentary rocks was developed. Head waves are critical refractions
generated at the interface of low and high velocity formations. Anisotropic properties of
the low velocity formation significantly affect the velocity of the head waves because the
head waves propagate obliquely through the formation. Unlike surface seismic or VSP
survey, the crosswell recording geometry makes it easy to observe such head waves. This
paper focuses on the theory of estimating anisotropic properties from head waves in
crosswell seismic and well logs using a model of a horizontally layered transverse isotropic
medium. Our theoretical study has led to a simple relationship between traveltimes of head
waves observed on a wellbore and the velocity of seismic waves in the anisotropic
medium. The relationship easily yields the phase velocity and the incident angle of the head
waves, which are usually missing information in surface seismic or VSP survey. The
information is essential to estimating anisotropic properties of sedimentary rocks.

INTRODUCTION

The model of a transverse isotropy is widely accepted for describing elastic anisotropy
of sedimentary rocks. Horizontal layering of different isotropic (or anisotropic) media
yields an equivalent elastically anisotropic property, if the wave length of the wave is much
larger than the typical layer thickness. This type of anisotropy is called transverse isotropy.
In general, elastic anisotropy can be directly associated with elastic constants of the
materials. Elastic materials have twenty-one elastic constants. Usually, symmetrical
properties reduce the number of independent constants. In the case of a transverse
isotropy, the anisotropic behavior is governed by five independent constants (Backus,
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1962). Berryman (1979) led to a relation between the phase velocity and the group velocity
of seismic waves generated by a point source located in the transversely isotropic medium.

The measurement of elastic constants is usually performed in a laboratory using core
samples (Tosaya, 1982; Jones and Wang, 1981). In contrast, in-situ estimation of elastic
constants is rarely performed because of the limitation of resolution of in-situ
measurements and the difficulties in obtaining sufficient data for determining elastic
constants.

In recent years, crosswell seismic tomography has been developed in order to
determine the detailed velocity structure between two wells. While surface seismic and
VSP surveys observe nearly vertical velocities, this new crosswell geometry makes it
possible to measure an accurate horizontal velocity. As a result, the integration of these
techniques enables the detailed analysis of elastic properties of sedimentary rocks.
Winterstein and Paulsson (1990) discussed anisotropic properties of a shale using both
crosswell and VSP data, and determined in-situ five in-situ elastic constants according to a
model of a transverse isotropy.

Head waves are critical refraction generated at the interface of fast and slow velocity
formations. These waves can be easily observed in the crosswell geometry. Unlike direct
body waves between two wells, the incident angle of the head waves depends only on the
velocity contrasts at the interface. A large velocity contrast at the interface enhances the
detection of head waves in crosswell data and makes it easy to recognize the effect of the
anisotropy of a low velocity formation, regardless of the formation thickness.

In this paper, we present a method for estimating anisotropic parameters and elastic
constants by combining head waves in crosswell geometry with sonic logs. The method is
based on the theory of an acoustic wave propagation in a transverse isotropic medium
(Thomsen, 1986). We first verify a simple relation between the apparent velocity of head
waves at receiver arrays and a true phase velocity of head waves propagating through a low
velocity formation. This relation leads to a practical method for deducing elastic constants
and anisotropic parameters from in-situ measurements.

SEISMIC WAVE PROPAGATION

Horizontal layering of isotropic or anisotropic materials gives rise to a behavior of
elastic aniostropy if the wave length of a wave is much larger than the typical thickness of
each layer (Backus, 1962). This type of anisotropy is called transverse isotropy (see
Figure 1). The elastic constants consists of five independent components (Thomsen,
1986). The elastic constants can be expressed in the following two-rank tensor notation:
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Figure 1: The equivalent model of a transverse isotropic medium. The
horizontal layering of thin isotropic beds shows anisotropic property if the
wave length of a seismic wave is much greater than the typical thickness of
each layer.
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Backus (1962) clarified that these five constants are deducable from the following
averaging of Lamb's constant A; and shear modulus L; of each thin isotropic layer :
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where h is the thickness of each layer. Hook's law provides a relation between stresses
and strains. Using the above expression, the relationship is given by

T;= ZCij S; i,j=1,2,3). @)

Ti and Sj are abbreviated expressions for components of stress and strain tensors :

T1=0xx, T2= Oyy, T3=0,,, Ty = Oyz, Ts=Oxz, Te = Oxy

_duy duy o _du,

S1= dx’ SZ'— dy S3 dZ’
duz duy du, dux _duy  duy
M=yt @S T Kt ay
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On the other hand, the equations of motion are given by

doy _ &y
dx; de

(i=1,2,3 X1=X,X2=y,X3=Z) (8)

Suppose that a plane wave is propagating in X-Z plane, and the symmetry axis is Z
direction. Then, the displacements vector U is expressed as

Ux R
U= [%’ ] ei{wik(IxX+1zZ)} &)
z

where
1, = sin® 1, = cos® (10)

0 is an angle between the direction of the plane wave and the symmetry axis. Using Eqns.
2 and 3, the displacements Ux, Uy, Uz must satisfy the following christoffel equations :

Clx2+Caal,? 0 (C13+Caa)lxl; | Uy Uy
k 0 Ceeli>+Caal,> 0 [Uy] = pwz[%y] . (11)
YA

(C13+Cag)kl, 0 Caal>+Cs31,2 |- ¥z

The dispersion relations are given by

C1112+Caal 2 po¥/k? 0 (C13+Caa)lylz
0 Ceglx>+Caal,2-pw?/k? 0 =0 (12)
(C13+Can)lsl, 0 Caaly®+Caal,>-pw?/k?

This equation leads three seismic modes propagating in a transverse isotropic medium. The
following three quadratic forms were denoted by Thomsen (1986):

pVsu%(6) = Cessin?0+Cyycos’0 (13)
PVFAO) = 5 [Cs3+Cag+(C11-Ca)sin6+D()] 14
pVsvA(®) = 5 [C33+Caa+(C11-C33)sin0-D(8)] (15)
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D(8) = {(C33-C4a)*+2[2(C13+C44)>-(C33-C44)(C11+C33-2Cas)] sin’0
+[(C11+C33-2C44)%-4(C13+Cas)?] sin?0) 12,

These modes correspond to SH, quasi-P, and quasi-SV waves propagating in a transverse
isotropic medium.

The behaviors of the seismic waves are somewhat different from those in isotropic
media. First, the velocity of seismic waves depends on the direction of the incident angle
(angular dispersion). This angular dispersion is directly associated with the fact that the
direction of the seismic ray is not parallel to the wave normal (see Figure 2). The seismic
energy propagates with a group velocity. In anisotropic media, the group velocity is
different from the phase velocity which corresponds to the speed of a wave normal.
Second, as for quasi-P and quasi-SV modes, the direction of displacements Ux and Uz are
no longer parallel or perpendicular to the wave normal.

Berryman 1979) induced a simple relation between the phase velocity and the group
velocity for seismic waves generated by a point source in a transversely isotropic medium :

V(0)sin® + %cose

tang = v (16)
V(0)cosH - Ie-sine

Vg(0) = \/ V(6)? + (‘%)2 amn

where V(0) and Vg(¢) are phase and group velocities, respectively. In-situ measurements
of seismic waves in a crosswell geometry is based on the group velocity and angle (see
Figure 3).

Eqn. 17 shows that in the case of an angular dispersion, a group velocity is always
equal to or greater than the corresponding phase velocity. If the group and phase velocities
are same, then the phase angle and the group angle is also same.

It should be noted that explicit expressions of Vp(¢) and Vsv(¢) are very complicated.
This suggests that even if we can determine the V(¢) and ¢ from observed direct waves, it
is difficult to directly induce elastic constants from such results. However, as we discuss
later, if we use head waves, we can directly obtain a phase velocity Vp(8).
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Figure 2: Difference between the wave normals and the seismic rays for
incident plane waves in an anisotropic medium. The seismic rays are
oblique to the wave front.
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Figure 3: Detection of seismic waves in a crosswell geometry.
In a homogeneous medium, the travel time is simply
expressed as T = L/Vg(¢) where L is a distance between
the source and the receiver.
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GENERALIZED SNELL'S LAW

Seismic waves refract at the interface of two elastic media. Regardless of isotropic or
anisotropic, the component of a slowness surface (reciprocal of a phase velocity) parallel to
the interface has to remain constant (Henneke,1971). That is expressed as

le Kx2

® ®

= P(constant) (18)

where the X-axis is parallel to the interface, and Kx expresses an X-component of the wave
number K (see Figure4). This is defined as the generalized Snell's law in this paper.
Suppose that a symmetry axis of a transverse iostropic medium coincides with Z direction.
Then, K is a function of 0, the angle between the Z-axis and the incident wave.

K,= K(0)sin0, K,=K(0)cosb (19)
®
V(0)= K©) (20)

The generalized Snell's law can be simply expressed as

\S;Tnee) = Pg(constant). (21)

It should be noted that the velocity used in these equation is a phase velocity. As
already discussed, we can define a group velocity in anisotropic media. The expression of
the Snell's law using the group velocity is also significant because in-situ measurements
of seismic waves are usually based on the group angle and velocity.

Fermat's principle requires that the path of a seismic ray between two points minimize
the traveltime along the pass. According to the procedure shown in Appendix A, we can
obtain

sin¢ _ dV, cos
V@  do V(©$)?

= P, (constant) (22)

along the seismic ray. Using Eqn. 11 and 12, we can show that Eqn.17 is equivalent to
Eqn. 16, that is Pg = P¢ (see Appendix B).
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Figure 4: Slowness field in anisotropic media. An incident P wave refracts and
reflects at the interface between the two media. The generalized Snell's law
requires that the horizontal component of the slowness of each mode is equal to
that of the incident wave.
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Thus, the generalized Snell's law in anisotropic media is represented by

sin@ _ sing  dV, cosd
V@) V@) dd V()

=P (constant) (23)

HEAD WAVES IN CROSSWELL SURVEYS

A head wave is critical refraction at the interface of two different media. This head wave
can be easily detected in the crosswell geometry. The following situations are required for
the detection.

» Both an energy source and a receiver are located in a low velocity medium.
» The velocity contrast at the interface is large enough to create head waves between two
wells.
» The head waves arrive at receivers earlier than direct waves because of the small
amplitude of the head waves..

Figure 5 shows the concept of the detection of head waves and direct wave in the crosswell
geometry.

Anisotropic property of the low velocity formation significantly affects the traveltimes
of head waves observed in the crosswell geometry. The incident angle depends only on the
velocity contrasts between the two media, regardless of the formation thickness. The
detection of head waves itself implies a large velocity contrast at the interface.

The incident angle of a seismic ray at the critical refraction is defined as an angle such
that the seismic ray becomes horizontal after the refraction. Figure 6 illustrates the ray path
of head waves. The traveltime is divided into the three parts.

Ts : Traveltime between the source and the interface
T, : Traveltime along the interface
T; : Traveltime between the interface and the receiver
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Figure 5: Observation of head waves in a crosswell survey. If both a source and a
receiver are located in a low velocity layer, head waves are detectable.
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Figure 6: Seismic ray path of head waves observed in a crosswell geometry. After the critical
refraction, the seismic ray propagates along the interface, turning to the low velocity
formation.
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Ts, T2, and T; are simply given by

Vg(bc)cosde
D- AZ+A
T, = Do B0t (5)
2
Ty= 2 (26)
V(¢c)cosdc
The total traveltime is
D 1 tand
T=<-+ - + 27
Vit Goneosss - V2 (A% +AZ) @7)
where
D . Horizontal distance between the two well
Oc : Incident angle (group angle) at the interface
Vg(¢c) : Group velocity of head waves in a low velocity formation
V2 : Horizontal velocity of a high velocity formation
AZ . Vertical offset distance of a source from the interface
AZ, . Vertical offset distance of a receiver from the interface

V, is equal to the horizontal phase velocity of the high velocity formation under the
assumption of transversely isotropic media with a vertical symmetry axis. The generalized
Snell's law requires that the head wave satisfy the following equation :

sing.  dV, cosdc sinB 1
- 5 = =V, 28)
Vg(de)  déc Vg(4c) V(©o) 2
where 6, is the corresponding phase angle. Using equations (16), (17) and (25),
1 tang. _ cosO. (29)

Vg(docoste V2 V(@)

’ 2
cosBe ="\ 1- (5 (30)
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1 tan¢. 1 1

Vg@acosd. Y2 N VB V7

(€29

Putting this to Eqn. 27, the traveltime is given by

_D ,, 11
T= 4+ o V22(AZS+AZ,). (32)

If the low velocity formation is weakly inhomogeneous in lateral, the second term of the

right -hand side can be divided into two parts.

D 1 1 1 1
T= G-+ - —AZ; + -— 33
v \/Vscecﬂ V2% P\ ey T V2 53)

where suffixes s and r represent the source and the receiver, respectively.

Travel time T has a linear relation with AZ; and AZ,. This means that the head waves
behave like plane waves around the receiver array in a wellbore. According to the
calculations shown in Appendix B, we can show that 6, is the angle between the interface
and the wave front while ¢, corresponds to the angle between the seismic rays and the
normal direction to the interface. In a transverse isotropic medium, the wave front is not
perpendicular to the direction of the seismic rays. Figure 7 illustrates the behavior of head
waves around a receiver array.

An apparent head wave velocity Vyq is defined as a reciprocal of the gradient of travel

times along the subsequent receivers :

AT 1

AZ~ Vi G4
From Eqns. 33 and 34, Vhd and V(6c) have a simple relation :
1 1 1
Vi~ N V@2 V¥ 3
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Figure 7: Behavior of head waves around receivers. 6c corresponds to the angle
between the wave front and the interface.
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Thus, the traveltime T can be simply expressed by apparent head wave velocities observed at a

source array and a receiver array :

D
Vs

AZs | AL

T= +
Vihds ~ Vhdr

+ (36)

Analysis of Head Waves

As shown in Eqn. 36, traveltimes of head waves have a linear relation with AZ; and AZ,.
The coefficients of AZg and AZ, are reciprocals of V4 around source and receiver wells.
Eqn. 36 can be rewritten as

T =aD + BAZ + YAZ, (37)

. where

_ Ty _ 1 1
=D Py 7= v

(38)

All of a, B and y have a dimension of slowness. .The least square method can easily
determine the coefficients, o, B and y from observed head waves. It should be noted that
and y are not significantly affected by the constant bias on AZs and AZr. For the
determination of these coefficients, Z; and Z; may be relative vertical distance from a
arbitrarily fixed origin . That is

AZs =Zs-Zo AZ,=7:-Zy (39)

where Z is the depth of a local origin. (This is one of the advantages of the head wave
analysis because the accurate depth of the interface is not required. Sometimes, it is
difficult to determine the accurate location of the boundary.) In contrast, the value of o is
sensitive to the bias for AZ; and AZ,. This suggests that we should avoid determining V;
from c.. Fortunately, V; can be easily derived from the direct waves propagating along the

interface.
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The least square method leads to the following simultaneous equation :
Ax =y (40)

p— —

n n ™ n
Dn Zzsi zzri ZTi
i=1 i=1 i=1
n n n o n
A= | DYZg DZa2 Y ZsiZii X=[ﬁ] Y=| YZsTi
i=1 i=1 i=1 i=1

n
Y Z4iT;
—i1

n n n
DY Zsi Y ZsiZri D Zri2
i=1 i=1 i=1

=

V(6.) and V(8,) are simply induced from the solution of the above equation:

Vs(6p) = — Vi(@c) = ———. 4D

The generalized Snell's law gives the incident angle (critical phase angle)

0, = V(o)

=, (42)

Consequently, the head wave analysis allows us to simultaneously obtain V(6) and O.
ESTIMATION OF ELASTIC CONSTANTS

The behaviors of quasi-P and quasi-SV waves can be describe by four independent
elastic constants Cj1, C33, Ca4, and C13. Except for Cy3, each constant is directly
associated with an in-situ measurement :

Cu= PVh2 Caz= PVv2 Cu= Pst2 (43)

A crosswell survey can measure the horizontal velocity Vy, from a direct wave between two
wells. V, and Vg, are vertically propagating P and S waves, which can be provided by an
acoustic logging such as a full wave sonic log. In contrast, C;3 cannot be estimated from
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the above velocities because C;3 only affects the velocity of a obliquely propagating

seismic wave.

A more convenient representation is provided in terms of the parameters s, € and 8" for
describing V(8), the phase velocity of a quasi-P wave (Thomsen, 1986):

v2(6) = V[ 1 + esin’0 + E(6) ] (44)

* . 2 2 2 . 4
E(@) = _1 02 1+48 sin“Bcos“6+4(1-0°+¢€)esin™0 1] 43)

(1-6%)°

_h_4/§ﬁ
c—Vh— Cit 45)

8=%(%‘—-1)=%(—-1). (46)

Fortunately, ¢ and € does not include the term of Ci13. These two parameters can be easily
determined by the in-situ measurements. However, &* does depend on Cy3:

1
5% = o [ 2(C13+Cas)* - (C33 - Caa)(C11 + C33 - 2C4s)) (47)
33

This implies that an additional oblique velocity is required for determining 8. Using
V(6,), o, and €, we can calculate the value of 8*:

& = -(1-()'2+t3)(»:tan29c

209
(VV( c)_l_ 290)( ( C) - 62-€Sin26c)
¥ vy . 47
* sin20,cos20, “7)

Thus, the analysis of head waves contributes directly to obtaining the value of 8*.
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Based on the model, we would like to propose a practical method for estimating 8" and
the associated C;3. The method consists of the following steps.

Determine Vhd from travel times of head waves.
Derive V(0c) and Oc.
Estimate ¢ and € from sonic logs and crosswell data.

B

Calculate 8™ and C13 using the above information.
CONCLUSION

Our theoretical study demonstrated that the analysis of head waves has several
advantages for estimating anisotropic parameters and the associated elastic constants:

* The analysis of head waves enables the derivation of an incident angle and a velocity
of a head wave in a phase domain. This makes it easy to estimate &* and C3.

* The incident angle of head waves depends only on the velocity contrast between low
and high velocity formation. The detection of head waves in the crosswell geometry
itself suggests a large velocity contrast. Anisotropic property of the low velocity
formation significantly affects the velocity of head waves, regardless of the formation
thickness..

+ The exact location of the interface that create head waves is not required because an
apparent head wave velocity can be determined by the gradient of travel times along a
receiver array in a wellbore

Based on the above advantages, we proposed a practical method for estimating 6* and C;3
by combining head waves with other in-situ measurements.
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APPENDIX A: SNELL'S LAW IN A GROUP DOMAIN

According to the geometry illustrated in Figure A-2, the travel time between S and R

can be written as

h; + hy

T= . (A-1)
Vai(d)cosd,  Vea(dr)coshr
The incident and refracted angles are given by
tan; = —;_1 and tanQy = 1;1;: . (A-2)

Fermat's principle requires that the position of P make the traveltime minimum. That is,

dT
ax = 0. (A-3)
Then,
dT do1 d hy d¢, d hy
— = + = — ). (A-4)
dx ~ dx dg; Vg(gncospr X dos Vg(da)cost
From Eqn. A-2,
do; _ cos’d; do, _ cos’dy A-5)
dx ~ Iy dx = hpy °
Putting these relations into equation (53), we can derive
sin®1 _dv, cospl _ sind; _dy, costr (A-6)

V1) dor Vg(01)? Vg2 dz Ve(¢2)®
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Figure A-1: Refraction of seismic rays at the interface.
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APPENDIX B: WAVE FRONT OF HEAD WAYVES

Let's define o, Ly, L, and d as illustrated in Figure B-1. o corresponds to the angle
between the wave front and the interface. The angle between the seismic rays and the
normal direction to the interface is given by a group angle ¢.. The travel time from P to O
along the interface has to be equal to that from P to Q in a medium 1. This requires that

Ly _ Litly

= . B-1
V(9osinge V2 &b
The relation among Ly, Ly, d, o and ¢ are given by
d d
L = COtd, = tanQ (B-2)
From the above two equations, we can derive
1 Vs .
cotol = ( - sinQ). (B-3)
cospe V(@)
According to the generalized Snell's law for a critical refraction,
V(©
Vy= ﬁ (B-4)
sinBc

In addition, the relation between the phase and group velocities described in Eqns. 16 and

17 gives
V(0o)sinBe + Ticose
sin¢ a9 (B-5)
c = -
Vg(de)
V(ec)COSGC - d—Y'Sinec
cosd do (B-6)
c = A -
V(o)
Then,
y coth(V(Gc)-fl—\e/sinGC)
2 .
- = = cot0 . B-7
Vo) sind V(69 cotf.cosdc (B-7)
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Figure B-1: Wave front of head waves around the receivers. V(¢c) and V2
represent the critical group velocity of head waves and the horizontal
velocity in a medium 2, respectively.
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Finally, we derive

coto = cot O, o =0. (B-8)

This result immediately concludes that the angle between the wave front and the interface is
equal to the critical phase angle.
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